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Lecture 13: The Law of Small Numbers

Relevant textbook passages:
Pitman [15]: Sections 2.4, 3.5, 3.8, 4.2
Larsen–Marx [14]: Sections 3.8, 4.2, 4.6

13.1 Poisson’s Limit

The French mathematician Siméon Denis Poisson (1781–1840) is known for a number of contri-
butions to mathematical physics. But what we care about today is his discovery regarding the
binomial distribution. We have seen that the Standard Normal density can be use to approx-
imate the binomial probability mass function. In fact, if X has a Binomial(n, p) distribution,
which has mean µ = np and standard deviation σn =

√
np(1 − p), then for each k, letting

zn = (k − µ)/σn, we have

lim
n→∞

∣∣∣∣P (X = k) − 1√
2πσn

e− z2
2

∣∣∣∣ = 0.

See Theorem 10.5.1.
Poisson discovered another peculiar, but useful, limit of the binomial distribution. 1 Fix

µ > 0 and let
Xn ∼ Binomial(n, µ/n).

Then E Xn = µ for each n, but the probability of success is µ/n, which is converging to zero.
As n gets large, for fixed k we have
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(

n
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(
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−−−−→
n→∞

1
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· µk · 1 · e−µ

= e−µ µk

k!
.

This result was known for a century or so as Poisson’s limit. Note that if k > n, the binomial
random variable is equal to k with probability zero. But the above is still a good approximation
of zero.

1 von Bortkiewicz [22] gives this reference: Zu vergleichen Poisson, Recherches sur la probablités des jugements,
Paris 1837. no 81, p. 205–207. Crathorne [8] gives a little more detail on Poisson’s contribution.
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You may recognize the expression µk

k! from the well known expression

∞∑
k=1

µk

k!
= eµ,

which is obtained by taking the infinite Taylor series expansion of the exponential function
around 0. See, e.g., Apostol [2, p. 436].

13.2 The Poisson(µ) distribution
Larsen–
Marx [14]:
Section 4.3

The Poisson(µ) distribution is a discrete distribution that is supported on the nonnegative
integers, which is based on the Poisson limit. For a random variable X with the Poisson(µ)
distribution, where µ > 0, the probability mass function isPitman [15]:

p. 121

P (X = k) = pµ(k) = e−µ µk

k!
, (k = 0, 1, 2, 3, . . . ).

Table 13.1 gives a sample of the values for various µ and k.

k µ = .25 µ = .5 µ = 1 µ = 2 µ = 4 µ = 8
0 0.7788 0.6065 0.3679 0.1353 0.01832 0.0003355
1 0.1947 0.3033 0.3679 0.2707 0.07326 0.002684
2 0.02434 0.07582 0.1839 0.2707 0.1465 0.01073
3 0.002028 0.01264 0.06131 0.1804 0.1954 0.02863
4 0.0001268 0.001580 0.01533 0.09022 0.1954 0.05725
5 6.338 ∗ 10−6 0.0001580 0.003066 0.03609 0.1563 0.09160
6 2.641 ∗ 10−7 0.00001316 0.0005109 0.01203 0.1042 0.1221
7 9.431 ∗ 10−9 9.402 ∗ 10−7 0.00007299 0.003437 0.05954 0.1396
8 2.947 ∗ 10−10 5.876 ∗ 10−8 9.124 ∗ 10−6 0.0008593 0.02977 0.1396
9 8.187 ∗ 10−12 3.264 ∗ 10−9 1.014 ∗ 10−6 0.0001909 0.01323 0.1241

10 2.047 ∗ 10−13 1.632 ∗ 10−10 1.014 ∗ 10−7 0.00003819 0.005292 0.09926
11 4.652 ∗ 10−15 7.419 ∗ 10−12 9.216 ∗ 10−9 6.944 ∗ 10−6 0.001925 0.07219
12 9.691 ∗ 10−17 3.091 ∗ 10−13 7.680 ∗ 10−10 1.157 ∗ 10−6 0.0006415 0.04813

Table 13.1. The Poisson probabilities pµ(k).

13.2.1 Remark The ratio of successive probabilities pµ(k + 1)/pµ(k) is easy to compute.

pµ(k + 1)
pµ(k)

= µ

k + 1
.

So as long as k+1 < µ, then pµ(k+1) > pµ(k), but then pµ(k) decreases with k. See Figure 13.1.

One can show that if µ > λ, then the Poisson(µ) distribution stochastically dominates the
Poisson(λ) distribution. (Stochastic dominance is defined and discussed in Section 12.2 ⋆.)

The next set of charts show how the Poisson distribution stacks up against the binomial.
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13.3 The mean and variance of the Poisson distribution

If X has a Poisson(µ) distribution, then

E X = e−µ
∞∑

k=0

k
µk

k!
= e−µ

∞∑
k=1

k
µk

k!

= µe−µ
∞∑

k=1

µk−1

(k − 1)!
= µe−µ

∞∑
j=0

µj

j!
= µ.

To compute the variance, let’s use the identity Var X = E(X2) − (E X)2. To compute this
we first need E(X2). This leads to the awkward sum

∑∞
k=0 k2e−µ µk

k! , so we’ll use the trick that
Pitman [15, pp. 223–24] uses and write X2 = X(X − 1) + X. Start with E

(
X(X − 1)

)
:

E
(
X(X − 1)

)
= e−µ

∞∑
k=0

k(k − 1)µk

k!
= e−µ

∞∑
k=2

k(k − 1)µk

k!

= µ2e−µ
∞∑

k=2

µk−2

(k − 2)!
= µ2e−µ

∞∑
j=0

µj

j!
= µ2.

So

Var X = E(X2) − (E X)2 =
(

E X(X − 1) + E X
)

− (E X)2 = (µ2 + µ) − µ2 = µ.
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13.4 Sums of independent Poisson random variables

13.4.1 Proposition Let X be Poisson(µ) and Y be Poisson(λ) and independent. Then X + Y
is Poisson(µ + λ).

Proof : Convolution:

P (X + Y = n) =
n∑

j=0
P (X = j, Y = n − j)

=
n∑

j=0
P (X = j)P (Y = n − j)

=
n∑

j=0
e−µ µj

j!
e−λ λn−j

(n − j)!

= e−(µ+λ) (µ + λ)n

n!
,

where the last step comes from the binomial theorem:

(µ + λ)n =
n∑

j=0

n!
j!(n − j)!

µjλn−j .

13.5 Random scattering
Pitman [15]:
pp. 238–233Pitman [15, pp. 238–233] discusses a remarkable result that shows how the Poisson distribution

arises when points are scattered at random throughout a some region in space or time. Let
A = I1 × · · · × Ik be a bounded rectangle in Rk. A scatter is a random experiment that
“scatters/hits/chooses” a random finite number of points at random throughout A.

For each n the nth subdivision of A partitions A into m = 2kn subrectangles by dividing
each interval Ij into 2n subintervals of equal length, j = 1, . . . , k.

For each Borel subset B of A, let NB be the number of points in B, and let vol(B) denote
the k-dimensional volume of B.

13.5.1 Poisson Scatter Theorem Assume the scatter satisfies these three conditions:

1. Nondegeneracy: The scatter is nondegenerate, that is, there is strictly positive probability
that NA > 0.

2. Distinctness: The probability is zero that two points coincide.

3. Random scattering: For each n, in the nth subdivision, the events En
j = (subrectangle j is hit),

j = 1, . . . , 2kn, are independent and all have the same probability.

Then there is a 0 < λ < ∞ such that

1. for every Borel subset of A, the random variable NB has a Poisson distribution with
parameter λ × vol(B), and

2. if B1, . . . , Bm are disjoint, then the random variables NB1 , . . . , NBm
are stochastically in-

dependent.

13.5.2 Definition A scatter satisfying the conclusion of Theorem 13.5.1 is called a Poisson
scatter.
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13.5.3 Remark While the proof of the theorem relies on Poisson’s approximation, the result
is an exact one. It says that each NB has a Poisson distribution, not that its distribution is
approximately Poisson.

13.5.4 Remark There are technical mathematical issues that Pitman ignores, largely because�
the answers all lie outside the scope of this course. Here are a few.

What is the sample space for the scatter experiment? Well, if one point is scattered, the
outcome is just an element of A. It two are scattered, then the outcome is an element of A2, etc.
But wait, what if the scatter is empty? That is, there are no points. We need to append some
outcome to the sample to indicate that, and we might as well call it A0, so the natural candidate
for the sample space is S =

∞
∪

n=0
An. This is awkward to work with, but mathematicians have

invented ways beyond the scope of this class to deal with it.
The next question is to decide that the events are. We already know that for each Borel set

we want NB , the number of scattered points in B to be a random variable, so we need enough
events to make that true.

Now the question arises, is there any probability measure on the set of events that satisfies
the hypotheses of the theorem. I hate say once more that the answer is yes, but the proof of it
is beyond the scope of this course.

The theorem guarantees that if we can find such a probability on the sample space, it must
then have the additional properties stated in the conclusion.

Outline of a proof of Theorem 13.5.1: (Cf. Pitman [15, p. 233])�
Assume we have solved the technical issues have and have found a probability measure with

the desired properties. By throwing out the event of probability zero that two scatter points
coincide, we may assume that all the points are distinct.Or should I just do

this a.s.? Let the random variable N be the total number of “hits” on the rectangle A. For each n, let
Hn be the number of subrectangles in the nth subdivision that have been hit. Note that

Hn+1 ⩾ Hn, (1)

since the hits in any nth-subdivision rectangle E will also belong to one of E’s 2k subrectangles
in the n + 1th subdivision.

Since the points are distinct, for large enough n all the points will be in distinct nth-
subdivision rectangles, Hn ↑ N on the sample space. Thus

(N ⩽ t) =
∞⋂

n=1
(Hn ⩽ t),

so by Proposition 2.4.3,
P (N ⩽ t) = lim

n→∞
P (Hn ⩽ t).

So the distribution of N can be found by taking the limit as n → ∞ of the distribution of Hn.
By assumption (3) of random scattering, each event En

j = (subrectangle j is hit), j =
1, . . . , 2kn, are independent and all have the same probability. Call this probability pn. Then
Hn is just the number of the events En

j , that have occurred, which has a Binomial(2nk, pn)
distribution with mean E Hn = 2knpn.

Since expectation is a positive linear operator, (1) tells us that E Hn = 2knpn is an
increasing sequence. So the sequence is either unbounded or converges to a limit µ < ∞.

Pitman leaves it as an exercise to show that the limit µ is finite. In this case, the distributionDo Pitman’s
exercise. of the limit random variable H must be Poisson with parameter µ:

P (N ⩽ k) = lim
n→∞

P (Hn ⩽ k = Fµ(k)),
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where Fµ is the Poisson(µ) cumulative distribution function—the last equality is Poisson’s limit.
Now set λ = µ/ vol(A). Then N = NA has a Poisson distribution with parameter λ vol(A).

The remainder of the theorem proceeds by showing that for any subrectangle E in a subdi-
vision, the random variable NE has a Poisson distribution with parameter λ vol(E). The proof
is the same as for A.

Since the events that subrectangles in a given subdivision are independent, any disjoint events
B1, . . . , Bm that are unions of finitely many subrectangles from the same have the property that
the random variables NBi

are independent. Since the sum of independent Poisson random
variables is also Poisson, we see that for each Bi has a Poisson distribution with parameter
λ vol(Bi).

To get the result for any Borel set involves reasonably standard measure-theoretic techniques
(e.g., the Carathéodory extension theorem) that are beyond the scope of this class.

13.6 The Law of Small Numbers

The term “Law of Small Numbers” does not have the same universal agreement on it meaning as
the Law of Large Numbers. The expression was coined in 1898, when Ladislaus von Bortkiewicz 2

published Das Gesetz der kleinen Zahlen [The Law of Small Numbers] [22]. He described a
number of observations on the frequency of occurrence of rare events that appear to follow a
Poisson distribution. Crathorne [8] discusses controversies surrounding Bortkiewicz’s use of the
term “Law of Small Numbers” and alternative descriptions, such as the Law of Rare Events.
Feller [10, p. 159n] says, “These are misnomers which proved detrimental to the realization of the
fundamental role of the Poisson distribution.” Nowadays some of my colleagues have used the
term at Faculty Board meetings to refer to the fact that when sample sizes are small, confidence
intervals are wide (see Lecture 19). The psychologists Tversky and Kahneman [21] use the term
to describe the mistaken intuition of many psychologists that small sample sizes are represen-
tative of large populations. But we shall use the term in the same way as von Bortkiewicz.

Here is a mathematical model to explain his observations. It is closely related to the Poisson
scatter, but is a little different.

The random experiment

The experiment is to “scatter” a known number m of numbered balls at random among n bins,
labeled 1, . . . , m. 3 We can think of the outcome of this experiment as a multinomial random
vector with m different types of outcomes (namely, the bins) and n independent trials (one for
each ball). (Recall Section 3.9.) The components Nb, b = 1, . . . , m, of the vector

N = (N1, . . . , Nm)

count how many of the experiments (balls) had outcome b (hitting bin b). Each bin is equally
likely to be hit, so

Nb ∼ Binomial
(

n,
1
m

)
,

but the Nb’s are not independent, since
m∑

b=1

Nb = n.

The average number µ of balls per bin is

µ = n

m
,

2 As an interesting aside, the OED [19] credits von Bortkiewicz in 1917 for first using the term stochastic
[German, stochastik] to mean random. Before that, its meaning was conjectural.

3 Alternatively we could treat the number n as a random variable, and proceed conditional on its value.
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Poisson’s limit tells us that, fixing µ = n/m, if n (and m) are large, then each component Nb

of N has an approximate Poison distribution with intensity µ.
But the Law of Small Numbers is not concerned with the distribution of Nb. Instead we are

interested in Xk, k = 0, . . . , m, the random variables that count the number of bins with k hits,

Xk = # {b : Nb = k},

so
m∑

k=0

Xk = m.

Let pµ(k) be the Poisson(µ) probability mass function.

13.6.1 Proposition (The Law of Small Numbers) Fixing the ratio µ = n/m and the
count k, if n and m are large enough, then with high probability,

Xk = the number of bins with k hits ≈ mpµ(k). (2)

Before I explain why the Law of Small Numbers is true, let me give some examples of its
application.

13.7 The Law of Small Numbers in practice

There are many stories of data that fit this model, and many are told without any attribution.
Many of these examples can ultimately be traced back to the very carefully written book by
William Feller [9] in 1950. (I have the third edition, so I will cite it.) Feller attributes some of
his examples to John Maynard Keynes’ [13] monograph.

• During the Second World War, Nazi Germany used unmanned aircraft, the V1 Buzz Bombs,
to attack London. (They weren’t drones, since they were never designed to return or to be
remote controlled. Once launched, where they came down was moderately random.) Feller [10,
pp. 160–161] cites R. D. Clarke [6] (an insurance adjuster for The Prudential), who reports that
a region of 144 square kilometres of South London was divided into 576 sectors of about 1/4
square kilometre, and the number of hits in each sector was recorded. The total for the region
was 537 Buzz Bombs. For more details, see the article by Shaw and Shaw [18].
How does this fit our story? Consider each of the n = 537 Buzz Bombs as a ball and each of
the m = 576 sectors as a bin. Then µ = n/m = 537/576 = 0.9323. Our model requires that
each Buzz bomb is equally likely to hit each sector. I don’t know if that is true, but that never
stops an economist from proceeding as if it might be true. In fact Shaw and Shaw [18] suggest
that Clarke was investigating whether there were suspicious clusters of hits. The Law of Small
Numbers then predicts that the number of districts with k hits should be approximately

576p0.9323(k).

Here is the actual data compared to the Law’s prediction:

No. of Hits k: 0 1 2 3 4 ⩾ 5
No. of Sectors with k hits: 229 211 93 35 7 1

Law prediction: 226.7 211.4 98.5 30.6 7.1 1.6

That looks amazingly close. Later on in Lecture 23 we will learn about the χ2-test, which gives
a quantitive measure of how well the data conform to the Poisson distribution, and the answer
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will turn out to be, “very.” (The p-value of the χ2-test statistic is 0.95. For now, you may think
of the p-value as a measure of goodness-of-fit with 1 being perfect.)
One of the things you should note here is that there is a category labeled ⩾ 5 hits. What should
prediction be for that category? It should be n

∑∞
k=5 pµ(k), which it is. On the other hand, you

can count and figure out that there is exactly one sector in that category and it had seven hits.
So the extended table should read as follows

No. of Hits k: 0 1 2 3 4 5 6 7 ⩾ 8
No. of Sectors with k hits: 229 211 93 35 7 0 0 1 0

Law prediction: 226.7 211.4 98.5 30.6 7.1 1.3 0.2 0.03 0.004

As you can see, it doesn’t look quite so nice. The reason is that Poisson approximation is for
valid for smallish k. (A rule of thumb is that the model should predict a value of at least 5
sectors for it to be a good approximation.)

• The bins don’t have to be geographical, they can be temporal. So distributing a fixed
average number of events per time period over many independent time periods, should also give
a Poisson distribution. Indeed Chung [5, p. 196] cites John Maynard Keynes [13, p. 402], who
reports that von Bortkiewicz [22] reports that the distribution of the number of cavalrymen
killed from being kicked by horses is described by a Poisson distribution! Here is the table
from von Bortkiewicz’s book [22, p. 24]. It covers the years 1875–1894 and fourteen different
Prussian Cavalry Corps. So there are m = 280 = 14 × 20 CorpsYears (bins). Each CorpsYear
corresponds to a bin. There were n = 196 deaths (balls). So µ = n/m = 196/280 = 0.70, so
with n = 280 our theoretical prediction of the number of CorpsYears with k deaths is 280p.7(k).
Unfortunately, the numbers of expected deaths as reported by von Bortkiewicz, do not agree
with my calculations. I will look into this further. Keynes [13, p. 404] complains about von
Bortkiewicz and his reluctance to describe his results in “plain language,” writing, “But like
many other students of Probability, he is eccentric, preferring algebra to earth.”

Number of CorpsYears with N deaths
Bortkiewicz’s My

N Actual Theoretical Theoretical
0 144 143.1 139.0
1 91 92.1 97.3
2 32 33.3 34.1
3 11 8.9 7.9
4 2 2.0 1.4

5 + — 0.6 0.2

(By the way, the p-value of the χ2-statistic for my predictions is 0.80.)

• Keynes [13, p. 402] also reports that von Bortkiewicz [22] reports that the distribution of
the annual number of the number of child suicides follows a similar pattern.

Chung [5, p. 196] also lists the following as examples of Poisson distributions.

• The number of colorblind people in a large group.

• The number of raisins in cookies. (Who did this research?)

• The number of misprints on a page. (Again who did the counting? 4)
It turns out that just as class ended in 2015, my colleague Phil Hoffman, finished correcting the
page proofs for his new book, Why Did Europe Conquer the World? [11]. In m = 261 pages

4 According to my late coauthor Roko Aliprantis, Apostol’s Law states there are an infinite number of misprints
in any book. The proof is that every time you open a book that you wrote, you find another misprint.
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there were a total n = 43 mistakes. There were no mistakes on 222 pages, 1 mistake on 35 pages,
and 2 mistakes on 4 pages. This is an average rate of µ = n/m = 43/261 = 0.165 mistakes per
page. Here is a table of actual page counts vs. rounded expected page counts mp0.165(k) with k
errors, based on the Poisson(0.165) distribution:

0 1 2 ⩾ 3
Actual 222 35 4 0
Model 221.4 36.5 3.0 0.17

As you can see this looks like a good fit. The p-value is 0.90.
Feller [10, § VI.7, pp. 159–164] lists these additional phenomena, and supplies citations to

back up his claims.
• Ernest Rutherford (1871–1937) was awarded the 1908 Nobel Prize in Chemistry “for his in-
vestigations into the disintegration of the elements, and the chemistry of radioactive substances”
(Nobel Prize website). Rutherford, Chadwick, 5 and Ellis [16, pp. 171–172] report the results of
an experiment by Rutherford and Geiger 6 [17] in 1910 where they recorded the time of scintilla-
tions caused by α-particles emitted from a film of polonium. “[T]he time of appearance of each
scintillation was recorded on a moving tape by pressing an electric key. ... The number of α
particles counted was 10,097 and the average number appearing in the interval under consider-
ation, namely 1/8 minute, was 3.87.” The number of 7.5-second intervals (bins) was m = 2608.
(That’s a little over 5 hours total, but it was spread out over five days in three to five minute
intervals [17, p. 699]. I assume it was a poor grad student who did the key-pressing.) The
number of emissions (balls) was, as stated above, n = 10, 097. Rutherford and Geiger enlisted
the aid of Bateman 7 [17] who “worked out ... [t]he distribution of α particles according to the
law of probability.”
These data are widely referred to in the probability and statistics literature. Feller [10, p. 160]
cites their book, and also refers to Harald Cramér [7, pp. 435–437], for some statistical analysis.
Cramér in turn takes as his source a textbook by Aitken [1, pp. 77–78].
Table 13.2 has my reproduction of Rutherford et. al.’s table, where, like Feller, I have combined
the counts for k ⩾ 10. 8 I have also recalculated the model predictions for µ = 10097/2608 = 3.87,
which differ from Cramér’s numbers by no more than 0.1. (Rutherford, et. al. rounded to
integers.) I calculate the p-value measure of fit to be 0.23, but Cramér reported 0.17.

• The number of “chromosome interchanges” in cells subjected to X-ray radiation. [4]

• Telephone connections to a wrong number. (Frances Thorndike [20])

• Bacterial and blood counts.

• Too late for mention by Feller, Keller [12] found the Poisson distribution was a good model
for the number of goals scored in a soccer game and the number of runs in a baseball game.

The Poisson distribution describes the number of cases with k occurrences of a rare phe-
nomenon in a large sample of independent cases.

It can be used to estimate the probability of the occurence of a cluster of rare events.

5 James Chadwick (1891–1974) won the 1935 Nobel Prize in Physics “for the discovery of the neutron” (Nobel
Prize website), a particle that had been proposed by Rutherford.

6 Hans Geiger was the inventor of the eponymous counter (wp). The famous Rutherford “gold foil” exper-
iment that demonstrated the existence of atomic nuclei was actually conducted by Geiger and Marsden under
Rutherford’s direction (wp).

7 Harry Bateman (1882–1946) (wp) was an English mathematician who later moved to Caltech. There is still
a Harry Bateman Research Instructorship in the math department.

8 The full set of counts were: k 10 11 12 13 14
count 10 4 0 1 1
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k Actual Model
0 57 54.3
1 203 210.3
2 383 407.1
3 525 525.3
4 532 508.4
5 408 393.7
6 273 254.0
7 139 140.5
8 45 68.0
9 27 29.2

10+ 16 17.1

Table 13.2. Alpha-particle emissions.

13.8 Explanation of the Law of Small Numbers

Recall the experiment described in Subsection 13.6. There were

• n balls, dropped at random into

• m bins, so

• µ = n/m average number of balls per bin.

• Nb is the random variable that counts the hits on bin b.

• Xk is the random variable that counts the number of bins with k hits,

Xk = |{b : Nb = k}|, k = 0, . . . , m.

I asserted the following:

13.8.1 The Law of Small Numbers Fixing µ and k, if n is large enough, with high proba-
bility,

Xk = the number of bins with k hits ≈ mpµ(k). (3)

Here is a mildly bogus argument to convince you that it is plausible. It is a variation on the
arguments of Feller [10, Section VI.6, pp. 156–159] and Pitman [15, § 3.5, pp. 228–236], where
they describe the Poisson scatter. The LSN though is not quite that phenomenon.

Quasi-proof : Pick any bin, say bin b and pick some number k of hits. The probability that ball i
hits bin b is 1/m = µ/n. So the number of hits on bin b, has a Binomial(n, µ/n) distribution,
which for fixed µ and large n is approximated by the Poisson(µ) distribution, so

P (Nb = k) = Prob (bin b has k balls) ≈ pµ(k).

But this is not the Law of Small Numbers. This just says that any individual bin has an
approximate Poisson probability of k hits, but the LSN says that the for each k, the fraction of
bins with k hits follows a Poisson distribution, Xk/m ≈ pµ(k). You might think that this is just
an application of the Law of Large Numbers: If getting k hits is counted as a success, and if the
number of bins m is large, the number of successes should be close to its expectation mpµ(k).
This argument, while giving the right answer, is invalid, because to apply the LLN, the trials
have to be independent. That is, the event that bin b has k hits has to be independent of the
event that bin c, has k hits, but it isn’t. For a stark example, let n = m = 2, so if bin 1 has two
hits, then bin 2 must have zero. So how do we justify the LSN?

KC Border v. 2020.10.21::10.28



Ma 3/103 Winter 2021
KC Border The Law of Small Numbers 13–12

Imagine independently replicating this entire experiment r times. Say a replication is a
“success” if bin b has k balls. The probability of a successful experiment is thus approximately
pµ(k). By the Law of Large Numbers, the number of successful experiments in a large number r
of independent replications is close to rpµ(k) with high probability.

That is, for large n, for large enough r, with high probability, the number of replications in
which bin b has k hits is approximately rpµ(k).

Now symmetry says that there is nothing special about bin b, and since there are m bins,
summing over all bins and all replications one would expect that the number of bins with
k hits would be approximately m times the number of replications in which bin b has k hits
(which is approximately rpµ(k)). Thus all together, in the r replications there are approximately
mrpµ(k) bins with k hits. Since all the replications are of the same experiment, there should be
approximately

mrpµ(k)
r

= mpµ(k)

bins with k hits per replication.

In this argument, I did a little(?) handwaving (using the terms close and approximately).
To make it rigorous would require a careful analysis of the size of the deviations of the results
from their expected values. Note though that r has to be chosen after k, so we don’t expect (2)
to hold for all values of k, just the smallish ones. In particular, if µ = n/m, then I cannot fix µ
and m and let n get large. I may need to go back to the drawing board.

So how big does n have to be? Breiman [3, p. 35] suggests this approximation works well
when µ2/n = n/m2 ≪ 1.
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