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Lecture 5: Random variables and expectation

Relevant textbook passages:
Pitman [9]: Sections 3.1–3.2
Larsen–Marx [8]: Sections 3.3–3.5
Supplemental reading: Ash [2]: Sections 3.1–3.3

5.1 Random variables

Recall the following Definition 2.5.2.

5.1.1 Definition A random variable on a probability space (Ω,F, P ) is a real-valued
function on Ω, that is,

X : Ω → R,

which has the following measurability property: for every interval I ⊂ R the inverse image
of I is an event. That is,

{ω ∈ Ω : X(ω) ∈ I} is an event.

A random vector X = (X1, . . . , Xn) is simply a finite-dimensional vector of random
variables.

Note that when the collection F of events consists of all subsets of Ω, then the measurability
is automatically satisfied. It is difficult to construct examples of functions that do not have
the mesurability property, so in what follows I may simply ignore the issue.

5.1.2 Remark An interpretation of random variables used by engineers is that they represent
measurements on the state of a system. See, e.g., Robert Gray [6]. Another interpretation is
that random variables are the source of data. That is, a random vector turns the outcome of a
random experimental into a numerical datum that we can analyze using numerically.

5.2 The correspondence between indicator functions and events

Recall that the indicator function 1E of the event E is a random variable 1E : Ω → R defined
by

1E(ω) =

{
1 if ω ∈ E

0 if ω /∈ E.

There are several useful correspondences between operations on sets and operations on their
indicator functions. The following proposition summarizes a few of them. The proof is easy,
and is left as an exercise.

5.2.1 Proposition We have the following identities. (Note that operations on indicator func-
tions are performed pointwise.)
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Complements: 1Ec = 1 − 1E .

Unions: 1E ∪ F = max{1E , 1F } = 1E ∨ 1F .

Intersections: 1EF = min{1E , 1F } = 1E ∧ 1F . Also, 1EF = 1E · 1F .

Monotone Limits For a sequence E1, . . . , En, . . . , that is increasing, i.e., En ⊂ En+1, also
written En ↗, we have

1∪
n

En
= lim

n→∞
1En

.

For a sequence E1, . . . , En, . . . , that is decreasing, i.e., En ⊃ En+1, also written En ↘, we have

1∩nEn
= lim

n→∞
1En

.

Sums: 1E + 1F ⩾ 1E ∪ F . Events E and F are disjoint if and only if 1E + 1F = 1E ∪ F .

Sums:
∑n

i=1 1Ei
(ω) is the count of the number of sets Ei to which ω belongs, that is,

n∑
i=1

1Ei
(ω) = # {i : ω ∈ Ei}.

5.3 The distribution of a random variable

A random variable X on the probability space (Ω,F, P ) induces a probability measure or dis-
tribution on the real line as follows. Given an interval I, we define

PX(I) = P ({ω ∈ Ω : X(ω) ∈ I}) .

This gives us probabilities for intervals. We can extend this to probabilities of other sets, such
as complements of intervals, countable unions of intervals, countable intersections of countable
unions of intervals, etc. It turns out that the probabilities of the intervals pin down the prob-��
abilities on the entire Borel σ-algebra, denoted B. (Recall Appendix 2.10 ⋆.) This result is
known as the Carathéodory Extension Theorem, and may be found in many places, such
as [1, Chapter 10]. This probability measure on the real line R is called the distribution of
the random variable X.Pitman [9]:

§ 3.1

5.3.1 Definition The random variable X : Ω → R on the probability space (Ω,F, P ) cre-
ates a new probability space (R,B, PX), where B is the Borel σ-algebra, and the distri-
bution of X, PX , is defined for B ∈ B by PX defined by

PX(B) = P (X ∈ B).

The virtue of knowing the distribution is that for many purposes we can ignore the original
probability space and only worry about the distribution on the induced sample space R. But be
sure to read section 3.1 in Pitman [9], especially p. 146, on the difference between two variables
being equal and having the same distribution:

A random variable is a function on a sample space, and a distribution is a probability measure
on the real numbers. It is possible for two random variables to be defined on different sample
spaces, but still have the same distribution. For example, let X be the indicator that is one if
a coin comes up Tails, and Y be the indicator that a die is odd. Assuming both the coin and
the die are “fair,” X and Y will have the same distribution, namely each is equal to one with
probability 1/2 and zero with probability 1/2, but they are clearly different random variables.
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5.4 Discrete random variables

A random variable X is simple if the range of X is finite. A random variable X is discrete
if the range of X is countable (finite or denumerably infinite).

For a discrete random variable, let x belong to the range of X. The probability mass
function pX is given by

pX(x) = P (X = x)

It completely determines the distribution of X.

5.5 The cumulative distribution function of a random variable
Pitman [9]:
§ 4.5
Larsen–
Marx [8]:
p. 127, p. 137

5.5.1 Definition The cumulative distribution function FX of the random variable X
defined on the probability space (Ω,F, P ) is the function FX : R → [0, 1] defined by

FX(x) = P (X ⩽ x) = PX(−∞, x].

We often write
X ∼ F

to mean that the random variable X has cumulative distribution function F .

N.B. Many authors whom I respect, for instance, C. Radikrishna Rao [10], Leo Breiman [3],
and most of the French define the cumulative distribution function using the strict inequality
X < x rather than X ⩽ x.

5.5.2 Fact The cumulative distribution function FX is a nondecreasing, right continuous func-
tion, and satisfies limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1.

5.6 Examples

5.6.1 Bernoulli random variables

The Bernoulli distribution is a discrete distribution that generalizes coin tossing. A random
variable X with a Bernoulli(p) distribution takes on two values: 1 (“success”) and 0 (“failure”).

�The probability mass function is

p(X = x) =

{
p x = 1
1 − p x = 0.

Its probability mass function and cumulative distribution function are not very interesting.

5.6.2 Binomial random variables

The Binomial(n, p) distribution is the distribution of the number X of “successes” in n
independent Bernoulli(p) trials.
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Figure 5.1. The Bernoulli pmf
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Figure 5.2. The Bernoulli cdf

The probability mass function is

P (X = k) =
(

n

k

)
pk(1 − p)n−k, k = 0, . . . , n.

Note that the Binomial probability mass functions are unimodal. The mode is the value
where the probability mass function assumes its maximum. Here this occurs at X = pn. When
pn is not an integer, the mode(s) will be adjacent to pn. Note that the probability mass function
for p = 0.5 is symmetric about pn, the height of the mode is lower, and the pmf is more “spread
out.” The probability mass functions for p = 0.2 and p = 0.8 are mirror images, which should
be obvious from the formula for the probability mass function.

5.7 Parametrized distributions

Many, if not most, named probability distributions come in parametrized families. For instance,
the binomial distribution has two parameters n and p; the Normal family of distributions (of
which we shall hear a lot more later) has two parameters µ and σ (or σ2).

The following definitions are standard, see, e.g, Forbes, et al. [5, p. 20].

5.7.1 Definition (Scale parameters) Generally speaking, if a distribution F = F (·; σ) has
a parameter σ > 0, where

X ∼ F (·; 1) ⇐⇒ σX ∼ F (·; σ),

then σ is referred to a scale parameter. However, on occasion some authors may refer to 1/σ
as a scale parameter.
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Figure 5.3. Binomial probability mass functions.
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Figure 5.4. Binomial cumulative distribution functions.
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5.7.2 Definition (Location parameters) If a distribution F = F (·; µ) has a parameter µ,
such that if

X ∼ F (·; 0) ⇐⇒ X + µ ∼ F (·; µ),

then µ is referred to a location parameter.

Other parameters may not have such simple interpretations. Sometimes they are called
shape parameters. For the binomial distribution, the number of trials, n, is called the size
parameter. Other parameters may be referred to asdegrees of freedom.

5.8 ⋆ Stochastic dominance

Note: This material is in neither Pitman [9] nor Larsen–Marx [8].

Given two random variables X and Y , we say that X stochastically dominates Y if for
every real number x

P (X ⩾ x) ⩾ P (Y ⩾ x),

and for some x this holds as a strict inequality. In other words, X stochastically dominates
Y if for every x

FX(x) ⩽ FY (x),

with a strict inequality for at least one x.

If X is the time to failure for one brand of hard drive, and Y is the time to failure for another,
which hard drive do you want in your computer?

Note that the Binomial distributions for a fixed n are ordered so that a larger p stochastically
dominates a smaller p. See Figure 5.4.

5.9 The expectation of a random variable on a finite state space

The expectation of a random variable is a concept that grew out of the study of gambling games.
Suppose the sample space for a gambling game is the finite set

Ω = {ω1, . . . , ωn},

and that the probability of each outcome is given by the probability measure P on Ω. Suppose
further that in outcome ω ∈ Ω, you win X(ω). What is a fair price to pay the casino to play
this game? What the early probabilists settled on is what we now call the expectation of X.

5.9.1 Definition (Expectation on finite state spaces) When X is a random variable on
a probability space (Ω,F, P ) and Ω is finite, we define the expectation E X of X to be the
number ∑

ω∈Ω

XωP (ω).

The case of a finite state space Ω covers most gambling situations, and most “classical”
probability theory deals with this case. There are other terms for the expectation, including
the mean, the first moment, or the {dfmathematical expectation, or even the expectation
operator.

Why is this considered the “fair price?” For simplicity assume that each of n outcomes is
equally likely (e.g., roulette). If we play the game n times and we get each possible out ωi once, we
shall have won

∑
ω X(ω). So they argued the fair price per play should be

∑
ω X(ω)/n = E X.
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5.9.2 Example (Some simples examples of expectation) Here I’ll use simple tables to
describe random variables and their expectations.

Rademacher random variable

Toss a fair coin and let Y = 1 if Tails occurs and Y = −1 if Heads occurs. We can summarize
this in the following table.

ω P (ω) X(ω) X(ω)P (ω)
T 1/2 1 1/2
H 1/2p −1 −1/2

E X 0

Bernoulli random variable There are two points in the sample space, Success and Failure.
The Bernoulli random variable is 1 if a success occurs and 0 if a failure occurs. We can summarize
this in the following table.

ω P (ω) X(ω) X(ω)P (ω)
Success p 1 p
Failure 1 − p 0 0

E X p

Binomial random variable This counts the number of success in n independent Bernoulli
trials. There are 2n points in the sample space. Here is a table for the case n = 3.

ω P (ω) X(ω) X(ω)P (ω)
FFF (1 − p)3 0 0
FFS (1 − p)2p 1 p(1 − p)2

FSF (1 − p)p(1 − p) 1 p(1 − p)2

FSS (1 − p)p2 2 2p2(1 − p)
SFF p(1 − p)2 1 p(1 − p)2

SFS p(1 − p)p 2 2p2(1 − p)
SSF p2(1 − p) 2 2p2(1 − p)
SSS p3 3 3p3

E X 3p

(The last step, adding up the last column to get 3p is tedious, but here goes: p(1 − p)2 =
p(1 − 2p + p2) = p − 2p2 + p3, and p2(1 − p) = p2 − p3, so the sum of the last column becomes
3(p − 2p2 + p3) + 6(p2 − p3) + 3p3 = 3p.)
Another way to do this would be to group all the points where X = x to get

x (X = x) P (X = x) xP (X = x)
0 {FFF} (1 − p)3 0
1 {FFS, FSF, SFF} 3(1 − p)2p 3

(
p − 2p2 + p3)

2 {FSS, SFS, SSF} 3(1 − p)p2 6
(
p2 − p3)

3 {SSS} p3 3p3

E X 3p

This last calculation uses the probability mass function rather than the probability measure P
on the state space.

Roll of a die Let X be the number showing on a standard die. Here is a table showing the
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calculation of E X.
ω P (ω) X(ω) X(ω)P (ω)
1 1/6 1 1/6
2 1/6 2 2/6
3 1/6 3 3/6
4 1/6 4 4/6
5 1/6 5 5/6
6 1/6 6 6/6

E X 21
6 = 3 1

2

Roll of two dice Let X be the total showing on a roll of two standard dice. Here is a table
showing the calculation of E X, using the grouping method. Points in the state space are
represented by a pair of digits, e.g., 62 means 6 on die 1 and 2 on die 2. Each point has
probability 1/36

x (X = x) p(x) = P (X = x) xP (X = x)
2 {11} 1/36 2/36
3 {12, 21} 2/36 6/36
4 {13, 22, 31} 3/36 12/36
5 {14, 23, 32, 41} 4/36 20/36
6 {15, 24, 33, 43, 51} 5/36 30/36
7 {16, 25, 34, 43, 52, 61} 6/36 42/36
8 {26, 35, 44, 53, 62} 5/36 40/36
9 {36, 45, 54, 63} 4/36 36/36

10 {46, 55, 64} 3/36 30/36
11 {56, 65} 2/36 22/36
12 {66} 1/36 12/36

E X 252
36 = 7

□

We will see in Proposition 5.11.1 below that there are easier ways to calculate some of these
expectations.

5.9.3 Remark Here is an interpretation of the expectation that you may find useful. At least
it appears in many textbooks.

For a simple random variable X with values x1, . . . , xn imagine the real line as a massless
balance beam with masses p(xi) placed at xi for each i. Now place a fulcrum at the position µ.
From what I recall of Ph 1a, the total torque on the beam is∑

i

p(xi)(xi − µ).

Which value of µ makes the total torque equal to zero? Since
∑

i p(xi) = 1, it is easy to see that

µ =
∑

i

p(xi)xi

is the balancing point. That is, the beam is balanced at the expectation of X. In this sense, the
expectation is the location of the “center” of the distribution.

Since the torque is also called the moment of the forces 1 the expectation is also known as
the first moment of the random variable’s distribution.

1 According to my copy of the OED [11] the term “moment” comes from the Latin momentum, meaning
“movement” or “moving force.”
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It follows that

E
(
X − (E X)

)
= 0.

Proof : By definition,
E X =

∑
ω∈Ω

X(ω)P (ω)

and

E
(
X − (E X)

)
=

∑
ω∈Ω

(
X(ω) − (E X)

)
P (ω)

=
∑
ω∈Ω

X(ω)P (ω) − E X
∑
ω∈Ω

P (ω)︸ ︷︷ ︸
=1

= E X − E X = 0.

5.9.4 Remark We shall soon see that the expectation is the long run average value of X in
independent experiments. This is known as the Law of Large Numbers, or more informally as
the Law of Averages.

Interpretations of E X:

• The “fair price” of a gamble X.

• The location of the “center of mass” of the distribution of X.

• Long run average value of X in independent experiments.

• If X is the indicator function of an event E, then E X is P (E).

Here are two easily verified properties of expectation in this case.

1. If X ⩾ 0, then E X ⩾ 0.

2. For real constants a, b,
E(aX + bY ) = a E X + b E Y.

The latter is just the distributive law:

E(aX + bY ) =
∑
ω∈Ω

(aX(ω) + bY (ω))P (ω)

= a
∑
ω∈Ω

X(ω)P (ω) + b
∑
ω∈Ω

Y (ω)P (ω) = a E X + b E Y.

Together these two properties are summarized by saying that expectation is a positive
linear operator. We want to extend the definition to more general random variables in a way
that preserves these properties.
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5.10 Expectation of a simple random variable
Pitman [9]:
§ 3.1
Larsen–
Marx [8]:
§ 3.5

We define the expectation in steps, starting with the expectation of a simple random variable.

5.10.1 Definition Let X be a simple random variable on the probability space (Ω,F, P ) that
takes on the distinct values {x1, . . . , xn}. The canonical representation or standard rep-
resentation of X is given by

X(ω) =
n∑

i=1
xi1Ai

(ω),

where Ai = {ω ∈ Ω : X(ω) = xi} = (X = xi).
Pitman [9]:
§ 3.2

5.10.2 Definition (Expectation of a simple random variable) Let X be a simple
random variable on the probability space (Ω,F, P ) with canonical representation

X(ω) =
n∑

i=1
xi1Ai

(ω).

The expectation of X is defined to be the number

E X =
n∑

i=1
xiP (Ai).

Consequently, the expectation E 1E of the indicator function 1E of an event E is P (E).

Note that the expectation of a simple random variable X is determined by its distribution
on R.

5.10.3 Proposition For a simple random variable X,

E X =
∑

x∈range X

xpX(x),

where pX is the probability mass function for X.
If X is a simple random variable on a discrete probability space (Ω,F, P ), then

E X =
∑
ω∈Ω

X(ω)P (ω).

Proof : The first expression is just a rewriting of the canonical representation, and the second
follows from the canonical representation by replacing P (Ai) with

∑
ω∈Ai

P (ω).

In other words the expectation is a weighted average of the values of X where the weights
are the probabilities attached to those values.

5.10.4 Remark If you are alert and looking for trouble, you might point out that a simple
random variable X can be written in many ways as a linear combination of indicator functions.
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The canonical way is to enumerate the range of X as {x1, . . . , xn}, and set Ei = {ω : X(ω) = xi},
i = 1, . . . , n. Then

X =
n∑

i=1
xi1Ei .

But there is usually more than one way to skin a cat. For instance, let S = {0, 1} and
consider the two linear combinations of indicator functions:

X = 1S − 1{0} = 1{1}.

How do we know that the so-called definition of expectation will give the same result for each
representation? And if it doesn’t, what makes the canonical representation so special, anyhow?

The answer is given in the next proposition.

5.10.5 Proposition (Expectation does not depend on the representation) Let X be
a simple random variable with representations

X =
n∑

i=1
ai1Ai =

m∑
j=1

bj1Bj .

Then
E X =

n∑
i=1

aiP (Ai) =
m∑

j=1
bjP (Bj) =

n∑
i=1

m∑
j=1

cijP (AiBj),

where cij = ai = bj if AiBj ̸= ∅, and cij = 0 otherwise.

The proof of the proposition is an exercise in keeping track of your notation and using the
additivity property of probability, and I leave it as an exercise for the masochistic.

5.10.6 Remark Note that E can be (and is) regarded as an operator on the space of simple
random variables. That is, it assigns to each random variable X a real number E X. It is
customary to write operators without parentheses, that is, as E X instead of E(X) (although
Pitman uses parentheses). This practice can be a little ambiguous. For instance, if X is a
random variable, so is X2, so what does E X2 mean? Is it E(X2) or (E X)2? The answer is
E(X2), the operator applied to the random variable X2. Similarly, most people write E XY
instead of E(XY ), etc. (In a programming class you would say the operator E has lower
precedence than arithmetic operators.) There are a few expressions coming up where I may add
extra parentheses for clarity.

5.11 Expectation of a sum of simple random variables

5.11.1 Proposition The expectation of the sum of two random variables is the sum of their
expectations.

Proof : If X and Y are simple random variables on the state space Ω with range X = {x1, . . . , xm}
and range Y = {y1, . . . , yn}, then X + Y is a simple random variable with range(X + Y ) ⊂
{xi + yj : i = 1, . . . , m, j = 1, . . . , n}. Now let Ei = (X = xi) and Fj = (Y = yj). Then the
Ei’s partition Ω and the Fj ’s partition Ω. So for each j = 1, . . . , n we have

Fj =
m
∪

i=1
EiFj , and so P (Fj) =

m∑
i=1

P (EiFj)

and for each i = 1, . . . , m we have

Ei =
n
∪

j=1
EiFj , and so P (Ei) =

n∑
j=1

P (EiFj)
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By Definition 5.10.2 and Proposition 5.10.5,

E(X + Y ) =
m∑

i=1

n∑
j=1

(xi + yj)P (X = xi & Y = yj) =
m∑

i=1

n∑
j=1

(xi + yj)P (EiFj).

Rearranging the right-hand side using the distributive law gives

E(X + Y ) =
m∑

i=1

n∑
j=1

xiP (EiFj) +
m∑

i=1

n∑
j=1

yjP (EiFj)

=
m∑

i=1
xi

n∑
j=1

P (EiFj) +
n∑

j=1
yj

m∑
i=1

P (EiFj)

=
m∑

i=1
xiP (Ei) +

n∑
j=1

yjP (Fj) = E X + E Y.

This proposition can be used to simplify some of the expectations in Example 5.9.2.

5.12 Expectation of a function of a simple random variable

If X with canonical representation

X =
n∑

i=1
xi1Ai

is a simple random variable on a probability space (Ω,F, P ) and g is a function from R to
R, then the composition g ◦ X is also a simple random variable,

g ◦ X =
n∑

i=1
g(xi)1Ai .

Then

E(g ◦ X) =
n∑

i=1
g(xi)P (Ai),

=
∑

x∈range X

g(x)pX(x)

5.12.1 Extended random variables

We shall presently see that we may want to allow random variables to assume the extended-real
values ∞ or −∞.
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5.12.1 Definition (Expectation for simple random variables) For extended-real
valued simple random variables, we adopt the convention that ∞ · 0 = (−∞) · 0 = 0.

• If P (X = ∞) = P (X = −∞) = 0, then E X is computed as above, and is finite.

• If P (X = ∞) > 0 and P (X = −∞) = 0, then E X is ∞.

• If P (X = ∞) = 0 and P (X = −∞) > 0, then E X is −∞.

• If P (X = ∞) > 0 and P (X = −∞) > 0, then E X does not exist.

5.13 The expectation of a nonnegative random variable

We now want to define the expectation for a random variable that is not simple. For instance, a
geometric random variable, which is the number of independent Bernoulli trials it takes to get
to the first success is not simple, but it is discrete. Proposition 5.10.3 suggests that for a discrete
random variable X we should define E to be

∑
x∈range X xpX(x). We will almost do this, but

we take a slightly sideways approach. We move on to, not general discrete random variables,
but to (not necessarily discrete) random variables taking on values in the range [0, ∞]. (Note
that simple random variables, by definition, take on only values in R, and cannot take on the
value ∞.)

5.13.1 Definition (Expectation for nonnegative random variables) Let X be a
random variable on the probability space (Ω,F, P ) and taking on values in [0, ∞]. Then
define

E X = sup{E Y : Y is a simple random variable and Y ⩽ X a.s.}.

(Recall that E a.s. means P (E) = 1.)

Note that this allows for E X to be the value ∞. We have the following result that can be
used to find E X.

5.13.2 Monotone Convergence Theorem Let X be a nonnegative extended real-valued
random variable on the probability space (Ω,F, P ). Let Xn ⩾ 0 be an increasing sequence of
nonnegative random variables on Ω, that is,

0 ⩽ X1 ⩽ X2 ⩽ · · · ⩽ Xn · · · ,

(where the inequality holds pointwise for each ω ∈ Ω) and assume

X = lim
n

Xn = sup
n

Xn.

Then
E X = lim

n
E Xn.

(The possibility E X = ∞ is allowed.)

This is a standard result and may be found, for instance, in Breiman [3, A.26, p. 397] or
Halmos [7, Theorem B, p. 112].
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5.13.3 Remark Given a nonnegative random variable X, a standard way of constructing an
increasing sequence X1, X2, . . . of simple random variables such that X = limn Xn = supn Xn

is this. For each n, define Xn by

Xn(ω) =

{
k

2n if k
2n ⩽ X(ω) < k+1

2n , k = 0, . . . , 22n

2n X(ω) ⩾ 2n.

This works even if X(ω) = ∞.
This procedure amount to taking the interval [0, 2n) and dividing it into 22n intervals Ik =

[(k−1)/2n, k/2n) of length 1/2n, for k = 1, . . . , 22n. Then for each point s ∈ X−1[Ik], the inverse
image of Ik, we set Xn(ω) = (k−1)/2n, the bottom end of the interval Ik. For s ∈ X−1[

[2n, ∞)
]

we set Xn(ω) = 2n. See Figure 5.5.

2

4

8

S

X1

X2

X3

X

Figure 5.5. Approximating a nonnegative function X by simple functions X1, X2, X3, etc.,
as described in Remark 5.13.3.

A corollary of the Monotone Convergence Theorem offers a simple way to calculate the expec-
tation of discrete nonnegative random variable.

5.13.4 Corollary (Expectation as an infinite series) Let X be a discrete nonnegative
random variable with range {x1, x2, . . . } and probability mass function p. Then

E X =
∞∑

i=1
xip(xi).

Proof : Let Xn be the simple random variable Xn =
∑n

i=1 xi1(X=xi). (Note that Xn(ω) = 0
unless X(ω) ∈ {x1, . . . , xn}.) Then Xn is an increasing sequence of random variables with
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Xn ↗ X and

E Xn =
n∑

i=1
xip(xi),

so by the Monotone Convergence Theorem 5.13.2,

E X = lim
n→∞

n∑
i=1

xip(xi) =
∞∑

i=1
xip(xi).

5.14 The St. Petersburg Paradox

There is at least one problem with the interpretation of expectation as a fair price.

5.14.1 Example (The St. Petersburg Paradox) Consider the following game: Toss a fair
coin until the first Heads appears. If this happens on nth toss, you win 2n.

What is the expected value of this game?
The sample space S, for this experiment was discussed in Example 1.4.4,

S = {H, TH, TTH, . . . , TT · · · T︸ ︷︷ ︸
n−1

H, . . . , TTTT · · · },

and
X(TT · · · T︸ ︷︷ ︸

n−1

H) = 2n, and X(TTTT · · ·) = 0.

Now P (TT · · · T︸ ︷︷ ︸
n−1

H) = 1/2n, so by Corollary 5.13.4 of the Monotone Convergence Theorem 5.13.2,

E X =
∞∑

n=1
2n 1

2n
=

∞∑
n=1

1 = ∞.

So if the expectation is a fair price, you should be willing to pay any price to play this game.
But wait! What is the probability that the game stops in a finite number of tosses? Let

En be the event that the first Tails occurs on toss n. The event that the game stops in finitely
many tosses is the countable disjoint union

∞
∪

n=1
En. (Do you see why?) But this has probability∑∞

n=1 1/2n = 1. So with probability 1 the game will end for some n, and you will receive
2n < ∞. This was regarded at the time as a paradox.

We shall see later that the reason expectation is not a good measure of “fairness” in this
case is that the “Law of Averages” breaks down for random variables that do not have a finite
expectation. □

Aside: According to Diaconis and Skyrms [4], the paradox was first posed by Nicholas Bernoulli in
a letter to Pierre Raymond de Montmort on September 9, 1713. it was “resolved” independently by
Gabriel Cramer and Nicholas’s brother Daniel Bernoulli. Daniel, a one-time resident of the eponymous
Russian city, published his arguments in the Commentaries of the Imperial Academy of Science of Saint
Petersburg (1738).

5.14.2 Remark The expected length of a St. Petersburg game is
∞∑

n=1
(length of game if first Tails is on toss n) × Prob (first Tails is on toss n) =

∞∑
n=1

n2−n = 2.

For a derivation of the value of this series, see Proposition S1.2.1 in Supplement 1.
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5.15 The expectation of a general random variable

So far we have defined the expectation of a nonnegative random variable. How do we extend
this to more general random variables? The answer is to split the random variable into two
parts. Given a random variable X, define the random variables X+ and X− by

X+ = max{X, 0} and X− = max{−X, 0}.

Then X+ agrees with X when X ⩾ 0, and X+ = 0 when X ⩽ 0. Similarly, X− = −X when
X ⩽ 0, and X− = 0 when X ⩾ 0. We call X+ the positive part of X, and X− the negative
part of X. N.B. The negative part X− of X is actually a nonnegative random variable. We
have the following identities:

X = X+ − X− and |X| = X+ + X−.

Since X+ and X− are nonnegative random variables, we know how to take their expectations.
We now define the expectation of X in terms of the expectation of its positive and negative parts.

5.15.1 Definition (Expectation of a general random variable) Let X be a ran-
dom variable. Then we define

E X = E X+ − E X−,

except that when

E X+ = E X− = ∞, we say that E X does not exist.

So

• If E X+ = ∞ and EX− is finite, then E X = ∞, and we say that X has infinite
expectation.

• If E X− = ∞ and EX+ is finite, then E X = −∞, and we say that X has negatively
infinite expectation.

It follows that

5.15.2 Proposition The expectation E X is finite if and only if E |X| is finite.

We have just seen that if the sample space is infinite, it is possible to construct random
variables whose expectation is a divergent series, that is, the expectation is infinite.

In terms of our balance beam interpretation of expectation, if we put a mass of 2n at the
position 1/2n on the beam, for each n = 1, 2, . . . , then there is no finite mass that we can put
anywhere, no matter how far to the left, to get the beam to balance. You might say that’s
because we have an infinite mass on the right-hand side of the beam, but it’s more subtle.
Suppose I put only a mass of one at each position 1/2n. Then a single unit of mass at position
−1 would balance the beam.

You might wonder if any “naturally occurring” random variables have infinite expectation,
or if they only exist in the demented minds of mathematicians. The answer, unfortunately, is
yes. Take a random walk that starts at zero, and at each clock tick a step of size ±1 is taken
with equal probability. We shall see in Supplement 7 that the number of periods we have to wait
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to return to zero is a random variable with infinite expectation. During the 2017 Rose Bowl
game, I was talking with a colleague in econometrics about a nonparametric estimation problem
for latent variables in which some his terms were random variables with infinite expectations.
So yes, there are random variables that pop up in practice, and have infinite expectation.

There are worse problems that can result. Imagine the following variant of the St. Petersburg
Paradox. First roll a fair die. If it comes up even, then play the standard St. Petersburg game:
If the first Tails happens on nth toss, you win 2n. if the die comes up odd, then if the first Tails
happens on nth toss, you lose 2n. Thus you win 2n with probability 2n+1 and “win” −2n with
probability 2n+1, so the expectation is the infinite series

∞∑
n=1

(2n − 2n)/2n+1 = 1
2

− 1
2

+ 1
2

− 1
2

+ · · · ,

which is not an absolutely convergent series, so the expectation of the random variable does
not exist.

You might say that the expectation of the random variable above should be defined to be
zero. But when we get to the Law of Large Numbers (the law of averages) in Lecture 7, we shall
see that this is not a useful notion of expectation.

5.16 Independent random variables
Pitman [9]:
pp. 151–154

5.16.1 Definition The pair X, Y of random variables is stochastically independent
random variables if for every B1, B2 ⊂ R, a

P (X ∈ B1 and Y ∈ B2) = P (X ∈ B1) · P (Y ∈ B2).

More generally, a set X of random variables is mutually stochastically independent if
for every finite subset of random variables X1, . . . , Xn of X and every collection B1, . . . , Bn

of subsets 1 of R,

P (X1 ∈ B1, . . . , Xn ∈ Bn) = P (X1 ∈ B1) · · · P (Xn ∈ Bn).
aCaveat: Bi must be a Borel set.

5.16.2 Example (Pairwise independence does not imply independence) Let X and Y
be independent Bernoulli(1/2) random variables (coin tosses), and let Z be the parity of X +Y .
(That is, Z = 1 if X + Y is odd, and 0 otherwise) Then X, Y , and Z are pairwise stochas-
tically independent (any pair are independent); but X, Y , Z are not mutually stochastically
independent.

You will be asked to prove this in the homework. □

5.16.3 Definition A sequence X1, X2, . . . (finite or infinite) is independent and iden-
tically distributed, abbreviated i.i.d., if they have a common distribution function and
are stochastically independent.
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5.16.1 Functions of independent random variables

5.16.4 Theorem If X1, . . . , Xn are independent random variables and f1, . . . , fn are (Borel)
functions, then

f1(X1), . . . , fn(Xn) are independent random variables.

Proof : We need to show that every collection B1, . . . , Bn of (Borel) subsets of R,

P (f1(X1) ∈ B1, . . . , fn(Xn) ∈ Bn) = P (f(X1) ∈ B1) · · · P (fn(Xn) ∈ Bn),

but

P (f1(X1) ∈ B1, . . . , fn(Xn) ∈ Bn) = P
(
X1 ∈ f−1

1 [B1], . . . , Xn ∈ f−1
n [Bn]

)
= P

(
X1 ∈ f−1

1 [B1]
)

· · · P
(
Xn ∈ f−1

n [Bn]
)

= P (f(X1) ∈ B1) · · · P (fn(Xn) ∈ Bn).
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