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Lecture 1: Probability: Intuition, Examples, Formalism

Relevant textbook passages:
Pitman [36]: Sections 1.1, 1.2, first part of 1.3, pp. 1–26.
Larsen–Marx [32]: Sections 1.3, 2.1, 2.2, pp. 7–26.

1.1 Uncertainty, randomness, and probability

Karl Orff’s O Fortuna is a musical tribute to Fortune. The lyrics are from an irreverent 13th

century poem attributed to student monks (Wikipedia). The poem paints a picture of Fortune
as “variabilis, semper crescis aut decrescis [changeable, ever waxing and waning].” Fortune is
associated with “Sors immanis et inanis, rota tu volubilis, status malus [Fate—monstrous and
empty, you whirling wheel, you are malevolent].”

This view of Fortune, or randomness, or uncertainty, as monstrous and subject to no law
save its own malevolence is an ancient view of randomness. See, e.g., Larsen–Marx [32, § 1.3] or Larsen–

Marx [32]:
§ 1.3

the book by Florence Nightingale David [10]. Indeed some have gone so far as to suggest that it
was this view of luck that kept the ancient Greeks from developing the insurance and financial
infrastructure needed to conquer the world. Peter Bernstein [4, p. 1] writes (emphasis mine):

What is it that distinguishes the thousands of years of history from what we
think of as modern times? The answer goes way beyond the progress of science,
technology, capitalism, and democracy.

[...]
The revolutionary idea that defines the boundary between modern times and the

past is the mastery of risk: the notion that the future is more than a whim of the
gods and that men and women are not passive before nature. Until human beings
discovered a way across that boundary, the future was a mirror of the past or the
murky domain of oracles and soothsayers who held a monopoly over knowledge of
anticipated events.

But traces of the ancient view remain. It is perhaps this view of randomness as chaos,
anarchy, and malevolence, that led Albert Einstein (in a December 4, 1926 letter to Max Born)
to insist that

Gott würfelt nicht mit dem Universum.
[God does not play dice with the universe.]

Except that is not what Einstein actually wrote. The correct quote 1 according to Born [5,
pp. 129–130] is, “Jedenfalls bin ich überzeugt, daß der nicht würfelt.” [Anyway, I am convinced
that he does not play dice.]

One of my colleagues in applied math, [redacted] , suggested that mixing probability and
data analysis in a single course was dangerous because students might “believe that things are
probabilistic.” (I disagree that this is dangerous. In fact I encourage you to think that the world
is full of randomness.) This view was also expressed by a Ma 2b 2 student as, “But earthquakes
don’t happen at random. They happen for a reason.”

1 I thank Lindsay Cleary, the HSS librarian for tracking this down for me.
2 Ma 2b was the predecessor to Ma 3. The number was changed to facilitate scheduling.
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Our view of luck and fortune began to change in the 17th century when Blaise Pascal (1623–
1662) and Pierre de Fermat (1601?–1665) began a correspondence that started a systematic
mathematical investigation into games of chance.

We now understand that

Randomness is not simply anarchy.
It obeys mathematical laws.

It is these laws that we shall begin to study in this course.

1.2 Probability and its interpretations

The great mathematician Henri Poincaré 3 (1854–1912) wrote as the first sentence of the first
chapter of his Calcul des Probabilités [37, p. 24], the following:

On ne peut guère donner une définition satisfaisante de la Probabilité.
[One can hardly give a satisfactory definition of Probability.]

Probability is our way of quantifying or measuring our uncertainty. We normalize it to be
a number between 0 and 1 inclusive. But what exactly does it mean to say such things as:

• The probability that a coin toss results in Tail (or is it a Tails) is 1/2.

• The probability is 0 that I will never get Tails when repeatedly tossing a fair coin. Does
this mean that it cannot happen?

• With probability 1 a random walk returns to its origin infinitely often.

• The expected time for a random walk to return to zero is infinite.

• There is a 20% chance the Dodgers will win the next World Series.

• I have just tossed a coin and placed a textbook on top of it, so that you cannot see the
outcome. What is the probability that it will show Tails when I remove the book?

The Institute has an entire course, (HPS/Pl 122. Probability, Evidence, and Belief)
devoted to the interpretation of these numbers, but I shall briefly discuss the major views as I
see them. But for a more thorough job by a professional philosopher, I recommend Alan Hájek’s
survey [23]. There is also an excellent critical history of the ideas of probability by Persi Diaconis
and Brian Skyrms [12].

“Classical” probability as a ratio of possible cases: The idea of measuring probability by
counting favorable cases and taking the ratio to all cases was in use by Cardano in 1564 [12,
p. 4], and was viewed as commonplace by Galileo and Huygens, but was definitively enunciated
by Pierre Simon, Marquis de Laplace [31, pp. 6–7]:

The theory of chance consists in reducing all the events of the same kind to a certain
number of cases equally possible, that is to say, to such as we may be equally undecided
about in regard to their existence, and in determining the number of cases favorable

3 According to [27, p. 224], while testifying for the defense in the Affaire Dreyfus, “Poincaré had identified
himself on the stand as the greatest living expert on probability, a tactical error which he later justified to his
friends by pointing out that he was under oath.” (Part of the prosecution’s case was a statistical argument
by Monsieur Bertillon, a handwriting expert for the Paris police, who claimed that Dreyfus had forged his own
handwriting so that he could claim that an incriminating document was a forgery. Poincaré pointed out numerous
problems with Bertillon’s analysis.)
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to the event whose probability is sought. The ratio of this number to that of all
cases possible is the measure of this probability, which is thus simply a fraction whose
number is the number of favorable cases and whose denominator is the number of all
cases possible.

The problem with this as a definition of probability is that it does not explain which cases
are “equally possible.” Presumably this means that they have the same probability, but then
the definition is circular. Nevertheless the Bernoulli–Laplace notion is useful for many of the
problems that we shall encounter, but it is not always obvious how to apply it. The usual
justification for treating cases as equally likely is symmetry. Coins are symmetric, so the two
faces should be equally likely. Dice are symmetric, so the six sides should be equally likely, etc.
The idea that absent any reason to believe otherwise, we should treat cases as “equally possible”
is known as the Principle of Insufficient Reason [16, p. 528] or nowadays as the Principle
of Indifference.

Frequentist school: The frequentist school views probabilities as long-run average frequencies.
Joseph Hodges and Erich Lehmann [19, pp. 4, 9–10] put it this way: Pitman [36]:

§ 1.2
We shall refer to experiments that are not deterministic, and thus do not always

yield the same result when repeated under the same conditions, as random experi-
ments. Probability theory and statistics are the branches of mathematics that have
been developed to deal with random experiments.

[ … ]
Data … gathered from many sources over a long period of time, indicate the fol-

lowing stability property of frequencies: for sequences of sufficient length the value of
[the frequency] f will be practically constant; that is, if we observed f in several such
sequences, we would find it to have practically the same value in each of them. …

It is essential for the stability of long-run frequencies that the conditions of the
experiment be kept constant. … Actually, in reality, it is of course never possible to
keep the conditions of the experiment exactly constant. There is in fact a circularity
in the argument here: we consider that the conditions are essentially constant as long
as the frequency is observed to be stable. …

The stability property of frequencies … is not a consequence of logical deduction. It
is quite possible to conceive of a world in which frequencies would not stabilize as the
number of repetitions of the experiment become large. That frequencies actually do
possess this property is an empirical or observational fact based on literally millions
of observations. This fact is the experimental basis for the concept of probability …

Frequentists have strong opinions about what kinds of phenomena are “probabilistic.” I have
a colleague who was raised by frequentists. I flipped a coin, and put it on his desk under my
hand, so he could not see it. I asked him what the probability is that the coin is showing
Heads. His response was that having flipped the coin, the outcome was no longer random, so
the probability was either zero or one, he just couldn’t say which. But if I had asked the question
before tossing, he would have said 1/2. At least to a frequentist, the coin is either Heads or
Tails, unlike Schrödinger’s coin, which is both Heads and Tails until we look at it. :-)
There are other problems with the frequentist approach. One is the above noted circularity
in the definition. As a practical matter, we often do not get enough observations to figure
out long-run averages. Moreover, one of the things we shall prove in this course is that if the
probability that a coin toss results in Heads is 1/2, then the probability of getting exactly n
Heads in 2n tosses of a coin actually tends to zero as n tends to infinity. So how could we
ever figure out the frequentist probability? Do we just have to settle for statements like “the
probability that a coin toss results in Heads is probably about 1/2?” [The answer, I believe, is
yes.] For a vicious dissection of the frequentist approach see the papers by my former colleague,
Alan Hájek [21, 22].
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Empirical Probability: Empirical probabilities are observed frequencies in large samples, and
are conceptually close to long-run frequencies. For example:

• The probability that a child is a boy.Pitman [36]:
§ 1.3 In the U.S. from 2000 through 2008, 51.2% of all live births were boys, so the probability of a child

being born a boy is 0.512. (Source: U.S. Census Bureau, Statistical Abstract of the United States,
2012, Table 80. http://www.census.gov/compendia/statab/2012/tables/12s0080.pdf)
• Life Tables.
According to the U.S. Centers for Disease Control, National Vital Statistics Report, vol. 61,
no. 3 (Sep. 24, 2012), http://www.cdc.gov/nchs/data/nvsr/nvsr61/nvsr61_03.pdf, Table 5,
pp. 18–19: 4

A U.S. white male has an 86.2% chance of surviving to age 60; and an 80.9% chance of living to
age 65. Does that mean that a 60-year old white male has only a 80.9% chance of living to 65?
No. Since he has already lived to 60, his chance of making to 65 is actually 80.9/86.2 = 93.9%.
This is an example of conditional probability that we shall discuss in just a bit.
[You might ask, why did I look at the tables for white males? For my 60th birthday I had to
decide whether to renew my term life insurance policy or to buy a tenor saxophone.]

Physical Probability and Initial Conditions: In this view, the probability of an event is
derived from an analysis of the laws of physics. For example, consider coin tossing. We know
the physics of rotating and falling objects, so the only uncertainty stems from not observing the
initial conditions.
Example: Coin tossing:

• Karl Menger [35] provides a simple model of coin tossing in which the height h from which
the coin was dropped and its angular velocity ω determined whether it turns up as Heads or
Tails. The key point is the set of initial conditions (h, ω) contains an equal area of conditions
that lead to Heads as Tails.
Here are the initial conditions that lead to hitting on edge after k half-turns.

h = c
k2

ω2 + 1, k = 1, 2, . . .

where the coin has radius 1, and c depends on units and the acceleration of gravity. These loci
are graphed for various k in Figure 1. The regions between these curves alternately produce
Heads and Tails. See Figure 1.1.
A slightly more sophisticated model would take into account the angular momentum of the coin
that would cause the coin to continue to rotate after landing on edge. All that would do is
change the angle of interest from vertical to one where the gravitational torque would balance
the angular momentum. In other words, it would just shift the regions in Figure 1.1.
• A more sophisticated model of the physics of tossing and catching a coin, due to Persi Dia-
conis, Susan Holmes, and Richard Montgomery [11] takes into account wobbling and precession,
and a calibrated version of their model suggests that the probability a coin comes up in the
same position it started is about 51%!
This is why your first assignment will be to toss coins, but more on that later.

4 There are two types of life tables: the cohort (or generation) life table and the period (or current) life
table. The cohort life table presents the mortality experience of a particular birth cohort—all persons born in a
particular year from the moment of birth through consecutive ages in successive calendar years. The drawback
of a cohort table is doesn’t lend itself to projecting the future mortality of those currently alive. The period life
table tries to circumvent this problem by looking at a particular reference year, and finding the death rate for
each age in that year. (What fraction of those born in that year, died in their first year; what fraction of one
year olds in that year died before age two, etc.) It then calculates what would happen to a cohort if the death
rate at each age for the cohort is the same as the death rate for that age in the reference year. The table in this
report is a period life table.
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Figure 1.1. Initial conditions (ω, h) that land on edge in the Menger model are indicated
by the thin black lines. Shaded areas in between these curves alternate in producing
Head and Tails.

• Andrzej Lasota and Michael Mackey’s book [33], Chaos, Fractals, and Noise (1994), for-
merly known as Probabilistic Properties of Deterministic Systems (1985), 5 make a persuasive
case that chaotic dynamics are best described in terms of probability. For a more elementary
account, you might find Ekeland’s [13] Mathematics and the Unexpected enjoyable.
• Most physicists believe that certain quantum mechanical phenomena at very small scales
are truly random and cannot be explained in terms of unobserved initial conditions (“hidden
variables”). The impossibility of predicting through which slit a photon will pass is one of them.
Bell [3] states a theorem that asserts that quantum mechanics is inconsistent with a hidden
variables explanation. There is a controversy over the validity of Bell’s argument. I am in
no position to judge, but if you are interested, you might start with Stewart’s Do Dice Play
God? [40, Chapter 16, pp. 223–247].

Pitman [36]:
pp. 16–17Subjective Probability: The subjective school of probability treats probabilities as state-

ments about the degree of belief of a decision maker. The label “Bayesian” is commonly
attached to the subjectivist school. Bruno de Finetti, a first rate mathematician, takes the
extreme view [15, p. x] that

“in order to avoid becoming involved in a philosophical controversy,”
we should simply agree that
“Probability does not exist.”

By that he means it has no independent existence outside of our minds. De Finetti takes this
point of view seriously enough to invent a new term, prevision, to replace probability.

5 The new title is a lot sexier and more marketable.

KC Border v. 2020.10.21::10.28



Ma 3/103 Winter 2021
KC Border Probability: Intuition, Examples, Formalism 1–6

Examples:

• Horse racing. There is an old saying that it takes a difference of opinion to make a horse
race. Different bettors have different beliefs about which horse will win. These beliefs may be
based on a variety of evidence, but it is unlikely to come from a well-specified physical model of
the horses and the track.
• Weather forecasting is partially subjective: This is why “skill scoring rules” were invented.
The practice of expressing weather forecasts in terms of rough probabilities was initiated in
Western Australia by W. E. Cooke in 1905 [7]. Interestingly, his idea was criticized by E. B.
Garriot [17] of the U.S. because “the bewildering complication of uncertainties it involves would
confuse even the patient interpolator” and “our public insist upon having our forecasts expressed
concisely and in unequivocal terms.”
• One might question why purely subjective degrees of belief would obey the rules of prob-
ability that we are about to lay out. An answer was given by de Finetti [14]. He showed that
if beliefs are not subject to the laws of probability, then they are incoherent. That is, if your
subjective beliefs are not probabilistic, then you can be forced to lose money in a gambling
situation. De Finetti then deduces many of the properties of probability (such as additivity and
monotonicity) from the principle of coherence.

Probability as a branch of logic: The once-famous economist John Maynard Keynes (pro-
nouned canes) in his 1921 Treatise on Probability [28] argued that probability was the branch of
logic concerned with the plausibility (as opposed to truth) of propositions. This is reflected in
the German word for probability, Wahrscheinlichkeit, which could be whimsically translated
as “truthiness.” Keynes’s ideas influenced a number of others, including the physicist R. T.Where does Jeffreys

enter into this? Cox [8, 9] and through him, the physicist Edwin T. Jaynes. The late Jaynes may be the most
outspoken proponent of this view. His posthumous treatise, Probability Theory: The Logic of
Science makes for some provocative reading. He sets out three “desiderata” (he eschews the
term “axiom,” on the grounds that “they do not assert anything is ‘true’ but only state what
appear to be desirable goals.” [26, p. 16]) for a robot to do scientific plausible reasoning. They
are (i) the degrees of plausibility are represented by real numbers, (ii) they exhibit qualitative
correspondence with common sense, and (iii) the robot reasons consistently [26, pp. 17–19].
Naturally, there is a bit more to it than these assertions.
Jaynes considers himself to be an “objective Bayesian,” and points out some similarities
between his approach and de Finetti’s notion of coherence. But he rejects using coherence
arguments on three grounds.

1. The first is aesthetic: “it seems to us inelegant to base the principles of logic on such a
vulgar thing as expectation of profit.” [26, p. 655]
2. The second is strategic: “If probabilities are defined in terms of betting preferences,” it “be-
longs to the field of psychology.” Moreover, his robot does not have preferences over gambles [26,
p. 655]. Jaynes takes the position that there are objectively correct beliefs.
3. The third is that de Finetti did not articulate Cox’s principle of consistency [26, p. 656].
Consistency is related to Bayes’ Law, but I will not go into that here.

• Laplace’s “Principle of Insufficient Reason” (nowadays often referred to as the “Principle
of Indifference”) is often invoked to assign equal probabilities to events, and it is sometimes
regarded as a form of subjective belief. It can also be viewed as a requirement of invariance
under certain kinds of transformations.
• The “Maximum Entropy Principle” is a more sophisticated version of the principle of insuf-
ficient reason for assigning probabilities. See, e.g., Jaynes [25] for a persuasive argument in favor
of the maximum entropy principle. It is usually not considered to be subjective, especially by
its most ardent practitioners. They would argue that probability can and must be deduced
on logical grounds.

v. 2020.10.21::10.28 KC Border
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1.2.1 Simulation and Monte Carlo Methods

Coin tosses are not truly random once we account for initial conditions. It is ignorance of the
initial conditions that allows coin tossing to be considered random. The same is true of many
algorithms. A pseudorandom number generator is an algorithm that takes a “seed” number
to produce a sequence of pseudorandom numbers that cannot be predicted without knowing
the seed. A sequence of pseudorandom numbers is random in the same sense that a sequence
of coin tosses are random. Computer scientists have spent a lot of effort on coming up with
efficient and unpredictable pseudorandom number generators. For a discussion of some of the
subtleties of pseudorandom number generation, see Hardle et al. [24, Chapter 9, pp. 243–267]
and Hofert [20].
Hofert discusses the issue of floating point representations and machine architecture (32-bit, 64-
bit, etc.). The probability of a collision (duplicate) in a truly random sample from a uniform[0, 1]
distribution is zero. But computers can only represent finitely many different numbers. Hofert’s
points include (i) the default random number generator used by R, based on the popular
Mersenne Twister 6 [34], produces on the order of 100 collisions in a uniform[0, 1] sample of
size one million, (ii) because of integer to floating point conversions, there are more numbers
nearer to zero than one, and (iii) the expected number of collisions among n truly random k-bit
integers is n − 2k

(
1 − (1 − 2−k)n

)
. For k = 32 (oldish Intel) and n = 1, 000, 000, this is ap-

proximately 116, which is about what R delivers. (While 64-bit architecture is standard these
days, it seems that as of 2020, the default R random number generator is still based on 32-bit
code.) For k = 64 (modern Intel) and n = 1, 000, 000, this is approximately to 2.7 × 10−8. For
k = 52, this is approximately 0.0001. Why look at k = 52? Because according to the IEEE 754
standard, a 64-bit base-2 double-precision floating point normal number use only 52 bits in the
significand.
Still, these days,

For many purposes, pseudorandom numbers are as random as coin tosses.

Monte Carlo is a region in the tiny country Monaco which is famous for its gambling casinos.
Monte Carlo methods use pseudorandom numbers to analyze mathematical and statistical
problems. They often allow the substitution of the brute computing power of modern machines
to replace the rare and expensive commodity of cleverness. See, e.g., Simon [39] for some nice
examples.

• One example is the following. A few years ago, a student described the following game.
A set of bins labeled with the ranks Ace, Deuce, …, Queen, King is set out. A deck of cards
is shuffled and dealt one-by-one into the bins in sequence. You lose if you put a card into a
matching bin. What is the probability of wining?
It took my brilliant TA Viktor Kasatkin about a month to get back to me with an answer, which
involved evaluating a 52nd degree polynomial in binomial coefficients with 26-digit coefficients.
(It makes a good exercise.) But the student, on my advice, was able to arrive at the same
answer and get back to me in a matter of hours. How? She used a computer to generate a
million different shuffled decks, play the game a million times, and just count the number of
wins. In less than a minute, my R consultant wrote the following script to do this.
ranks <- rep(1:13,4) # create bins
results <- replicate(1e6, any(sample(ranks) == ranks) ) # play a million games
results <- table(results) / 1e4 # count the pct wins
rownames(results) <- c("Win pct", "Lose pct") # label the results
results # print the results

6 The name comes from the fact that the algorithm has a period of 219,937 − 1, a Mersenne prime.
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It runs in about seven seconds on my 2019 iMac with a 3.1 GHz 6-Core Intel Core i5. The
answer (by either method) turns out to be about 1.63%.

Modern statistical methods, such as the bootstrap and numerical integration rely extensively
on pseudo-random number generators. Nevertheless the great John von Neumann (1903–1957)
quipped,

Anyone who attempts to generate random numbers by deterministic means is, of
course, living in a state of sin.” 7

1.2.2 An observation on random sequence generation

But before we go further, indulge me, and let me make the following outrageous claim.

The following statement represents the opinion of the author, and does not necessarily reflect that of the
California Institute of Technology or its Mathematics Department.

The digits of π are as random as coin tossing.
By this I mean that it you cannot predict how a sequence of digits of π will continue, unless

you know the starting point—just as you cannot predict how a coin will land without knowing
its initial position, momentum, and angular momentum. For instance,

• What digit follows the following sequence:

3 1 4 1 5 . . .

I hope most of you would say 9, because 9 is the fifth digit after the decimal point in the decimal
expansion of π. But that is not necessarily the case. Let’s see why, by examining the first billion
(thousand million, for you Anglophiles) digits of π. 8

Here is a table of the digit counts:

digit number deviation
0 99,997,333 -2,667
1 100,002,411 2,411
2 99,986,912 -13,088
3 100,011,958 11,958
4 99,998,885 -1,115
5 100,010,387 10,387
6 99,996,061 -3,939
7 100,001,839 1,839
8 100,000,272 272
9 99,993,942 -6,058

1,000,000,000 0
7 Source: brainyquote.com
8 In the fall of 2014, I asked Mathematica 10 to compute π to a billion places, and it did so in 41 and a half

minutes on my early 2009 Mac Pro. (By the way, on the same machine, Mathematica 8 could compute 200
million, but not 400 million, digits before crashing.) I then asked it to count the number of occurrences of each
digit. This took another 16 minutes plus change. (In May of 2019, I asked Mathematica 12 to compute the first
billion digits of π on a new iMac with a 3.1 GHz six-core i5 chip, and it took only 17:29. Counting took only
7:31. Writing it all out took another 6:37.)

v. 2020.10.21::10.28 KC Border
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If the digits were evenly distributed you would expect about 100 million of each. The deviation
from 100 million is listed in the last column of the table. You can see that we are very close.
(The largest deviation is 0.013%.) We can treat the list of frequencies as a vector in R10 and
compute its distance from the theoretical vector of 100 million in each component. We shall
learn later on about the marvelous chi-square test for uniformity, and see that if the digits were
randomly generated, the distance from perfect uniformity due simply to randomness would be
at least this great about 84% of the time. The first billion digits of π pass this simple test for
randomness.

But now let’s get back to the question of what comes after 31415? By my count, the sequence
31415 occurs 10,010 times in the first billion and one digits of π. 9 There are slightly less than a
billion starting points for sequences of five consecutive digits in a billion and one digits. There
are 100,000 different 5-digit sequences. If each were equally likely, there would be about 10,000
of each in a billion, so 10,010 is uncannily close, and each digit should occur about 1001 times.
(Note that two sequences of 31415 cannot overlap, so each occurrence wipes out 4 more starting
points. But that effect is negligible.) Here are the number of occurrences 31415x:

string occurrences deviation
314150 1015 14
314151 1043 42
314152 946 -55
314153 958 -43
314154 1018 17
314155 978 -23
314156 1012 11
314157 1037 36
314158 1000 -1
314159 1003 2

There are 100 different digit-pairs that can follow 31415. With 10,010 such pairs we would
expect about 100.1 occurrences of each if they were randomly distributed. See Table 1.1 for
the results. A natural question is whether the deviations observed are large or small. We shall
describe how to answer this question in Lecture 23, where we derive what is called the χ2 test.
But the answer is that these deviations are small, and are very consistent with the hypothesis
that the digits of π are a random sequence.

There are other tests for randomness that we can perform. For instance, we could look at
each digit string of length n and compare its frequency to what we would expect if they were
evenly distributed. I have done this for n = 1, . . . , 6. I am not going to list all the frequencies
(think of how much paper that would take), but here are what are called the p-values (rounded
to nearest hundredth) for the chi-square test. The p-value is a number between 0 and 1, and
for now you can think of it as a measure of the “goodness of fit” of the digits to the model that
they are randomly distributed.

string length p-value
1 0.84
2 0.92
3 0.99
4 0.86
5 1.00
6 1.00

9 When I asked Mathematica 10 in 2014 to write out the billon digits it actually wrote out about a billion
and forty past the decimal point. I don’t know why. So I kept the initial digit 3, threw out the decimal point
and took the next billion minus one digits. It took Mathematica 10 fifteen minutes to write the file to disk. But
it took my Perl script a mere 6 seconds to read the file and count the occurrences of 31415.

KC Border v. 2020.10.21::10.28



Ma 3/103 Winter 2021
KC Border Probability: Intuition, Examples, Formalism 1–10

string occurrences %-deviation
3141500 103 2.9%
3141501 100 -0.1%
3141502 95 -5.09%
3141503 87 -13.09%
3141504 116 15.88%
3141505 108 7.89%
3141506 101 0.9%
3141507 102 1.9%
3141508 107 6.89%
3141509 96 -4.1%
3141510 102 1.9%
3141511 104 3.9%
3141512 106 5.89%
3141513 99 -1.1%
3141514 103 2.9%
3141515 104 3.9%
3141516 114 13.89%
3141517 113 12.89%
3141518 101 0.9%
3141519 97 -3.1%
3141520 61 -39.06%
3141521 84 -16.08%
3141522 86 -14.09%
3141523 99 -1.1%
3141524 101 0.9%
3141525 115 14.89%
3141526 98 -2.1%
3141527 105 4.9%
3141528 107 6.89%
3141529 90 -10.09%
3141530 95 -5.09%
3141531 92 -8.09%
3141532 89 -11.09%
3141533 93 -7.09%
3141534 95 -5.09%
3141535 105 4.9%
3141536 84 -16.08%
3141537 86 -14.09%
3141538 105 4.9%
3141539 114 13.89%
3141540 105 4.9%
3141541 105 4.9%
3141542 89 -11.09%
3141543 96 -4.1%
3141544 131 30.87%
3141545 106 5.89%
3141546 87 -13.09%
3141547 99 -1.1%
3141548 99 -1.1%
3141549 101 0.9%
3141550 105 4.9%
3141551 101 0.9%
3141552 86 -14.09%
3141553 87 -13.09%
3141554 105 4.9%
3141555 99 -1.1%
3141556 104 3.9%
3141557 107 6.89%
3141558 106 5.89%
3141559 78 -22.08%
3141560 99 -1.1%
3141561 97 -3.1%
3141562 100 -0.1%
3141563 98 -2.1%
3141564 107 6.89%
3141565 107 6.89%
3141566 105 4.9%
3141567 95 -5.09%
3141568 95 -5.09%
3141569 109 8.89%
3141570 105 4.9%
3141571 99 -1.1%
3141572 99 -1.1%
3141573 102 1.9%
3141574 113 12.89%
3141575 106 5.89%
3141576 97 -3.1%
3141577 115 14.89%
3141578 95 -5.09%
3141579 106 5.89%
3141580 103 2.9%
3141581 89 -11.09%
3141582 89 -11.09%
3141583 94 -6.09%
3141584 103 2.9%
3141585 117 16.88%
3141586 97 -3.1%
3141587 90 -10.09%
3141588 104 3.9%
3141589 114 13.89%
3141590 98 -2.1%
3141591 99 -1.1%
3141592 100 -0.1%
3141593 97 -3.1%
3141594 98 -2.1%
3141595 93 -7.09%
3141596 87 -13.09%
3141597 102 1.9%
3141598 110 9.89%
3141599 119 18.88%

Table 1.1. Occurrences of 31415xy.
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The point of all this is that even though the sequence of digits in the decimal expansion
of π is completely deterministic, it still makes a good random number generator, in the
sense that if I do not tell you where I start in the sequence, you cannot tell what is coming
next—the next digit behaves as if it were random. In this sense, the digits of π are as
random as a sequence of coin tosses.

But I only checked the first billion digits of π. Will this result hold up for the first 1010,000

digits? Will it hold up as an infinite limit? The answer is that we don’t know yet. A
number with the property that each sequence of n digits is equally likely in the long run is
called normal. See the very readable paper by Bailey and Borwein [2] for a recent survey
of what we know about π.

Aside: Actually, the digits of π are a terrible random sequence generator, because computing the
sequence of digits of π is very time-consuming. On my newest hardware (May 2019 iMac), in January of
2020, it took Mathematica 12 just 16 minutes to generate a billion digits of π, but a mere 10 seconds
to generate a billion pseudorandom digits using Mathematica’s built-in RandomInteger function.

If you are interested in algorithms to generate the digits of π you might want to start with this
nice paper by Borwein, Borwein, and Bailey [6]. At the time it was an impressive accomplishment to
generate the first billion digits of π. You may also want to visit the GMP page and perhaps download
Hanhong Xue’s C program, which uses 8n bytes of memory to compute n digits.

1.3 A formal approach to probability

My own view leans towards de Finetti’s, as I really want to avoid becoming embroiled in meta-
physical controversies, so I am willing to just treat probability as a mathematical construct.
But I am also impressed by all that empirical evidence that Lehmann and Hodges cite, and
others cite. It turns out that real physical phenomena are well modeled by the mathematical
construct. Perhaps we should adopt the approach of Robert Ash [1, p. 14], who suggests

“[I]n probability theory we are faced with situations in which our intuition or
some physical experiments we have carried out suggest certain results. Intuition
and experience lead us to an assignment of probabilities to events. As far as the
mathematics is concerned, any assignment of probabilities will do, subject to the
rules of mathematical consistency. However, our hope is to develop mathematical
results that, when interpreted and related to physical experience, will help to make
precise such notions as “the ratio of the number of heads to the total number of
observations in a very large sample of independent tosses of an unbiased coin is very
likely to be close to 1/2.”

We emphasize that the insights gained by the early workers in probability are
not to be discarded, but instead cast in a more precise form.

We shall take a “formal approach” to probability. That is, we shall introduce “primitive
terms” and be careful with our reasoning. The advantage of this is that you don’t have to grok
the interpretation.10

John von Neumann reportedly once said,

“There’s no sense in being precise when you don’t even know what you’re talking
about.” 11

10 Perhaps that puts me among those to whom Jaynes was referring when he wrote that “those who lay the
greatest stress on mathematical rigor are just the ones who, lacking a sure sense of the real world, tie their
arguments to unrealistic premises and thus destroy their relevance.” [26, p. xxvii], a point of view he attributes
to Harold Jeffreys.

11 Quoted by, among others, professional gambler Barry Greenstein in his autobiography Ace on the River [18,
p. 157].

KC Border v. 2020.10.21::10.28

https://gmplib.org/pi-with-gmp.html


Ma 3/103 Winter 2021
KC Border Probability: Intuition, Examples, Formalism 1–12

Yet even though I am not sure about what the correct interpretation of probability is, I am going
to give an axiomatic mathematical framework for working with it. I can at least understand the
mathematical framework. Or maybe not, for as von Neumann [42, p. 208] 12 also said,

“In mathematics you don’t understand things. You just get used to them.”

The dominant contemporary model of probability was developed in the early 20th century
by a number of mostly French, Italian, and Russian mathematicians and was finally codified by
Andrey Nikolaevich Kolmogorov (Андрей Николаевич Колмогоров [1903–1987]) in his slim
Grundbegriffe Der Wahrscheinlichkeitsrechnung [29, 30] in 1933. Glenn Shafer and Vladimir
Vovk [38] give a very readable and informative account of the history of probability theory
preceding Kolmogorov and how he synthesized the contributions of his predecessors.

1.4 Modeling random experiments

1.4.1 Experiments and sample spaces

Let’s try to construct a formal model of Hodges and Lehmann’s [19, pp. 4, 9–10] notion of a
random experiment, that is, “experiments that ... do not always yield the same result when
repeated under the same conditions.”

Many of you may balk at the idea of the same experiment giving different results if performed
under the same conditions, but anyone who has actually worked in a laboratory is familiar
with the concept of measurement error, which can be thought of as a way of sweeping
randomness under the rug and ignoring it. But we shall try to confront it head on. Since the
results may not be the same for each trial of the experiment, we start by specifying the set
of all possible outcomes. This set is called the sample space or the outcome space of the
experiment. The sample space is sometimes denoted S (as in Larsen–Marx [32]), or often as ΩPitman [36]:

§ 1.3, p. 19 (as in Kolmogorov [29], Pitman [36], or Wasserman [41]). Elements of the sample space may be
referred to as realizations, outcomes, or elementary events. In these notes I will try to use
Ω to denote the sample space, but I may slip and use S.

The sample space is to some extent at the discretion of you, the modeler. You should be
sure to include all foreseeable outcomes, but avoid extraneous possibilities. In other words, keep
your sample space parsimonious. Here is an example.

1.4.1 Example (Coin tossing) Consider the results of tossing a coin. The outcome of the
toss could be either Heads, denoted H or tails, T , so we could take as our sample space the set:

Ω = {H, T}.

Or perhaps we are willing to accept the possibility that the coin could land on edge, E. Then
the sample space would be

Ω = {H, T, E}.

Or I might wish to include the possibility that my crazed Labrador Retriever 13 might see this
as an opportunity to demonstrate her talent for retrieving flying objects and snatch the coin out
of the air, outcome L, so maybe the sample space should be

Ω = {H, T, E, L}.

Or maybe the FBI would confiscate the coin in a counterfeiting investigation. (This is rather
unlikely, as the Secret Service investigates counterfeiting.)

12 If it seems that I’m quoting John von Neumann a lot, it may be because, as the 2011 economics Nobelist
Tom Sargent once remarked in a lecture, he was “the smartest guy who ever lived ... in New Jersey.”

13 Sadly, since I first wrote these notes Zooey the retriever has died.
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(Or how’s this: When the NFL’s Pittsburgh Steelers and Detroit Lions met on Thanksgiving
Day in 1999, Steelers captain Jerome Bettis was tasked with calling the coin toss to start the
overtime. Bettis called “Tails” on national television. But Referee Phil Luckett claimed the
Steeler called “Heads.” As a result, the Lions were awarded the coin toss and quickly won the
game.)

The point is, the sample space is a mathematical model chosen by the analyst to represent
the outcomes worthy of consideration. And for most uses, that means the parsimonious sample
space for a coin toss has two points,

Ω = {H, T}.

□

1.4.2 Example Closely related to coin tossing is the random experiment of drawing a ball out
of an urn containing black and white balls. The obvious sample space is

Ω = {B, W}.

If there are an equal number of black and white balls, then this experiment is to a mathematician
identical to coin tossing.

Another equivalent experiment is rolling a single die, and noting whether the outcome is odd
or even. The obvious sample space is

Ω = {odd, even}.

Unless there is something very peculiar about the die, (that is, unless it has been “loaded”) this
experiment is “equivalent” to tossing a coin. □

1.4.3 Example (Repeated coin tossing) Now consider the results of tossing a coin three
times. The outcome of each toss could be either Heads, denoted H or tails, T . (We won’t
consider Labradors, or coins on edge, or intervention by aliens or the FBI.) With three tosses
there are eight possible outcomes to the experiment, so we take as our sample space the set:

Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}.

Clearly, if we toss a coin n times the sample space will contain 2n outcomes. □

1.4.4 Example (Repeated coin tossing with a stopping rule) In this experiment, we
toss a coin repeatedly until it comes up heads. The sample space for this experiment is quite
large. In fact it is infinite, but denumerably infinite. It includes every finite sequence of n Tails
followed by a single Head, for n = 0, 1, 2, . . . , and it includes the infinite sequence of only Tails.

Ω = {H, TH, TTH, . . . , TT · · · T︸ ︷︷ ︸
n

H, . . . , TTTT · · · }.

□

1.4.2 Events

The next concept in our formal approach is the notion of an event. An event is simply an
“observable” subset of the sample space. I use the word observable here as a primitive, but it
means subsets that we will attach probabilities to. When a trial of the experiment produces a
realization ω ∈ Ω and ω belongs to the event E, then we say that the event E occurs (or has
occurred).

KC Border v. 2020.10.21::10.28
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Notation for set operations: At this point, let me digress and discuss some set-theoretic
notation for subsets of a set Ω. The union of the sets E and F is, as usual, denoted

E ∪ F = {ω ∈ Ω : ω ∈ E or ω ∈ F }.

Many probabilists, Pitman [36] and Wasserman [41] included, use the symbol EF to denote the
intersection of the sets E and F , so I will do likewise in the notes. That is,

EF = {ω ∈ Ω : ω ∈ E & ω ∈ F },

but occasionally I may resort to writing the intersection as E∩F . Also Ec denotes the complement
of E,

Ec = {ω ∈ Ω : ω /∈ E}.

Also E \ F denotes the set of elements of E that do not belong to F ,

E \ F = {ω ∈ Ω : ω ∈ E & ω /∈ F } = EF c.

A less common operation is symmetric difference,

E △ F = (E \ F ) ∪(F \ E).

For a review of some of the relations among these operations see Section 1.6.

The set of all events is traditionally denoted F. Often, especially when the sample space isPitman [36]:
§ 1.3,
pp. 19–21
Larsen–
Marx [32]:
§2.2,
pp. 18–27

finite or denumerably infinite, F will consist of all subsets of Ω. (The set of all subsets of Ω is
the power set of Ω, and is often denoted 2Ω.) As you go on to study more mathematics, you
will learn that there are problems with a nondenumerable sample space that force you to work
with a smaller set of events.

We require at a minimum that the set of events be an algebra or field of sets.

1.4.5 Definition An algebra or field F of subsets of a set Ω is a set of subsets of Ω
satisfying:

1. ∅ ∈ F, Ω ∈ F.

2. If E ∈ F, then Ec ∈ F.

3. If E and F belong to F, then EF and E ∪ F belong to F.

It follows by induction that if F is an algebra and E1, . . . , En belong to F, then
n⋂

i=1
Ei and

n⋃
i=1

Ei also belong to F.

A σ-algebra or σ-field, a is an algebra of subsets F that in addition satisfies

3′. If E1, E2, . . . belong to F, then
∞⋂

i=1
Ei and

∞⋃
i=1

Ei belong to F.

aThink of σ as a mnemonic for sequence.

Most probabilists assume that the collection of events is a σ-algebra, and we shall do likewise.
Note that if Ω is finite and F is an algebra, then it is automatically a σ-algebra. Why? Because
every finite set Ω has only finitely many distinct subsets, so every countable union or intersection
is the same set as a finite union or intersection.
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1.4.6 Exercise (For math hawks) Find a set Ω and an algebra F of subsets of Ω that is
not a σ-algebra. Hint: Ω must be infinite. □

The reason for requiring these properties for the collection of events is that we think of events
as having a description in some language. Then we can think of the descriptions being joined
by or or and or not. They correspond to union, intersection, and complementation. (This is
less convincing as an argument for a σ-algebra of events.)

1.4.7 Example (Coin tossing events) For the sample space in Example 1.4.4, Coin Tossing
until Heads, let F be the set of all subsets of Ω. We can consider events such as

E = the first Head occurs on an odd-numbered toss = {H, TTH, TTTTH, . . . }
F = the first Head occurs on an even-numbered toss = {TH, TTTH, TTTTTH, . . . }

G = Heads never occur = {TTTT · · ·}.

Note that E ∪ F ̸= Ω, but (E ∪ F )c = G, and EF = ∅. □

Aside: The notion of the set of events as a set of subsets of Ω may seem unwieldy. You may be used
to thinking of sets of points, not sets of sets. But you have used such collections for years. Think of the
set of intervals on a line, or the set of triangles in a plane. These are all sets of sets.

But the set of all triangles in the plane (where a triangle includes its interior) is not an algebra of
sets, since the complement of a triangle is not a triangle, the union of triangles is rarely a triangle, and
the intersection of triangles may or may not be a triangle.

You might ask why we wouldn’t want to consider all subsets of Ω to be events when Ω is countable.
Well, if in rolling a die, we only record whether the outcome is odd or even, the data will never tell us if
a 5 occurred. So maybe it makes sense not to consider {5} as an event. In this case, if Ω = {1, . . . , 6},
setting E = {2, 4, 6} and D = {1, 3, 5}, the set of events becomes

F = {∅, E, D, Ω}.

Also, when we get to random variables, we shall see that a random variable “generates” an algebra
of events that may be smaller than the algebra we started with.

1.4.3 Probability measures
Larsen–
Marx [32]:
§2.3,
pp. 27–32
Pitman [36]:
§1.3,
pp. 19–32

1.4.8 Definition A probability measure or probability distribution or simply a
probability (although this usage can be confusing) is a set function

P : F → [0, 1]

that satisfies the following axioms of probability:

Normalization: P (∅) = 0; and P (Ω) = 1.

Nonnegativity: For each event E, we have P (E) ⩾ 0.

Additivity: If EF = ∅, then P (E ∪ F ) = P (E) + P (F ).

Most probabilists require the following stronger property, called countable additivity:

Countable additivity P
( ∞⋃

i=1
Ei

)
=

∑∞
i=1 P (Ei) provided Ei ∩ Ej = ∅ for i ̸= j.
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Aside: You need to take an advanced analysis course to understand that there can be probability
measures that are additive, but not countably additive. So don’t worry too much about it.

Note that while the domain of P is technically F, the set of events, we may also refer to P
as a probability (measure) on Ω, the set of samples.

1.5 Analogies

The additivity property of probability makes it analogous to many other kinds of measurements,
such as length, area, or mass. Indeed sometimes these measurements (when normalized) are
actually the same as probabilities.

For instance, with a well balanced spinner with a very fine pointer, the outcome essentially
gives an angle, which corresponds to a point in the real interval [0, 2π). For a good spinner the
probability of coming to rest in any sector is proportional to the angle subtended by the sector,
which is just the length of the corresponding interval. The total length of two disjoint segments
is just the sum of their lengths. This is the additivity property.

Likewise, if I throw a very fine dart at a dart board, and if my aim is sufficiently poor that I
am equally likely to hit any part of the dart board, then the area of a region is proportional to
its probability. If my aim is better, so that regions near the center of the board are more likely,
then we may need to weight the area by some probability density. But again the probability of
the unions of two disjoint regions should be the sum of their probabilities.

We shall explicitly liken probability to mass in Lecture 5, when we discuss the expectation
of a random variable in terms of a balance beam. The total mass of two distinct objects is just
the sum of their masses.

1.6 Appendix: Review of Set Operations

A quick review of set theory can be found in Ash [1], section 1.2. We shall follow Pitman [36],
and use the notation AB rather than A ∩ B to denote the intersection of A and B.

For subsets A and B of the set Ω we have the following Venn diagrams:Pitman [36]:
pp. 19–20

A ∪ B :

A B

Ω

A ∩ B or AB :

A B

Ω

Ac :

ΩΩ

A

Ω

A \ B = ABc :

Ω

A B

Ω
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A △ B = (A \ B) ∪(B \ A) = (A ∪ B) \ (AB) :

ΩΩ

A B

Ω

1.6.1 Definition A partition of a set E is a collection A of subsets of E such that every point
in E belongs to exactly one of the sets in A.

In other words, the sets in A are pairwise disjoint (since no point in E belongs to more than
one set in A) and their union is E.

Here are some useful identities.

A(B ∪ C) = (AB) ∪(AC) :

A B

C
Ω

A ∪(BC) = (A ∪ B)(A ∪ C) :

A B

C
Ω

A(B △ C) = (AB) △(AC) :

A B

C
Ω

Note that
A △(BC) ̸= (A △ B)(A △ C) :
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(A △ B)(A △ C)

A B

C
Ω

A △(BC)

A B

C
Ω

Aside: The use of the notation AB for the intersection of A and B suggests that intersection is a kind�
of multiplication operation for sets. In fact the set Ω acts as a multiplicative identity (unity or one).
It also suggests that union may be a kind of addition with the empty set as the additive identity (or
zero). A problem with this analogy is that there is then no additive inverse. That is, if A is nonempty,
there is no set B such that A ∪ B = ∅.

Aside: This is an aside to an aside, and should be ignored by everyone except math majors. (Of��
course, math is one of the options that does not require this course.)

The integers under addition and multiplication form a ring: There is an additive identity, 0, and
a multiplicative identity, 1, and every integer n has an additive inverse, −n, but not a multiplicative
inverse. Moreover 0 · n = 0 for any integer n.

A similar algebraic structure exists for an algebra of subsets of Ω: Let intersection be multiplication,
and let symmetric difference be addition. Both are commutative, and the distributive law A(B △ C) =
(AB) △(AC) holds. The empty set ∅ is the additive identity, A △∅ = A and every set is its own
additive inverse: A △ A = ∅. The multiplicative identity is Ω, AΩ = A. We also have ∅A = ∅ for any
set A.

Even cooler is the fact that the function d defined by d(A, B) = P (A △ B) is a (semi-)metric.
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