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Introduction to Probability and Statistics Winter 2020

Supplement 2: Review Your Distributions

Relevant textbook passages:
Pitman [10]: pages 476–487.
Larsen–Marx [9]: Chapter 4

A terrific reference for the familiar distributions is the compact monograph by Forbes, Evans,
Hastings, and Peacock [4]. There are also the classics by Johnson and Kotz [6, 7, 8]. In addition,
Wikipedia generally has a helpful page devoted to each family of distributions.

S2.1 Bernoulli

The Bernoulli distribution is a discrete distribution that generalizes coin tossing.

A Bernoulli(p) random variable X takes on two values: 1 (“success”), with probability p,
and 0 (“failure”), with probability 1 − p. The probability mass function is

p(X = x) =

{
p x = 1,

1 − p x = 0.

The Bernoulli(p) has mean

E X =
∑

x=0,1
xp(X = x) = 0(1 − p) + 1p = p.

Moreover
E X2 =

∑
x=0,1

x2p(X = x) = 02(1 − p) + 12p = p,

so the variance is
Var X = E(X2) − (E X)2 = p − p2 = p(1 − p).

Note that the variance is maximized for

p = 1/2.

Also note that every moment is the same:

E Xα = 0α(1 − p) + 1αp = p.
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S2.2 Rademacher

The Rademacher(p) distribution is a recoding of the Bernoulli distribution, 1 still indicates
success, but failure is coded as −1.

If Y is a Bernoulli(p) random variable, then X = 2Y − 1 is a Rademacher(p) random
variable.

The probability mass function is

P (X = x) =

{
p x = 1,

1 − p x = −1.

A Rademacher(p) random variable X has mean

E X =
∑

x=0,1
xp(X = x) = −1(1 − p) + 1p = 2p − 1.

Moreover X2 = 1 so
E(X2) = 1,

so the variance is

Var X = E(X2) − (E X)2 = 1 − (2p − 1)2 = 4p(1 − p).

A sequence of successive sums of independent Rademacher(1/2) random variables is called
a random walk.

That is, if Xi are independent and identically distributed Rademacher(1/2) random variables,
the sequence S1, S2, . . . is a random walk, where

Sn = X1 + · · · + Xn.

Since expectation is a linear operator,

E Sn = 0 for all n ,

and since the variance of a sum of independent random variables is the sum of the variances,

Var Sn = n for all n .

S2.3 Binomial

The Binomial(n, p) is the distribution of the number X of successes in n independent
Bernoulli(p) trials.

It is the sum of n independent Bernoulli(p) random variables.
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The probability mass function is

P (X = k) =
(

n

k

)
pk(1 − p)n−k.

Since expectation is a linear operator, the expectation of a Binomial is the sum of the
expectations of the underlying Bernoullis, so if X has a Binomial(n, p) distribution,

E X = np,

and since the variance of the sum of independent random variables is the sum of the variances,

Var X = np(1 − p).
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S2.4 The Multinomial Distribution
Larsen–
Marx [9]:
Section 10.2,
pp. 494–499
Pitman [10]:
p. 155

The multinomial distribution generalizes the binomial distribution to independent random ex-
periments with more than two outcomes.

A multinomial random vector is an m-vector X of counts of outcomes in a sequence of
n independent repetitions of a random experiment with m distinct outcomes.

If the experiment has m possible outcomes, and the ith outcome has probability pi, then
the Multinomial(n, p) probability mass function is given by

P (X = (k1, . . . , km)) = n!
k1! · k2! · · · km!

pk1
1 · pk2

2 · · · pkm
m .

where k1 + · · · + km = n.

If we count outcome k as a “success,” then it is obvious that each Xk is simply a Binomial(n, pk)
random variable. But the components are not independent, since they sum to n.
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S2.5 The Negative Binomial Distribution
Pitman [10]:
p. 213
Larsen–
Marx [9]:
§ 4.5

Replicate a Bernoulli(p) experiment independently until the rth success occurs (r ⩾ 1). Let
X be the number of the trial on which the rth success occurs. Then the random variable X
is said to have a Negative Binomial(r, p) Distribution.

Warning: There is another definition of the Negative Binomial Distribution, namely the
distribution of the number of failures before the rth success. (This is the definition employed
by Jacod and Protter [5, p. 31], R, and Mathematica.)

The relationship between the two is quite simple. If X is a Negative Binomial(r, p) random
variable in the Pitman–Larsen–Marx sense, and F is negative binomial in the R–Mathematica
sense, then

F = X − r.

A simple way to tell which definition your software is using is to ask it the probability that the
e̊quals zero. For PLM, it is always 0, but for RM, it is pr.

What is the probability that the rth success occurs on trial t, for t ⩾ r? For this to happen,
there must be t − r failures and r − 1 successes in the first t − 1 trials, with a success on trial t.
By independence, this happens with the binomial probability for r − 1 successes on t − 1 trials
times the probability p of success on trial t:

P (X = t) =
(

t − 1
r − 1

)
pr(1 − p)t−r (t ⩾ r).

Of course, the probability is 0 for t < r.

The special case r = 1 (number of trials to the first success) is called the Geometric
Distribution(p).

The mean of the Geometric Distribution is reasonably straightforward:

E X =
∞∑

t=1
tp(1 − p)t−1 = 1

p
.

(See my notes on sums, paying attention to the fact that I deviously switched the roles of p and
1 − p.) Moreover, in Section S1.5 we showed

Var X = E(X2) − (E X)2 = 1 − p

p2 .

Now observe that a Negative Binomial(r, p) is really the sum of r independent Geometric(p)
random variables. (Wait for the first success, start over, wait for the next success, …, stop after
r successes.) Now we use the fact that expectation is a positive linear operator to conclude
that the mean of Negative Binomial(r, p) is r times the mean the Geometric(p), and the variance
of an independent sum is the sum of the variances, so

If X ∼ Negative Binomial(r, p), then

E X = r

p
and Var X = r(1 − p)

p2 .
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S2.6 Poisson(µ)

A Poisson(µ) random variable N models the count of “successes” when the probability
of success is small, but the number of independent trials is large, so that the average success
rate is µ.

I will explain the above comment soon. Here is the formal definition of the Poisson(µ)
distribution

The Poisson(µ) probability mass function is

P (N = k) = e−µ µk

k!
, k = 0, 1, . . .

So
E N = µ, and Var N = µ.
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Ladislaus von Bortkiewicz [11] referred to the Poisson distribution as “The Law of Small
Numbers.” It can be thought of as a peculiar limit of Binomial distributions. Consider a
sequence of Binomial(n, p) random variables, where the probability p of success is going to zero,
but the number n of trials is growing in such a way that np = µ remains fixed. Then we have
the following.

S2.6.1 Poisson’s Limit Theorem For every k,

lim
n→∞

Binomial(n, µ/n)(k) = Poisson(µ)(k).

Proof : Fix n and p, and let µ = np to rewrite the Binomial probability of k successes in n trials
as

n!
k!(n − k)!

pk(1 − p)n−k = n(n − 1) · · · (n − k + 1)
k!

(pn)k

nk
(1 − p)n(1 − p)−k

= µk

k!
n

n

n − 1
n

· · · n − k + 1
n

(1 − p)n(1 − p)−k

= µk

k!

(
1 − µ

n

)n n − 1
n

· · · n − k + 1
n

(
1 − µ

n

)−k

= µk

k!

(
1 − µ

n

)n n − 1
n − µ

· · · n − k + 1
n − µ

.

Now consider what happens when we allow n to grow but keep µ fixed by setting pn = µ/n.
It is well known 2 that limn→∞

(
1 − µ

n

)n = e−µ, and each of the last k terms has limit 1 as
2 In fact, for any x, we have (

1 +
x

n

)n

=
(

e
ln
(

1+ x
n

))n

= e
n ln
(

1+ x
n

)
so we first find limn→∞ n ln

(
1 + x

n

)
. Note that even if x < 0, for large enough n we will have 1 + x

n
> 0, so the

logarithm is defined.
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n → ∞. Since k is held fixed, the product of the last k terms converges to 1. So in the limit as
n → ∞, the binomial probability of k successes, when the probability of success is µ/n, is just

µk

k!
e−µ.
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Using Taylor’s Theorem we get

ln
(

1 + x
n

)
= ln(1) + ln′(1) x

n
+ R(n) = x

n
+ R(n),

where the remainder R(n) satisfies R(n)/( x
n

) = nR(n)/x −−−−→
n→∞

0. Thus

lim
n→∞

n ln
(

1 + x
n

)
= lim

n→∞
n
(

x
n

+ R(n)
)

= x + lim
n→∞

nR(n) = x.

Since the exponential function is continuous,

lim
n→∞

ln(1 + x
n

)n = lim
n→∞

e
n ln
(

1+ x
n

)
= e

limn→∞ n ln
(

1+ x
n

)
= ex.
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S2.7 The Normal family

According to the Central Limit Theorem, the limiting distribution of the standardized sum
a large number of independent random variables, each with negligible variance relative to
the total, is a Normal distribution.

The N(µ, σ2) density is
f(µ,σ2)(x) = 1√

2πσ
e− (x−µ)2

2σ2 .

The mean of an N(µ, σ2) random variable X

E X = µ

and variance
Var X = σ2.

The cdf has no closed form and is simply denoted Φ(µ,σ2).

S2.7.1 The Standard Normal

The standard normal has µ = 0 and σ2 = 1, so the density is

f(x) = 1√
2π

e− x2
2 .

It has mean
E X = 0

2 N.B. Mathematica and R parameterize the Normal by its mean and standard deviation, not its variance.
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and variance
Var X = 1.

The cdf has no closed form and is simply denoted Φ.

Φ(t) = 1√
2π

∫ t

−∞
e− x2

2 dx.

S2.7.2 The Normal Family

If Z is a standard normal, then
σZ + µ ∼ N(µ, σ2)

and if
X ∼ N(µ, σ2), then x − µ

σ
∼ N(0, 1).

If X and Z are independent normals, then aX + bZ is also normal.
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S2.8 Binomial and Normal

S2.8.1 DeMoivre–Laplace Limit Theorem Let X be Binomial(n, p) random variable. Its
standardization is (X − np)/

√
np(1 − p). For any real numbers a, b,

lim
n→∞

P

(
a ⩽ X − np√

np(1 − p)
⩽ b

)
= 1√

2π

∫ b

a

z−z2/2 dx.

In practice, this approximation requires that n ⩾ max{p/(1 − p)p, (1 − p)/p}.
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S2.9 Exponential

The Exponential family is used to model waiting times, where what we are waiting for is
typically called an arrival, or a failure, or death.

Exponential(λ) has density
f(t) = λe−λt

and cdf
F (t) = 1 − e−λt

and survival function
G(t) = 1 − F (t) = e−λt.

It has a constant hazard rate f(t)/G(t) equal to λ.
The mean of the Exponential(λ) is

E T = 1
λ

and the variance is
Var T = 1

λ2 .

The Exponential is memoryless, that is,

P
(
T < t + s

∣∣ T > t
)

= P (T > s).
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S2.10 Gamma

The Gamma(r, λ) family of distributions is a versatile one.

The distribution of the sum of r independent Exponential(λ) random variables, the distri-
bution of the rth arrival time in a Poisson process with arrival rate λ is the Gamma(r, λ)
distribution.
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The distribution of the sum of squares of n independent standard normals—the χ2(n)
distribution is the Gamma(n/2, 1/2) distribution.

The general Gamma(r, λ) distribution (r > 0, λ > 0) has density given by

f(t) = λr

Γ(r)
tr−1e−λt (t > 0).

The parameter r is the shape parameter, and λ is the scale parameter.

S2.10.1 The Γ function

The Gamma function is defined by

Γ(r) =
∫ ∞

0
tr−1e−t dt.

It satisfies Γ(r + 1) = rΓ(r) and Γ(n) = (n − 1)!.
The mean and variance of a Gamma(r, λ) random variable are given by

E X = r

λ
, Var X = r

λ2 .

Unfortunately there are two definitions of the Gamma distribution in use! The one I just
gave is the one used by Pitman [10], Feller [3], Cramér [2], and Larsen and Marx [9]. The other
definition replaces λ by 1/λ in the density, and is used by Casella and Berger [1], and also by R
and Mathematica.
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S2.11 Cauchy

If X and Y are independent standard normals, then Y/X has a Cauchy distribution.

The Cauchy distribution is also the distribution of the tangent of an angle randomly selected
from [−π, π].

If C is a Cauchy random variable, then so is 1/C.

The density is
f(x) = 1

π(1 + x2)
and the cdf is

F (t) = 1
π

arctan(t) + 1
2

.

S2.11.1 The expectation of the Cauchy does not exist!∫ t

0

x

π(1 + x2)
dx = ln(1 + t2)

2π
−−−→
t→∞

∞∫ 0

−t

x

π(1 + x2)
dx = − ln(1 + t2)

2π
−−−→
t→∞

−∞

so ∫ ∞

−∞

x

π(1 + x2)
dx is divergent and meaningless.
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The Law of Large Numbers versus the Cauchy Distribution

2 ´ 109 4 ´ 109 6 ´ 109 8 ´ 109 1 ´ 1010

-4
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2

4

This depicts a simulation of Sn/n, where Sn is the sum of n simulated Cauchy random variables,
for n = 1, . . . , 10, 000, 000, 000.

S2.12 Uniform distribution on an interval

Density: f(x)

{
1

b−a x ∈ [a, b]
0 otherwise.

CDF: F (x)

{
x−a
b−a x ∈ [a, b]
0 otherwise.

E X = a + b

2
, Var X = (b − a)2

12
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S2.13 Beta

The kth order statistic of a sample of n independent U [0, 1] random variables has a
Beta(k, n − k + 1) distribution.

The density is

f(x) =

{
1

β(r,s) xr−1(1 − x)s−1 x ∈ [0, 1]
0 otherwise

where
β(r, s) = Γ(r)Γ(s)

Γ(r + s)
,

where the Gamma function satisfies Γ(n) = (n − 1)! and Γ(s + 1) = sΓ(s) for s > 0.
It has mean and variance given by

E X = r

r + s
Var X = rs

(r + s)2(1 + r + s)
.
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S2.14 The χ2(n) distribution

Let Z1, . . . , Zn be independent standard normals.

The Chi-square distribution with n degrees of freedom, χ2(n), is the distribution of

R2
n = Z2

1 + · · · + Z2
n.

One can show (Pitman [10, pp. 358, 365]) that the density of R2 is given by

fR2
n
(t) = 1

2n/2Γ(n/2)
t(n/2)−1e−t/2, (t > 0),

and we write
R2

n ∼ χ2(n).
This is also the Gamma(n/2, 1/2) distribution. 3

The mean and variance are easily characterized:

E R2
n = n, Var R2

n = 2n.

It also follows from the definition that if X and Y are independent and

X ∼ χ2(n) and Y ∼ χ2(m), then (X + Y ) ∼ χ2(n + m).

0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0
���-������(�) ����������� �������

● t=1
■ t=2
◆ t=3
▲ t=4
▼ t=5

3 Recall that the Gamma distribution has two naming conventions. In the other convention this would be the
Gamma(n/2, 2) distribution.
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S2.15 Weibull

The Weibull distribution generalizes the exponential distribution as a model of waiting times.
It allows for the hazard rate to be age-dependent. There are two parameters of the Weibull
distribution, usually denoted λ and α. The density is given by

f(t) = αλαtα−1e−(λt)α
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and the cumulative distribution function is

F (t) = 1 − e−(λt)α

,

so the survival function is
G(t) = e−(λt)α

and the hazard rate is
λ(t) = f(t)

G(t)
= αλαtα−1.

Note that when α = 1, this reduces to the Exponential(λ) distribution. When α > 1, the
hazard rate is increasing with age, and when α < 1, the hazard rate is decreasing with age. See
Figure S2.1. N.B. Forbes, Evans, Hastings, and Peacock [4, p. 193] refer to the parameters of
the Weibull as η and β, where β is my α and η = 1/λ. Mathematica and Jacod and Protter [5,
Example 6, p. 43] use β to mean my λ1/α. I am using the terminology in Pitman [10, Exercise 4,
p. 301].

If T has a Weibull(λ, α) distribution its moments are given by

E T n = Γ
(

1 + n

α

)
λ−n/α.

S2.16 Logisitc

The Logistic(µ, β) distribution, where β > 0 has cumulative distribution function given by

F (x) = 1
1 + e−(x−µ)/β

and density
f(x) = 1(

1 + e−(x−µ)/β
)2

β
e−(x−µ)/β

It has mean and median µ and β is a scale parameter. The variance is π2β2/3.
The logistic density looks a lot like the normal density, see Figure S2.2.
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