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Topic 29: The Simplex Method

In 1945, the economist George J. Stigler [17] undertook to find the minimum
cost diet meeting various nutritional constraints. His results were obtained by
examining a promising but limited subset of diets. He wrote (p. 310) that “the
procedure is experimental because there does not appear to be any direct method
of finding the minimum of a linear function subject to linear conditions.”1

Just two years later, the simplex algorithm was invented to solve just such
problems. According to George B. Dantzig [4, p. 24], the widely acknowledged
originator of the algorithm,

During the summer of 1947, Leonid Hurwicz, well-known econo-
metrician associated with the Cowles Commission, worked with the
author on techniques for solving linear programming problems. This
effort and some suggestions of T. C. Koopmans resulted in the “Sim-
plex Method.”

The Simplex Method is an algorithmic method for solving linear programs.
It is no longer the fastest method, but it is easy to understand and program,
and if you use rational arithmetic, it is exact. It is also closely related to the
polyhedral structure of the feasible set. These notes borrow extensively from the
lucid expositions by David Gale [8], Joel Franklin [7], and George Dantzig [4].

1 Just for the fun of it, here is Table 2 from Stigler [17, p. 311] outlining the minimum cost
diet in August 1939 and in August 1944. Bon appétit!

Minimum Cost Annual Diets

August 1939 August 1944
Commodity Quantity Cost Quantity Cost
wheat flour 370 lb. $13.33 585 lb. $34.58
evaporated milk 57 cans 3.84 — —
cabbage 111 lb. 4.11 107 lb. 5.23
spinach 23 lb. 1.85 13 lb. 1.56
dried navy beans 285 lb. 16.80 — —
pancake flour — — 134 lb. 18.08
pork liver — — 45 lb. 5.48
Total cost $39.93 $59.88
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29.1 The simplex method

We are now ready to apply the replacement operation to linear programming.
Dantzig [4] draws a distinction between the simplex method and the simplex
algorithm. The simplex method consists of two phases, each of which uses
the simplex algorithm. The simplex algorithm is a rule for choosing pivots for
successive replacement operations until a stopping condition is reached.

For concreteness, consider the following linear programming problem. Let A
be an m × n matrix, let q belong to Rm, and p belong to Rn. To use the simplex
algorithm we need to write the primal program in canonical equality form:

maximize
x∈Rn

p · x

subject to

Ax = q

x ≧ 0

This program has n variables x1, . . . , xn, m equality constraints Ai · xi = qi, and
n nonnegativity constraints on the xi’s.

The dual of the is program is:

minimize
y∈Rm

q · y

subject to

A′y ≧ p

Notice that there are no sign constraints on y.
A vector x is feasible for the primal if Ax = q and x ≧ 0, and it is optimal

if it is feasible and attains the maximum. Phase 1 of the simplex method uses
the simplex algorithm to find a feasible vector, or else proves that none exists.
Phase 2 starts with a feasible vector, and uses the simplex algorithm to find
an optimal vector. Paradoxically, Phase 1 uses Phase 2, so we start with that.
Phase 1 is covered in Section 29.4.

29.1.1 The simplex tableau and Phase 2

The matrix A is m × n, so each column is a vector in Rm. The linear span of the
columns is called the column space of A. The dimension of the column space is
called the rank of A. For the time being, assume:

29.1.1 Assumption (Rank Assumption) The column space of the m × n
matrix A has dimension m.
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Under the Rank Assumption, every basis for the column space of A has m
elements, so we must have n ⩾ m, that is, at least as many variables as constraints.
If our original problem involves only inequality constraints, we can convert it into a
problem with equality constraints by adding “slack” variables for each constraint,
which will guarantee that the Rank Assumption holds. Nevertheless, the Rank
Assumption is only used to simplify the analysis and is not crucial. Also, if the Elaborate on this

point.primal has more constraints than variables, then the dual will have more variables
than constraints.

In fact we can find a basis (usually more than one) consisting only of columns
of A. By Proposition 28.6.2 if there is an optimal solution, then there is an optimal
solution that depends only on an independent subset of the columns.

Assume that we have somehow found (in Phase 1) a feasible solution x =
(x1, . . . , xn) ≧ 0 of Ax = q that depends on a basis {Ac1 , . . . , Acm} of m columns
of A. That is,

q =
n∑

j=1
xjA

j =
m∑

i=1
xci

Aci ,

where
xci

⩾ 0, i = 1, . . . , m, and xj = 0 for j /∈ {c1, . . . , cm}.

Under the Rank Assumption, in fact, xci
> 0, i = 1, . . . , m. Also the Rank

Assumption, every column Aj is a unique linear combination of the basis columns
{Ac1 , . . . , Acm}, say

Aj =
m∑

i=1
ti,jA

ci , j = 1, . . . , n.

Given this uniqueness, the basis determines x, and so determines p · x. Thus:

The linear programming problem can be thought of as finding
the optimal basis of the columns of A. The simplex algorithm
is a rule for replacing columns in the basis, one at a time, until
the optimal basis is found.

29.1.2 Replacement operations on the simplex tableau

The idea behind the simplex algorithm is to choose the replacement pivot so that
at each stage p · x increases, or at least does not decrease. In order to do this, we
must examine how the tableau changes when we change the basis.
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Start with the following tableau.

A1 · · · Aℓ · · · An q

Ac1 t1,1 · · · t1,ℓ · · · t1,n xc1

... ... ... ... ...
Ack tk,1 · · · tk,ℓ · · · tk,n xck

... ... ... ... ...
Acm tm,1 · · · tm,ℓ · · · tm,n xcm

Bear with me while we see what happens when we pivot on tk,ℓ in order to replace
Ack by Aℓ. This replacement will yield the new tableau

A1 · · · Aℓ−1 Aℓ Aℓ+1 · · · An q

Ac1 t′
1,1 · · · t′

1,ℓ−1 0 t′
1,ℓ+1 · · · t′

1,n x′
c1

... ... ... ... ... ... · · ·
Ack−1 t′

k−1,1 · · · t′
k−1,ℓ−1 0 t′

k−1,ℓ+1 · · · t′
k−1,n x′

ck−1

Aℓ = Ac′
k t′

k,1 · · · t′
k,ℓ−1 1 t′

k,ℓ+1 · · · t′
k,n x′

ℓ = x′
c′

k

Ack+1 t′
k+1,1 · · · t′

k+1,ℓ−1 0 t′
k+1,ℓ+1 · · · t′

k+1,n x′
ck+1

... ... ... ... ... ... · · ·
Acm t′

m,1 · · · t′
m,ℓ−1 0 t′

m,ℓ+1 · · · t′
m,n x′

cm

The new ℓth column is the kth unit coordinate vector ek. The new kth row has

t′
k,j = tk,j

tk,ℓ

, j = 1, . . . , n (1)

(which implies t′
k,ℓ = 1) and

x′
ck

= xck

tk,ℓ

. (2)

As for the remainder of the tableau, the new ith row for i ̸= k has

t′
i,j = ti,j − tk,j

tk,ℓ

ti,ℓ, j = 1, . . . , n (3)

(note that this implies t′
i,ℓ = 0) and

x′
ci

= xci
− xck

tk,ℓ

ti,ℓ. (4)

We can now compute what happens to p·x when Ack is replaced by Aℓ. Initially

p · x =
m∑

i=1
pci

xci
.
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After the replacement,

p · x′ =
m∑

i=1
pci

x′
ci

= pℓ
xck

tk,ℓ︸︷︷︸
x′

ℓ
=x′

ck

+
m∑

i=1
i ̸=k

pci

(
xci

− xck

tk,ℓ

ti,ℓ

)
︸ ︷︷ ︸

x′
ci

= pℓ
xck

tk,ℓ

+
m∑

i=1
i ̸=k

pci
xci

−
m∑

i=1
i̸=k

pci

xck

tk,ℓ

ti,ℓ

= pℓ
xck

tk,ℓ

+
( m∑

i=1
pci

xci︸ ︷︷ ︸
p·x

−����pck
xck

)
−
( m∑

i=1
pci

xck

tk,ℓ

ti,ℓ −
�����
pck

xck

tk,ℓ

tk,ℓ

)

The difference is
p · x′ − p · x = xck

tk,ℓ

(
pℓ −

m∑
i=1

pci
ti,ℓ

)
(5)

This suggests the following definition. Given a tableau, define

πj =
m∑

i=1
ti,jpci

, j = 1, . . . , n. (6)

The jth column Aj is a linear combination ∑m
i=1 ti,jA

ci of the basis columns
Ac1 , . . . , Acm , so the value of the linear combination is given by πj = ∑m

i=1 ti,jpci
.

The value of column j is pj. By (5), we have:

p · x′ > p · x if and only if xck

tk,ℓ

> 0 and pℓ > πℓ.

29.1.3 Adding a criterion row

Let us keep track of changes in p · x by adding a criterion row to the bottom of
the tableau.

The jth column of the criterion row is πj − pj, for
j = 1, . . . , n and the last column is p · x = ∑m

i=1 pci
xci

.
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The tableau now looks like this.

A1 · · · Aℓ · · · An q

Ac1 t1,1 · · · t1,ℓ · · · t1,n xc1

... ... ... ... ...
Ack tk,1 · · · tk,ℓ · · · tk,n xck

... ... ... ... ...
Acm tm,1 · · · tm,ℓ · · · tm,n xcm

π1 − p1 · · · πℓ − pℓ · · · πn − pn p · x

N.B. The criterion row is not part of the tableau in the sense that we do not
intend to imply that the vector π − p is used in the basis. Its elements have a
different interpretation, but nonetheless it is easy to update after a replacement
operation.

Using (6), after a replacement operation where Ack is replaced by Aℓ, the new
criterion row must be computed:

π′
j − pj =

m∑
i=1

t′
i,jpc′

i
− pj

=
m∑

i=1
i ̸=k

t′
i,jpci

+ t′
k,jpℓ − pj (only ck has changed; c′

k = ℓ)

=
m∑

i=1
i ̸=k

(
ti,j − ti,ℓ

tk,ℓ

tk,j

)
pci

+ tk,j

tk,ℓ

pℓ − pj (use (1) and (3))

=
m∑

i=1

(
ti,j − ti,ℓ

tk,ℓ

tk,j

)
pci

−
(

tk,j − tk,ℓ

tk,ℓ

tk,j

)
︸ ︷︷ ︸

=0

pck
+ tk,j

tk,ℓ

pℓ − pj

=
m∑

i=1
ti,jpci︸ ︷︷ ︸
πj

−tk,j

tk,ℓ

m∑
i=1

ti,ℓpci︸ ︷︷ ︸
πℓ

+tk,j

tk,ℓ

pℓ − pj

= (πj − pj) − tk,j

tk,ℓ

(πℓ − pℓ). (7)

Finally, by (5)
p · x′ = p · x − xck

tk,ℓ

(πℓ − pℓ). (8)

Comparing equations (7) and (8) to (3), we see that:

The updated criterion row is also computed from the tableau the
same way as any other row!
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Equation (8) also explains why we use π −p in the criterion row rather than p−π.

29.1.4 Choosing the pivot

We want to choose the pivot for the replacement operation to do two things:

1. Increase the value, p · x′.

2. Keep x′ ≧ 0, and

By assumption, before the pivot operation each xci
(the row i entry under q)

satisfies xci
⩾ 0. It follows from (5) that to increase the value, we should choose

the column ℓ, so that πℓ − pℓ < 0, for then p · x′ ⩾ p · x and p · x′ > p · x
provided xck

> 0.
So having chosen a pivot column ℓ, how do we choose the pivot row so that,

so that for all i = 1, . . . , m,
x′

c′
i
⩾ 0?

For each row i with ti,ℓ > 0 compute the ratio

ri = xci

ti,ℓ

.

By the Replacement Lemma 25.10.1 in order to keep x′ ≧ 0, we need to choose
the pivot row k so that

tk,ℓ > 0 and rk = min{ri : ti,ℓ > 0}.

(Compare this to the proof of Lemma 2.3.3 and Remark 2.3.4.)

29.1.5 The simplex algorithm made explicit

To summarize, the simplex algorithm is this (but there are many variations):
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The naïve simplex algorithm

Step 1. Choose the pivot column j so that

πj − pj < 0 for maximization
πj − pj > 0 for minimization.

If more than one j has this property, the choice is not crucial,
and should be made for convenience.

Step 2. Choose the pivot row k so that

tk,j > 0,

and

rk = xck

tk,j

⩽ xci

ti,j

= ri for all i such that ti,j > 0.

If more than one k satisfies the above criteria, Dantzig [4,
p. 99n.] cites empirical evidence [15] that choosing the one
with the largest tk,j may produce fewer steps.

Step 3. Perform the replacement operation with pivot tk,j on the
tableau.

Step 4. Repeat Steps 1–3 until a stopping condition is reached. The
stopping conditions are: (i) Step 1 cannot be carried out, or
(ii) Step 2 cannot be carried out.

• If Step 1 cannot be carried out, then the current x is op-
timal, and p · x (the criterion row entry in the b column) is the
optimal value. (See Proposition 29.3.3 below.)
• If Step 2 cannot be carried out, the problem has no op-
timum, that is, p · x is unbounded. (See Proposition 29.3.4
below.)

This is the algorithm in a nutshell, but there are several remaining issues:

1. How does one get an initial tableau?
This is answered in section 29.4.

2. Must the algorithm stop?
The answer is generically yes. But it may cycle and never terminate. This
appears not to be common, but there is a simple modification, called the
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lexicographic simplex algorithm that is guaranteed to stop and not to cycle.
This is discussed in section 29.7.

3. What happens if the algorithm stops?
This is answered in section 29.3. Briefly, it stops at an optimum if there is
one, or else it stops and gives a proof that no optimum exists.

29.2 How many steps until the Simplex Algorithm stops?

This is beyond the scope of these notes, but let me say, for those of you who
care, that the worst-case behavior of the simplex algorithm is not good. Klee [12]
constructs some badly behaved examples. Klee and Minty [13] show by construc-
tion that if there are n variables and m constraints, there are problems where the
number of steps S(n, m) satisfies

S(n + 1, m + 1) ⩾ 2S(n, m) + 1
S(n + 2, m + k + 1) ⩾ kS(n, m) + k − 1.

Thus
S(n, 2n) ⩾ 2n − 1.

In practice, though, the simplex method is much better behaved. Let µ =
min{n, m}. Adler, Megiddo, and Todd [1] show that for a randomly drawn prob-
lem, the expectation of S(n, m) for the lexicographic self-dual variant of the sim-
plex method is on the order of µ2. (There result requires certain symmetry con-
ditions on the distribution.) Smale [16] proposes a different probability model in
which there is a function c of m such that the expectation of S(n, m) is bounded by
c(m)(ln n)m(m+1). Megiddo [14] refines this by showing that the number of steps
is bounded by a function of µ. That is, holding either m or n fixed, the other
may grow without changing the upper bound on the expectation. In practice,
Dantzig [4, p. 160] reports that it is “rare” to require more than 3m steps.

29.3 The stopping conditions

I first turn to the question of whether the simplex algorithm ever stops. A sufficient
condition for stopping is the following.

29.3.1 Assumption (Nondegeneracy) The m × n matrix A has rank m, and
the vector q cannot be written as a linear combination of fewer than m columns
of A.

29.3.2 Proposition Under the Nondegeneracy Assumption 29.3.1, after each
replacement operation in the simplex algorithm, the value p · x′ is strictly greater
(for a maximization problem) than the previous value p · x. Therefore, no basis is
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repeated. Since there are finitely many bases, the algorithm must stop in a finite
number of steps.

Proof : By equations (5–6),

p · x′ − p · x = xck

tk,j

(pj − πj).

But we chose k, j so that πj − pj < 0, and tk,j > 0. In addition, xck
⩾ 0 for all k.

Nondegeneracy implies that in fact xck
> 0 for all k. Thus p · x′ > p · x.

The lexicographic simplex algorithm described in section 29.7 will always stop,
even in the degenerate case, see Gale [8, Chapter 4, section 7, pp. 123–128] or
Dantzig [4, pp. 234–235]. The remainder of the section is devoted to examining
the two states in which the algorithm can stop.

29.3.3 Proposition (Gale [8, Theorem 4.2, p. 109]) Under the Rank As-
sumption 29.1.1, if the algorithm reaches a tableau with πj − pj ⩾ 0 for all
j = 1, . . . , n, then x is optimal for a maximization problem; and if the algo-
rithm reaches a tableau with πj − pj ⩽ 0 for all j = 1, . . . , n, then x is optimal for
a minimization problem.

Proof : The proof makes use of the dual program

minimize
y∈Rm

q · y

subject to
yA ≧ p

Given the tableau

A1 · · · Aj · · · An q

Ac1 t1,1 · · · t1,j · · · t1,n xc1

... ... ... ... ...
Ack tk,1 · · · tk,j · · · tk,n xck

... ... ... ... ...
Acm tm,1 · · · tm,j · · · tm,n xcm

π − p π1 − p1 · · · πj − pj · · · πn − pn p · x

we know that Ac1 , . . . , Acm are linearly independent. Therefore the m equations

y · Aci = pi, i = 1, . . . , m
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have a solution y. For j /∈ {c1, . . . , cm}, we have from the tableau that

Aj =
m∑

i=1
ti,jA

ci

so
y · Aj =

m∑
i=1

ti,jy · Aci =
m∑

i=1
ti,jpi = πj ⩾ pj.

That is,
A′y ≧ p

so y is feasible for the dual. (Remember there are no nonnegativity constraints
on y.)

Now remember that x is given by xj = 0 for j /∈ {c1, . . . , cm}. Thus

p · x =
m∑

i=1
pci

xci
=

m∑
i=1

(y · Aci)xci
= y ·

m∑
i=1

Acixci
= y · q,

where the last equality comes from the q column of the tableau. Now recall that
p · x = q · y implies that x is optimal for the primal and y is optimal for the
dual.

29.3.4 Proposition If the algorithm stops with πj − pj < 0, but ti,j ⩽ 0 for all
i = 1, . . . , m, then the primal has no optimum. That is, p · x is unbounded above
on the constraint set.

Proof : If Aj, were already a member of the left-hand basis, say j = ci, then we
would have ti,j = 1, so we know that Aj is not in the basis.

From the tableau

Aj =
m∑

i=1
ti,jA

ci and q =
m∑

i=1
xci

Aci .

Thus for any λ > 0,

q =
m∑

i=1
xci

Aci + λ
(

Aj −
m∑

i=1
ti,jA

ci

︸ ︷︷ ︸
=0

)
= λAj +

m∑
i=1

(xci
− λti,j)Aci . (9)

So define x̄(λ) by

x̄j = λ, x̄i = xci
− λti,j for i = 1, . . . , m, and x̄i = 0 otherwise.

By (9), Ax̄(λ) = q and x̄(λ) ≧ 0 since each ti,j ⩽ 0. But

p·x̄(λ) = λpj +
m∑

i=1
pci

(xci
−λti,j) =

m∑
i=1

pci
xci

+λ
(

pj −
m∑

i=1
pci

ti,j

)
= p·x+λ(pj −πj).

Since λ > 0 is arbitrary and pj − πj > 0, we see that p · x̄(λ) is unbounded above.
Thus no optimum exists.
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The following corollary deals minimization problems, where the pivot is chosen
to satisfy πj − pj > 0.

29.3.5 Corollary If the algorithm stops with πj − pj > 0, but ti,j ⩽ 0 for all
i = 1, . . . , m, then p · x is unbounded below.

29.4 Phase 1: Finding a starting point

In order to get started with Phase 2, we need to find a nonnegative x with Ax = q.

Case 1: b ≧ 0.

We can reduce this to an ancillary LP, namely:

minimize
z∈Rm

1 · z

subject to

Ax + z = q

x ≧ 0
z ≧ 0

This LP has one important property—Phase 1 is trivial. Indeed

x = 0, z = q,

is a feasible nonnegative solution. Applying Phase 2 to the ancillary problem
solves Phase 1.

Case 2: q ̸≧ 0.

If q ̸≧ 0, setting z = q does not give a nonnegative feasible starting point. But
we can fix that as follows. If qi < 0, multiply the ith constraint by −1. Then the
constraints become

DAx + z = Dq,

where D is the diagonal matrix with dii = 1 if qi ⩾ 0 and dii = −1 if qi < 0,
so that the right-hand side constants satisfy Dq ≧ 0. We now use the simplex
algorithm to solve the ancillary problem

minimize
z∈Rm

1 · z

subject to x ≧ 0, z ≧ 0, and

DAx + z = Dq.
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Phase 1 is also trivial for this LP:

x = 0, z = Dq,

is a feasible nonnegative solution.
Note that while the solution to the primal remains the same under this trans-

formation, the solution to the dual does not. If y is the solution to the unmodified
dual, then Dy is the solution to the modified dual. That is, the solution to the
original dual is obtained from the solution to the modified dual by flipping the
sign of yi whenever qi < 0.

29.4.1 Infeasibility

Phase 1 consists of the application of the simplex algorithm as described in Phase 2
to this ancillary problem, starting as described above. If the optimum (x̄, z̄) of the
ancillary problem has z̄ = 0, then x̄ is feasible for the primal. But if the optimal
z̄ ̸= 0 then the primal has no feasible solution.

Note that if all we want to do is find some solution to a system of inequalities,
we can stop at the end of Phase 1.

29.4.2 Inequality constraints

Often linear programs are not given with equality constraints, but with inequality
constraints, typically like this:

maximize
x∈Rn

p · x

subject to

Ax ≦ q

x ≧ 0

For some kinds of inequality constraints, Phase 1 is trivial. If all m
constraints are inequality constraints, introduce slack variables z1, . . . , zm ⩾ 0.
Let Ai denote the ith row of A. There are four cases, depending on the sense of
the inequality and the sign of qi.

Replace Ai · x ⩽ qi where qi ⩾ 0 with Ai · x + zi = qi.

Replace Ai · x ⩾ −qi where qi ⩾ 0 with Ai · x − zi = −qi.

Then an initial feasible solution is given by

x = 0, z = q.
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On the other hand, if we have one of these cases, then Phase 1 is nontrivial,
and we have to introduce auxiliary variables u:

Replace Ai · x ⩽ −qi where qi ⩾ 0 with −Ai · x − zi + ui = qi.

Replace Ai · x ⩾ qi where qi ⩾ 0 with Ai · x − zi + ui = qi.

Then an initial feasible solution is given by

x = 0, z = 0, u = q

but now we must minimize 1 · u in order to find a feasible solution of the original
problem, where u = 0.

29.5 A worked example

The first example illustrates how a problem involving inequalities can combine
Phases 1 and 2.

maximize
x

2x1 + 4x2 + x3 + x4

subject to x1 ⩾ 0, . . . , x4 ⩾ 0, and

2x1 + x2 ⩽ 3
x2 + 4x3 + x4 ⩽ 3

x1 + 3x2 + x4 ⩽ 4

To convert this to a problem with equalities, introduce three slack variables z1,
z2, and z3, and write the problem as

maximize
x

2x1 + 4x2 + x3 + x4 + 0z1 + 0z2 + 0z3

subject to x1 ⩾ 0, . . . , x4 ⩾ 0, z1, z2, z3 ⩾ 0, and

2x1 + x2 + z1 = 3
x2 + 4x3 + x4 + z2 = 3

x1 + 3x2 + x4 + z3 = 4

Since the right-hand side is already nonnegative there is no need to multiply any
rows by −1. Moreover, the right-hand side provides a ready made feasible vector:
x1 = · · · = x4 = 0, z1 = 3, z2 = 3, z3 = 4. The columns corresponding to these
three slack variables are simply the three unit coordinate vectors. This makes it
especially easy to create a starting tableau with these three vectors as the basis in
the left-hand margin. But since the three slack variables are in a sense artificial, it
is customary to segregate the columns corresponding to them. Finally, note that
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by introducing three new variables, we must extend the p vector to include three
zero components. This makes the computation of the criterion row especially easy.
Here then is the initial tableau.

pci
a1 a2 a3 a4 e1 e2 e3 q

Initial tableau
0 e1 2 1 0 0 1 0 0 3 3
0 e2 0 1 4 1 0 1 0 3 3
0 e3 1 3 0 1 0 0 1 4 11

3

−2 −4 −1 −1 0 0 0 0

Notice that the tableau is obtained by filling the matrix inequality with an identity
matrix to the right. The criterion row π − p is just −p, as everything is expressed
as a linear combination of e1, e2, e3, which have zero prices associated with them.
To help you keep track, I have placed the “prices” pci

associated with each row in
the far left margin.

Since we are maximizing, we look for a criterion row entry that is strictly
negative. We may as well choose the most negative column, but that is not
essential. It corresponds to the column a2.

Now to choose the row, look at the ratios of the q column
entries (the current x, z) to the positive a2 entries, and
choose the smallest ratio. For convenience I have put
these ratios in the right-hand margin.

In this case the smallest is 11
3 < 3. Thus we want to replace e3 by a2, as is

indicated by the rectangle around the pivot above.
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The new tableau is given below, and the next pivot is indicated.

pci
a1 a2 a3 a4 e1 e2 e3 q

Replace e3 by a2:
0 e1 12

3 0 0 −1
3 1 0 −1

3 12
3

0 e2 −1
3 0 4 2

3 0 1 −1
3 12

3
5
12

4 a2 1
3 1 0 1

3 0 0 1
3 11

3

−2
3 0 −1 1

3 0 0 11
3 51

3

Replace e2 by a3:
0 e1 12

3 0 0 −1
3 1 0 −1

3 12
3 1

1 a3 − 1
12 0 1 1

6 0 1
4 − 1

12
5
12

4 a2 1
3 1 0 1

3 0 0 1
3 11

3 4
−3

4 0 0 1
2 0 1

4 11
4 53

4

Replace e1 by a1:
2 a1 1 0 0 −1

5
3
5 0 −1

5 1
1 a3 0 0 1 3

20
1
20

1
4 − 1

10
1
2

4 a2 0 1 0 2
5 −1

5 0 2
5 1

0 0 0 7
20

9
20

1
4 1 1

10 61
2

The algorithm stops here because the criterion row has no more negative entries.
Note that we have replaced all the unit coordinate vectors by columns of A.

Warning! The solution (x̄, z̄) can now be read off from column q, but remem-�
ber that those numbers are the coefficients on the corresponding left-hand basis
element, and that basis is in no particular order, so read them with care! If the
basis element in the left-hand column of row i is ac, then the right-hand column
value (under q) is x̄c, the cth coordinate of x̄, not xi, the ith coordinate! If the
basis element in the left-hand column of row i is ec, then the right-hand column
value (under q) is z̄c, the cth coordinate of z̄, a slack variable.

The solution we have found is

x̄1 = 1, x̄2 = 1, x̄3 = 1
2 , x̄4 = 0,

and the value p · x̄ is 61
2 .

Let me just verify that this satisfies the constraints:

2(1) + 1(1) + 0(1
2) + 0(0) = 2 + 1 + 0 + 0 = 3

0(1) + 1(1) + 4(1
2) + 1(0) = 0 + 1 + 2 + 0 = 3

1(1) + 3(1) + 0(1
2) + 1(0) = 1 + 3 + 0 + 0 = 4
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Now you either have to redo these calculations yourself or put your faith in
the computer program that I wrote to produce these tableaux. I don’t recommend
the latter, as I am a notoriously poor programmer. But you don’t need to do the
former either. Remember that I told you that it is enough to find a solution to
the dual that yields the same value. And here is the surprise I have been saving:

The criterion row entries under the unit vectors comprise
a solution to the dual program.

That is,
ȳ1 = 9

20
, ȳ2 = 1

4
, ȳ3 = 1 1

10
,

solves the dual problem, which is

minimize
y

3y1 + 3y2 + 4y3

subject to
2y1 + y3 ⩾ 2
y1 + y2 + 3y3 ⩾ 4

+ 4y2 ⩾ 1
y2 + y3 ⩾ 1

Now it is easy to verify that

q · ȳ = 3( 9
20) + 3(1

4) + 4(1 1
10) = 1 7

20 + 3
4 + 42

5 = 61
2 .

has the same value as primal, and I leave it to you to verify the feasibility. But I
can tell you right now that the first three inequalities will be satisfied as equalities
(since the dual variables x̄1, x̄2, x̄3 are strictly positive), and the fourth inequality
is likely strict (as x̄4 = 0).

I changed my mind. Here is the verification that ȳ is feasible for the dual:

2( 9
20) + 0(1

4) + 1(1 1
10) = 9

10 + 0 + 1 1
10 = 2 = 2

1( 9
20) + 1(1

4) + 3(1 1
10) = 9

20 + 1
4 + 3 3

10 = 4 = 4
0( 9

20) + 4(1
4) + 0(1 1

10) = 0 + 1 + 0 = 1 = 1
0( 9

20) + 1(1
4) + 1(1 1

10) = 0 + 1
4 + 1 1

10 = 1 7
20 > 1

Now either this is an incredibly contrived example, or else there is something
magical I haven’t yet told you about the simplex algorithm. It’s the latter.

KC Border: for Ec 181, 2019–2020 src: LPComputation v. 2020.01.09::16.43



Ec 181 AY 2019–2020
KC Border The Simplex Method 29–18

29.6 The simplex algorithm solves the dual program too

The simplex algorithm applied to the following sort of problem also computes a
solution to the dual program.

maximize
x∈Rn

p · x

subject to

Ax = q

x ≧ 0

The dual program is
minimize

y∈Rm
q · y

subject to

A′y ≧ p

As we saw in the last section, the initial tableau can be written

A1 An e1 em q

e1 a1,1 a1,n 1 0 0 b1

0

0
em am,1 am,n 0 0 1 qm

π − p −p1 −pn 0 0 0

Assume for now that the simplex algorithm enables us to replace all the coordinate
vectors with columns of A. Without loss of generality, by rearranging the rowsDiscuss what

happens if we
can’t replace all
the ei’s.

and columns of A if necessary, we can assume the algorithm stops in the following
configuration, which has the property that ci = i for i = 1, . . . , m.

A1 Am Am+1 An e1 em q

A1 1 0 0 t1,m+1 t1,n s1,1 s1,m x1

0

0
Am 0 0 1 tm,m+1 tm,n sm,1 sm,m xm

π − p 0 0 πm+1 − pm+1 πn − pn y1 ym p · x

There are three key observations to make here.
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1. The block [si,j] j=1,...,m
i=1,...,m

is the inverse of the block Am,m = [ai,j] j=1,...,m
i=1,...,m

. (Recall
the use of the Gauss–Jordan method for inverting a matrix.)

2. By construction of the criterion row, the yk’s satisfy

yk =
m∑

i=1
si,kpi k = 1, . . . , m.

3. For j > m, we have πj ⩾ pj. (Otherwise the algorithm would not stop here
with an optimal x.)

Thus, as in the proof of Proposition 29.3.3, for j = 1, . . . , m we have

y · Aj =
m∑

k=1
ykak,j =

m∑
k=1

(
m∑

i=1
si,kpi

)
ak,j =

m∑
i=1

pi

m∑
k=1

(si,kak,j) =
m∑

i=1
piδi,j = pj,

where the penultimate equality follows because [si,j] is the inverse of Am,m. For
j > m,

y · Aj = y ·
m∑

i=1
ti,jA

i =
m∑

i=1
ti,jy · Ai =

m∑
i=1

ti,jpi = πj ⩾ pj,

by the third observation. In other words,

A′y ≧ p,

so y is feasible for the dual program.
In addition,

q · y =
(

m∑
i=1

xiA
i

)
· y =

m∑
i=1

xi(Ai · y) =
m∑

i=1
xipi = p · x

since xj = 0 for j > m. Thus p · x = q · y, so y is optimal.

29.6.1 Solving the dual with inequality constraints

The same technique also solves the dual for problems of the form

maximize
x∈Rn

p · x

subject to

Ax ≦ q

x ≧ 0

The dual program is
minimize

y∈Rm
q · y
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subject to y ≧ 0 and

A′y ≧ p

Instead, we introduce a vector z of slack variables and solve the following
problem:

maximize
x∈Rn, z∈Rm

p · x + 0 · z

subject to

Ax + Iz = q

x ≧ 0
z ≧ 0

The dual program is
minimize

y∈Rm
q · y

A′

I

 y ≧

p

0


with no sign constraints on y.

Our algorithm applied to this problem produces vectors x̄, z̄, and ȳ that sat-
isfies q · ȳ = p · x̄(+0 · z̄), and ȳ[A, I] ≧ [p, 0]. But this implies ȳA ≧ p and ȳ ≧ 0,
so the computed solution ȳ to the dual of the equality case also solves the dual
for the inequality case.

29.7 Degeneracy, cycling, and the lexicographic simplex
algorithm

Proposition 29.3.2 shows that the simplex algorithm must stop if the linear pro-
gram is nondegenerate. But verification of nondegeneracy is difficult. This is
unfortunate, as the next example shows that the naïve simplex algorithm can cy-
cle and never stop in the degenerate case. However there is a simple modification,
the lexicographic simplex algorithm, that will stop even in the degenerate case.

29.7.1 A cycling example

The first example of cycling in the simplex algorithm is due to Hoffman [11].
Beale [2] constructed the following simpler example of cycling. (See also [4,
pp. 228–230].) The problem is to

maximize
x

3
4x1 − 150x2 + 1

50x3 − 6x4
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subject to x ≧ 0, and

1
4x1 − 60x2 − 1

25x3 + 9x4 ⩽ 0
1
2x1 − 90x2 − 1

50x3 + 3x4 ⩽ 0
+ x3 ⩽ 1

Introducing slack variables z and setting them to the right-hand side constants
leads to the tableau shown in Table 29.7.1. The algorithm was implemented to
choose the pivot column with the most negative value in the criterion row, and
when more than one row minimized the ratio, the first row to do so was selected
for the pivot. As you can see, the seventh tableau is the same as the first, so the
algorithm is doomed to repeat itself.

A peculiar (and nongeneric) feature of this problem is that the tableau always
gives a choice of two pivot rows, and the minimum ratio is always zero. Indeed
the proof of Proposition 29.3.2 shows that a zero ratio is necessary for cycling.

29.7.2 The lexicographic simplex algorithm

Dantzig, Orden, and Wolfe [5] provide a pivot choice rule that will not cycle.
Their rule for choosing the pivot row is lexicographic. To use it, we need to use
an extended tableau with an identity matrix spliced in to the left of the q column.
(You will probably want this anyway to compute the solution to the dual.) Here
is a typical tableau:

A1 · · · Aj · · · An e1 · · · em q

Ac1 t1,1 · · · t1,j · · · t1,n s1,1 · · · s1,m xc1

... ... ... ... ... ... ...
Ack tk,1 · · · tk,j · · · tk,n sk,1 · · · sk,m xck

... ... ... ... ... ... ...
Acm tm,1 · · · tm,j · · · tm,n sm,1 · · · sm,m xcm

π − p π1 − p1 · · · πj − pj · · · πn − pn y1 · · · ym p · x

The rule for choosing the column k is this
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pci
a1 a2 a3 a4 e1 e2 e3 q

Initial tableau
0 e1 1

4 −60 − 1
25 9 1 0 0 0 0

0 e2 1
2 −90 − 1

50 3 0 1 0 0 0
0 e3 0 0 1 0 0 0 1 1

− 3
4 150 − 1

50 6 0 0 0 0
Replace e1 by a1:

3
4 a1 1 −240 − 4

25 36 4 0 0 0
0 e2 0 30 3

50 −15 −2 1 0 0 0
0 e3 0 0 1 0 0 0 1 1

0 −30 − 7
50 33 3 0 0 0

Replace e2 by a2:
3
4 a1 1 0 8

25 −84 −12 8 0 0 0

−150 a2 0 1 1
500 − 1

2 − 1
15

1
30 0 0 0

0 e3 0 0 1 0 0 0 1 1 1
0 0 − 2

25 18 1 1 0 0
Replace a1 by a3:

1
50 a3 3 1

8 0 1 −262 1
2 −37 1

2 25 0 0
−150 a2 − 1

160 1 0 1
40

1
120 − 1

60 0 0 0

0 e3 −3 1
8 0 0 262 1

2 37 1
2 −25 1 1 2

525
1
4 0 0 −3 −2 3 0 0

Replace a2 by a4:
1

50 a3 −62 1
2 10500 1 0 50 −150 0 0 0

−6 a4 − 1
4 40 0 1 1

3 − 2
3 0 0 0

0 e3 62 1
2 −10500 0 0 −50 150 1 1

− 1
2 120 0 0 −1 1 0 0

Replace a3 by e1:
0 e1 −1 1

4 210 1
50 0 1 −3 0 0

−6 a4 1
6 −30 − 1

150 1 0 1
3 0 0 0

0 e3 0 0 1 0 0 0 1 1
−1 3

4 330 1
50 0 0 −2 0 0

Replace a4 by e2:
0 e1 1

4 −60 − 1
25 9 1 0 0 0

0 e2 1
2 −90 − 1

50 3 0 1 0 0
0 e3 0 0 1 0 0 0 1 1

− 3
4 150 − 1

50 6 0 0 0 0

Table 29.7.1. Beale’s cycling program.
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Lexicographic rule
Choose the pivot row k so that

tk,j > 0

and the vector

rk =
(

xck

tk,j

,
sk,1

tk,j

, . . . ,
sk,m

tk,j

)

is lexicographically minimal in {ri : ti,j > 0}.

This differs from our previous rule, which only looked at the first component of
these vectors. The proof that this rule works is not hard, and may be found
in Gale [8, Chapter 4, section 7, pp. 123–128] or Dantzig [4, pp. 234–235]. In
practice, it appears that cycling is not a problem. Charnes [3] deals with the
problem of cycling by slightly perturbing q.

29.7.3 Lexicographic simplex example

Here is the lexicographic simplex method applied to Beale’s example. I have
placed the entire ri vector in the right-hand margin. (This is not computationally
efficient—if you have tens of thousands of variables, you don’t want to compute
these extra ratios unless you need them all to break ties.)
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pci
a1 a2 a3 a4 e1 e2 e3 q

Initial tableau
0 e1 1

4 −60 − 1
25 9 1 0 0 0 0 4 0 0

0 e2 1
2 −90 − 1

50 3 0 1 0 0 0 0 2 0

0 e3 0 0 1 0 0 0 1 1
−3

4 150 − 1
50 6 0 0 0 0

Replace e2 by a1:
0 e1 0 −15 − 3

100 71
2 1 −1

2 0 0
3
4 a1 1 −180 − 1

25 6 0 2 0 0
0 e3 0 0 1 0 0 0 1 1 1 0 0 1

0 15 − 1
20 101

2 0 11
2 0 0

Replace e3 by a3:
0 e1 0 −15 0 71

2 1 −1
2

3
100

3
100

3
4 a1 1 −180 0 6 0 2 1

25
1
25

1
50 a3 0 0 1 0 0 0 1 1

0 15 0 101
2 0 11

2
1
20

1
20

There is no pivot column, so the current basis is optimal. A solution is

x =
(

1
25 , 0, 1, 0

)

Verify that x satisfies the constraints:

1
4( 1

25) − 60(0) − 1
25(1) + 9(0) = 1

100 + 0 − 1
25 + 0 = − 3

100 < 0
1
2( 1

25) − 90(0) − 1
50(1) + 3(0) = 1

50 + 0 − 1
50 + 0 = 0 = 0

0( 1
25) + 0(0) + 1(1) + 0(0) = 0 + 0 + 1 + 0 = 1 = 1 .

Thus a solution is

x =
(

1
25 , 0, 1, 0

)

Check the value of p · x:

3
4( 1

25) − 150(0) + 1
50(1) − 6(0) = 3

100 + 0 + 1
50 + 0 = 1

20 .
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A solution to the dual is

y =
(
0, 11

2 , 1
20

)
.

Recall that the dual problem is

minimize
y

y3

subject to y ≧ 0 and
1
4y1 + 1

2y2 ⩾ 3/4
−60y1 −90y2 ⩾ −150
− 1

25y1 − 1
50y2 +y3 ⩾ 1/50

9y1 + 3y2 ⩾ −6.

Check that the value of the dual is

0(0) + 0(11
2) + 1( 1

20) = 0 + 0 + 1
20 = 1

20 .

Now verify the feasibility of the dual.

1
4(0) + 1

2(11
2) + 0( 1

20) = 0 + 3
4 + 0 = 3

4 = 3
4

−60(0) − 90(11
2) + 0( 1

20) = 0 − 135 + 0 = −135 > −150
− 1

25(0) − 1
50(11

2) + 1( 1
20) = 0 − 3

100 + 1
20 = 1

50 = 1
50

9(0) + 3(11
2) + 0( 1

20) = 0 + 41
2 + 0 = 41

2 > −6 .

29.8 The simplex algorithm and vertexes

The simplex algorithm works by taking a feasible solution expressed as a linear
combination of the columns of A and one-by-one replacing elements of this basis
until an optimal basis is found. It turns out this rather abstract explanation has
a nice geometric interpretation. According to Proposition 28.7.1 in Section 28.7,
basic feasible solutions to

Ax = q

x ≧ 0

are vertices of the polyhedron of feasible solutions. We shall show below in ****** Add this result!!!

that a pivot operation takes us from a basic solution vertex to a neighboring
solution vertex. But first let’s look at a simple example that I can partially draw.
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Consider the following inequality-form linear program with two variables and
nine inequality constraints:

maximize
x

x1 + x2

subject to x ≧ 0, and

−4x1 + x2 ⩽ 0
x1 −4x2 ⩽ 0

−2x1 + x2 ⩽ 2
x1 −2x2 ⩽ 2

−x1 +2x2 ⩽10
2x1 − x2 ⩽10

−x1 +3x2 ⩽17
3x1 − x2 ⩽17
x1 + x2 ⩽15

(10)

The solution set of the inequalities is the polytope P shown in Figure 29.8.1.

P

(0, 0)

(1, 4)

(2, 6)
(4, 7)

(7, 8)

(8, 7)

(7, 4)

(6, 2)
(4, 1)

Figure 29.8.1. The polytope P is the set of feasible solutions to the linear
program (10).

The dual program is

minimize
y

2y3 + 2y4 + 10y5 + 10y6 + 17y7 + 17y8 + 15y9
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subject to x ≧ 0, and

−4y1 + y2 −2y3 + y4 − y5 − y6 +3y7 −y8 +y9 ⩾1
y1 −4y2 + y3 −2y4 +2y5 +2y6 − y7 +3y8 +y9 ⩾1

(11)

But to use the simplex method, we want to rewrite this as system of equations
rather than inequalities, so we add nine slack variables z1, . . . , z9 and write the
constraints as

−4x1 + x2 +z1 = 0
x1 −4x2 +z2 = 0

−2x1 + x2 +z3 = 2
x1 −2x2 +z4 = 2

−x1 +2x2 +z5 =10
2x1 − x2 +z6 =10

−x1 +3x2 +z7 =17
3x1 − x2 +z8 =17

x1 + x2 +z9 =15

(12)

or
x1a

1 + x2a
2 + z1e

1 + · · · + z9e
9 = q, (13)

where

a1 =



−4
1

−2
1

−1
2

−1
3
1



, a2 =



1
−4
1

−2
2

−1
3

−1
1



, q =



0
0
2
2
10
10
17
17
15



,

and ei is ith unit coordinate vector in R9. We are now in an eleven-dimensional
space, but the solutions to (13) and (10) are in one-to-one correspondence. Indeed,
the set P̂ of solutions to (13) constitute a two-dimensional polytope in R11 given
as follows. Define the (linear) mapping z : P → R9 by solving (12) for each zi in
terms of x = (x1, x2), and then the set P̂ solutions is just

P̂ = {
(
x, z(x)

)
: x ∈ P}.
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A point (x, z) in P̂ is a vertex of P̂ if and only if x is a vertex of P and z = z(x).
A starting point for the equality version is to write q as linear combination of

the standard basis vectors by setting x1 = x2 = 0 and zi = qi, for i = 1, . . . , 9.
The following is the initial tableau. The criterion row is simply −p, and we

search it for negative entries. As you can see, there are two negative entries in
the criterion row. Let’s start by choosing to pivot on the first one.

Initial tableau, with first pivot boxed :
pci

a1 a2 e1 e2 e3 e4 e5 e6 e7 e8 e9 q

0 e1 −4 1 1 0 0 0 0 0 0 0 0 0
0 e2 1 −4 0 1 0 0 0 0 0 0 0 0 0
0 e3 −2 1 0 0 1 0 0 0 0 0 0 2
0 e4 1 −2 0 0 0 1 0 0 0 0 0 2 2
0 e5 −1 2 0 0 0 0 1 0 0 0 0 10
0 e6 2 −1 0 0 0 0 0 1 0 0 0 10 5
0 e7 −1 3 0 0 0 0 0 0 1 0 0 17
0 e8 3 −1 0 0 0 0 0 0 0 1 0 17 52

3

0 e9 1 1 0 0 0 0 0 0 0 0 1 15 15
−1 −1 0 0 0 0 0 0 0 0 0 0

Note that a1 and a2 are missing from the initial basis (given in the left-hand
margin), so (x1, x2) = (0, 0).

Replace e2 by a1, and choose new pivot:
pci

a1 a2 e1 e2 e3 e4 e5 e6 e7 e8 e9 q

0 e1 0 −15 1 4 0 0 0 0 0 0 0 0
1 a1 1 −4 0 1 0 0 0 0 0 0 0 0
0 e3 0 −7 0 2 1 0 0 0 0 0 0 2
0 e4 0 2 0 −1 0 1 0 0 0 0 0 2 1
0 e5 0 −2 0 1 0 0 1 0 0 0 0 10
0 e6 0 7 0 −2 0 0 0 1 0 0 0 10 13

7

0 e7 0 −1 0 1 0 0 0 0 1 0 0 17
0 e8 0 11 0 −3 0 0 0 0 0 1 0 17 1 6

11

0 e9 0 5 0 −1 0 0 0 0 0 0 1 15 3
0 −5 0 1 0 0 0 0 0 0 0 0
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Now a1 has been added to the new basis (given in the left-hand margin), but its
coefficient (read from the column under q) is zero, so still we have (x1, x2) = (0, 0).

Now replace e4 by a2 and choose next pivot:
pci

a1 a2 e1 e2 e3 e4 e5 e6 e7 e8 e9 q

0 e1 0 0 1 −31
2 0 71

2 0 0 0 0 0 15
1 a1 1 0 0 −1 0 2 0 0 0 0 0 4
0 e3 0 0 0 −11

2 1 31
2 0 0 0 0 0 9

1 a2 0 1 0 −1
2 0 1

2 0 0 0 0 0 1
0 e5 0 0 0 0 0 1 1 0 0 0 0 12
0 e6 0 0 0 11

2 0 −31
2 0 1 0 0 0 3 2

0 e7 0 0 0 1
2 0 1

2 0 0 1 0 0 18 36
0 e8 0 0 0 21

2 0 −51
2 0 0 0 1 0 6 22

5

0 e9 0 0 0 11
2 0 −21

2 0 0 0 0 1 10 62
3

0 0 0 −11
2 0 21

2 0 0 0 0 0 5

Now we have brought both a1 and a2 into the basis, with coefficients x1 = 4 and
x2 = 1. Note that (4, 1) is a vertex of the polytope in Figure 29.8.1. (We also
have z1 = 15, z3 = 9, etc.)

Next replace e6 by e2 and get the next pivot:
pci

a1 a2 e1 e2 e3 e4 e5 e6 e7 e8 e9 q

0 e1 0 0 1 0 0 −2
3 0 21

3 0 0 0 22
1 a1 1 0 0 0 0 −1

3 0 2
3 0 0 0 6

0 e3 0 0 0 0 1 0 0 1 0 0 0 12
1 a2 0 1 0 0 0 −2

3 0 1
3 0 0 0 2

0 e5 0 0 0 0 0 1 1 0 0 0 0 12 12
0 e2 0 0 0 1 0 −21

3 0 2
3 0 0 0 2

0 e7 0 0 0 0 0 12
3 0 −1

3 1 0 0 17 101
5

0 e8 0 0 0 0 0 1
3 0 −12

3 0 1 0 1 3

0 e9 0 0 0 0 0 1 0 −1 0 0 1 7 7
0 0 0 0 0 −1 0 1 0 0 0 8
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Now we have (x1, x2) = (6, 2), which is the next vertex of the polytope.

Replace e8 by e4 and get next pivot:
pci

a1 a2 e1 e2 e3 e4 e5 e6 e7 e8 e9 q

0 e1 0 0 1 0 0 0 0 −1 0 2 0 24
1 a1 1 0 0 0 0 0 0 −1 0 1 0 7
0 e3 0 0 0 0 1 0 0 1 0 0 0 12 12
1 a2 0 1 0 0 0 0 0 −3 0 2 0 4
0 e5 0 0 0 0 0 0 1 5 0 −3 0 9 14

5

0 e2 0 0 0 1 0 0 0 −11 0 7 0 9
0 e7 0 0 0 0 0 0 0 8 1 −5 0 12 11

2

0 e4 0 0 0 0 0 1 0 −5 0 3 0 3
0 e9 0 0 0 0 0 0 0 4 0 −3 1 4 1

0 0 0 0 0 0 0 −4 0 3 0 11

Now we have (x1, x2) = (7, 4), which is the next vertex of the polytope.

Finally, replace e9 by e6 to get:
pci

a1 a2 e1 e2 e3 e4 e5 e6 e7 e8 e9 q

0 e1 0 0 1 0 0 0 0 0 0 11
4

1
4 25

1 a1 1 0 0 0 0 0 0 0 0 1
4

1
4 8

0 e3 0 0 0 0 1 0 0 0 0 3
4 −1

4 11
1 a2 0 1 0 0 0 0 0 0 0 −1

4
3
4 7

0 e5 0 0 0 0 0 0 1 0 0 3
4 −11

4 4
0 e2 0 0 0 1 0 0 0 0 0 −11

4 23
4 20

0 e7 0 0 0 0 0 0 0 0 1 1 −2 4
0 e4 0 0 0 0 0 1 0 0 0 −3

4 11
4 8

0 e6 0 0 0 0 0 0 0 1 0 −3
4

1
4 1

0 0 0 0 0 0 0 0 0 0 1 15

There is no pivot column, so the current basis with (x1, x2) = (8, 7) is optimal. A
solution is

(x1, x2) = (8, 7) and z = (25, 20, 11, 8, 4, 1, 4, 0, 0).
The value is 15.
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You can see that after the initial steps, we moved along the vertexes of the
solution polytope for the inequality program in x to a solution at a vertex. Actu-
ally, we moved along adjacent vertices of the equality polyhedron in the eleven-
dimensional (x, z)-space. I wish I could draw a picture to illustrate that, but I
can’t. I’ll give an algebraic proof below in Proposition 29.9.2.

By the way, the solution to the dual can be read off the bottom row under the
e1, . . . , e9 vectors. It is y = (0, 0, 0, 0, 0, 0, 0, 0, 1) and gives the value 15.

Now let’s go back and see what would happened if we had chosen the other
eligible column for the first pivot.

Initial tableau, with first pivot boxed :
pci

a1 a2 e1 e2 e3 e4 e5 e6 e7 e8 e9 q

0 e1 −4 1 1 0 0 0 0 0 0 0 0 0 0
0 e2 1 −4 0 1 0 0 0 0 0 0 0 0
0 e3 −2 1 0 0 1 0 0 0 0 0 0 2 2
0 e4 1 −2 0 0 0 1 0 0 0 0 0 2
0 e5 −1 2 0 0 0 0 1 0 0 0 0 10 5
0 e6 2 −1 0 0 0 0 0 1 0 0 0 10
0 e7 −1 3 0 0 0 0 0 0 1 0 0 17 52

3

0 e8 3 −1 0 0 0 0 0 0 0 1 0 17
0 e9 1 1 0 0 0 0 0 0 0 0 1 15 15

−1 −1 0 0 0 0 0 0 0 0 0 0
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As above, the initial x is (x1, x2) = (0, 0).

Replace e1 by a2 and select next pivot:
pci

a1 a2 e1 e2 e3 e4 e5 e6 e7 e8 e9 q

1 a2 −4 1 1 0 0 0 0 0 0 0 0 0
0 e2 −15 0 4 1 0 0 0 0 0 0 0 0
0 e3 2 0 −1 0 1 0 0 0 0 0 0 2 1
0 e4 −7 0 2 0 0 1 0 0 0 0 0 2
0 e5 7 0 −2 0 0 0 1 0 0 0 0 10 13

7

0 e6 −2 0 1 0 0 0 0 1 0 0 0 10
0 e7 11 0 −3 0 0 0 0 0 1 0 0 17 1 6

11

0 e8 −1 0 1 0 0 0 0 0 0 1 0 17
0 e9 5 0 −1 0 0 0 0 0 0 0 1 15 3

−5 0 1 0 0 0 0 0 0 0 0 0

And still (x1, x2) = (0, 0).

Replace e3 by a1 and select next pivot:
pci

a1 a2 e1 e2 e3 e4 e5 e6 e7 e8 e9 q

1 a2 0 1 −1 0 2 0 0 0 0 0 0 4
0 e2 0 0 −31

2 1 71
2 0 0 0 0 0 0 15

1 a1 1 0 −1
2 0 1

2 0 0 0 0 0 0 1
0 e4 0 0 −11

2 0 31
2 1 0 0 0 0 0 9

0 e5 0 0 11
2 0 −31

2 0 1 0 0 0 0 3 2

0 e6 0 0 0 0 1 0 0 1 0 0 0 12
0 e7 0 0 21

2 0 −51
2 0 0 0 1 0 0 6 22

5

0 e8 0 0 1
2 0 1

2 0 0 0 0 1 0 18 36
0 e9 0 0 11

2 0 −21
2 0 0 0 0 0 1 10 62

3

0 0 −11
2 0 21

2 0 0 0 0 0 0 5

Now we have brought both a1 and a2 into the basis, with coefficients x1 = 1 and
x2 = 4. Note that (1, 4) is a vertex of the polytope in Figure 29.8.1. (We also
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have z1 = 0, z2 = 15, etc.)

Replace e5 by e1, get next pivot:
pci

a1 a2 e1 e2 e3 e4 e5 e6 e7 e8 e9 q

1 a2 0 1 0 0 −1
3 0 2

3 0 0 0 0 6
0 e2 0 0 0 1 −2

3 0 21
3 0 0 0 0 22

1 a1 1 0 0 0 −2
3 0 1

3 0 0 0 0 2
0 e4 0 0 0 0 0 1 1 0 0 0 0 12
0 e1 0 0 1 0 −21

3 0 2
3 0 0 0 0 2

0 e6 0 0 0 0 1 0 0 1 0 0 0 12 12
0 e7 0 0 0 0 1

3 0 −12
3 0 1 0 0 1 3

0 e8 0 0 0 0 12
3 0 −1

3 0 0 1 0 17 101
5

0 e8 0 0 0 0 1 0 −1 0 0 0 1 7 7
0 0 0 0 −1 0 1 0 0 0 0 8

Now (x1, x2) = (2, 6), which is the next vertex of the solution polytope.

Replace e7 by e3, get next pivot:
pci

a1 a2 e1 e2 e3 e4 e5 e6 e7 e8 e9 q

1 a2 0 1 0 0 0 0 −1 0 1 0 0 7
0 e2 0 0 0 1 0 0 −1 0 2 0 0 24
1 a1 1 0 0 0 0 0 −3 0 2 0 0 4
0 e4 0 0 0 0 0 1 1 0 0 0 0 12 12
0 e1 0 0 1 0 0 0 −11 0 7 0 0 9
0 e6 0 0 0 0 0 0 5 1 −3 0 0 9 14

5

0 e3 0 0 0 0 1 0 −5 0 3 0 0 3
0 e8 0 0 0 0 0 0 8 0 −5 1 0 12 11

2

0 e9 0 0 0 0 0 0 4 0 −3 0 1 4 1
0 0 0 0 0 0 −4 0 3 0 0 11

This gives (x1, x2) = (4, 7), which continues on to the next vertex of the solution
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polytope.

Replace e9 by e5 to get:
pci

a1 a2 e1 e2 e3 e4 e5 e6 e7 e8 e9 q

1 a2 0 1 0 0 0 0 0 0 1
4 0 1

4 8
0 e2 0 0 0 1 0 0 0 0 11

4 0 1
4 25

1 a1 1 0 0 0 0 0 0 0 −1
4 0 3

4 7
0 e4 0 0 0 0 0 1 0 0 3

4 0 −1
4 11

0 e1 0 0 1 0 0 0 0 0 −11
4 0 23

4 20
0 e6 0 0 0 0 0 0 0 1 3

4 0 −11
4 4

0 e3 0 0 0 0 1 0 0 0 −3
4 0 11

4 8
0 e8 0 0 0 0 0 0 0 0 1 1 −2 4
0 e5 0 0 0 0 0 0 1 0 −3

4 0 1
4 1

0 0 0 0 0 0 0 0 0 0 1 15

There is no pivot column, so the current basis is optimal. We finish at the vertex
(x1, x2) = (7, 8), so a solution is

x = (7, 8) and z = (20, 25, 8, 11, 1, 4, 0, 4, 0).
The value is 15.

29.9 The Simplex Algorithm jumps to an adjacent vertex

we now show that the pivot operation in the Simplex Algorithm moves from vertex
in the solution polyhedron to an adjacent vertex. But first we have to define what
we mean by an adjacent vertex.

29.9.1 Definition If x and y are vertices of a polyhedron P , then x and y are
adjacent of P if the line segment [x, y] is an edge, meaning an extreme subset
of P .

29.9.2 Proposition Let x be a vertex of the contraint polyhedron

C = {z ≧ 0 : Az = q}.

The replacement operation used by the Simplex Algorithm in a tableau for

Ax = q

with a basis in the left-hand column produces a vertex x′ that is adjacent to x̄.
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The following proof is taken from Dantzig [4, Theorem 4, pp. 155–156].

Proof : We know from Proposition 28.7.1 that x is a basic nonnegative solution
to Ax = q. As in that proof, by rearranging the columns of A we may assume
without loss of generality that for some k, x = (x1, . . . , xk, 0, . . . , 0), and that
A1, . . . , Ak are independent, xj > 0 for j = 1, . . . , k, xj = 0 for j > k and

q =
k∑

j=1
xjA

j.

Again, by renumbering if we must, we may assume the replacement operation
replaces A1 by Ak+1, which yields the vector x′ = (0, x′

2, . . . , x′
k+1, 0, . . . , 0), where

x′
j > 0 for j > k + 1, and

q =
k+1∑
j=2

x′
jA

j.

By construction of the Simplex Algorithm, the point x′ is a basic nonnegative
solution, that is, a vertex of C.

Aside: Here is a finicky point. We know that x′
k+1 > 0. Why? Because if z′

k+1 = 0,
then q =

∑k+1
j=2 x′

jAj =
∑k

j=1 x′
jAj . But A1, . . . , Aj are independent, so the coordinates

of q are unique, so x′ = x. But x1 > 0 and x′
1 = 0, a contradiction. Therefore x′

k+1 > 0.
We will use this below when we define the scalar µ.

Now since A1, . . . , Ak are independent, by the Replacement Lemma 25.7.1
there is a unique solution a = (ᾱ1, . . . , ᾱk) ̸= 0 to

k∑
j=1

αjA
j = Ak+1. (14)

Next let y = (1−λ)x+λx′ belong to the segment [x, x′]. Then y1 = (1−λ)x1,
yk+1 = λx′

k+1′ , and yj = 0 for j > k + 1. This suggests we define

M = {z ∈ C : zj = 0, j > k + 1}.

Tt is clear that x, x′ ∈ M , so we have just shown that the segment [x, x′] is
included in M .

Now let z ≧ 0 be an arbitrary vector in M . Since z belongs to C we have

k+1∑
j=1

zjA
j = q =

k∑
j=1

xjA
j,

so
k∑

j=1
(xj − zj)Aj = zk+1A

k+1. (15)
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There are two cases: (1) zk+1 = 0, and (2) zk+1 > 0.
In Case (1), zk+1 = 0, since A1, . . . , Ak are linearly independent, (15) implies

that z = x. In Case (2), divide (15) by zk+1 to get

k∑
j=1

xj − zj

zk+1
Aj = Ak+1.

Then by (14), for any such z we must have xj−zj

zk+1
= ᾱj, or

zj = xj − ᾱjzk+1, j = 1, . . . , k. (16)

That is, z is determined by zk+1. Note that (16) holds even if zk+1 = 0.
As a special case, letting x′ replace z, we have

x′
j = xj − ᾱjx

′
k+1, j = 1, . . . , k. (17)

Set
µ = zk+1

x′
k+1

, so zk+1 = µx′
k+1,

and multiply (17) by µ to get

µx′
j = µxj − µᾱjx

′
k+1 = µxj − ᾱjzk+1

and subtract this from (16) to get

zj − µx′
j = xj − µxj − ᾱjzk+1 + µᾱjx

′
k+1,

which reduces to
zj = (1 − µ)xj + µx′

j, j = 1, . . . , k.

Also note that
zk+1 = µx′

k+1 = µx′
k+1 + (1 − µ) xk+1︸ ︷︷ ︸

=0

,

and of course
zj = (1 − λ)xj + λx′

j = 0, j > k + 1.

This proves that any z ∈ M ⊂ C satisfies

z = (1 − µ)x + µx′

and so lies on the line through x and x′. But x and x′ are extreme points of C, so
in fact z lies in the segment [x, x′] ⊂ M .2 This proves that [x, x′] is an extreme
subset of C, so x′ is adjacent to x.

2 If say µ > 1, then x′ is a convex combination of x and z, contradicting the result that x′ is
a vertex.
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29.10 The Simplex Algorithm is a steepest ascent method

Cf. Dantzig [4, Section 7.2, pp. 56–160].
***************

29.11 Why is it called the Simplex Algorithm?

See Dantzig [4, Section 7.3].
***************

29.12 More worked examples

Just as a picture is worth a thousand words, a good example is worth several
pages of dense notation.

29.12.1 Minimization with equality constraints

Consider the following problem.

minimize
x

x1 + 6x2 − 7x3 + x4 + 5x5

subject to x ≧ 0, and

5x1 − 4x2 + 13x3 − 2x4 + x5 = 20
x1 − x2 + 5x3 − x4 + x5 = 8

Since the constraints take the form of equalities, no slack variables are necessary,
but there is no obvious starting point. So in Phase I, we introduce nonnegative
artificial variables u1 and u2, and proceed to solve the ancillary problem

minimize
u

u1 + u2

subject to x ≧ 0, u ≧ 0, and

5x1 − 4x2 + 13x3 − 2x4 + x5 + u1 = 20
x1 − x2 + 5x3 − x4 + x5 + u2 = 8

Since we require that u ≧ 0, the minimum of u1 + u2 ⩾ 0, with equality only
if u1 = u2 = 0. Thus if the solution to this LP has value zero, we will have
succeeded in finding a feasible solution to the original problem. The virtue of
this ancillary problem is that there is an obvious starting point: set x = 0, and
setting u = (20, 8) (that is, set u to the right-hand side). The criterion row is
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based on the artificial price vector indicated in the left margin of the tableau, and
is searched for positive entries.

Here is the initial tableau.

pci
a1 a2 a3 a4 a5 e1 e2 q

Initial tableau
1 u1 5 −4 13 −2 1 1 0 20 1 7

13

1 u2 1 −1 5 −1 1 0 1 8 13
5

6 −5 18 −3 2 1 1 28
Replace u1 by a3:

0 a3 5
13 − 4

13 1 − 2
13

1
13

1
13 0 1 7

13 20
1 u2 −12

13
7
13 0 − 3

13
8
13 − 5

13 1 4
13

1
2

−12
13

7
13 0 − 3

13
8

13 − 5
13 1 4

13

Replace u2 by a5:
0 a3 1

2 −3
8 1 −1

8 0 1
8 −1

8 11
2

0 a5 −11
2

7
8 0 −3

8 1 −5
8 15

8
1
2

0 0 0 0 0 0 0 0

According to this, the value (found in the lower right-hand corner) is zero, so we
have indeed found a feasible solution to the original problem, namely

x =
(
0, 0, 11

2 , 0, 1
2

)
.

I leave it to you to check that x does indeed satisfy the constraints.
In Phase II, we now proceed with the original minimization problem. To do

so, we must recalculate the π − p criterion row, and search for positive entries.
Here is the new initial tableau.

pci
a1 a2 a3 a4 a5 e1 e2 q

Initial tableau
−7 a3 1

2 −3
8 1 −1

8 0 1
8 −1

8 11
2

5 a5 −11
2

7
8 0 −3

8 1 −5
8 15

8
1
2

4
7

−12 1 0 −2 0 −4 9 −8
Replace a5 by a2:
−7 a3 −1

7 0 1 −2
7

3
7 −1

7
4
7 15

7

6 a2 −15
7 1 0 −3

7 11
7 −5

7 16
7

4
7

−102
7 0 0 −14

7 −11
7 −32

7 71
7 −84

7
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Notice that in Phase II, I never pivot on a column corresponding to the artificial
variables (look at that nice fat 9 in the criterion row of the first tableau), because
they may not be used in a bona fide solution. Why, then you might ask, do I keep
them in the tableau? The answer is that they compute the solution to the dual.

We can read a solution from the final tableau above:

x =
(
0, 4

7 , 15
7 , 0, 0

)

Let me verify that the constraints are satisfied:

5(0) − 4(4
7) + 13(15

7) − 2(0) + 1(0) = 0 − 22
7 + 222

7 + 0 + 0 = 20 = 20
1(0) − 1(4

7) + 5(15
7) − 1(0) + 1(0) = 0 − 4

7 + 84
7 + 0 + 0 = 8 = 8

The value is −84
7 .

We can also read off a solution to the dual:

y =
(
−32

7 , 71
7

)
.

Recall that the dual problem is

maximize
y

20y1 + 8y2

subject to
5y1 + y2 ⩽ 1

−4y1 − y2 ⩽ 6
13y1 + 5y2 ⩽ −7

−2y1 − y2 ⩽ 1
y1 + y2 ⩽ 5

Verify the feasibility of the dual.

5(−32
7) + 1(71

7) = −163
7 + 71

7 = −92
7 < 1

−4(−32
7) − 1(71

7) = 131
7 − 71

7 = 6 = 6
13(−32

7) + 5(71
7) = −425

7 + 355
7 = −7 = −7

−2(−32
7) − 1(71

7) = 64
7 − 71

7 = −4
7 < 1

1(−32
7) + 1(71

7) = −32
7 + 71

7 = 36
7 < 5
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29.12.2 An example with a negative right-hand side constant

Consider the problem

maximize
x

2x1 − 3x2 + x3 + x4

subject to x ≧ 0, and

x1 + 2x2 + x3 + x4 = 3
x1 − 2x2 + 2x3 + x4 = −2
3x1 − x2 − x4 = −1

Rewrite the constraints as

x1 + 2x2 + x3 + x4 = 3
− x1 + 2x2 − 2x3 − x4 = 2
−3x1 + x2 + x4 = 1

This has no effect on the primal, but the dual is different. This form has the
virtue that the following ancillary problem has an obvious starting feasible point.

minimize
y

u1 + u2 + u3

subject to x ≧ 0, u ≧ 0, and

x1 + 2x2 + x3 + x4 + u1 = 3
−x1 + 2x2 − 2x3 − x4 + u2 = 2
−3x1 + x2 + x4 + u3 = 1

A feasible starting point is given by setting x = 0, and setting u = (3, 2, 1).
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Here is the initial tableau.

a1 a2 a3 a4 e1 e2 e3 q

Initial tableau:
e1 1 2 1 1 1 0 0 3 11

2

e2 −1 2 −2 −1 0 1 0 2 1
e3 −3 1 0 1 0 0 1 1 1

−3 5 −1 1 0 0 0 6
Replace e2 by a2 to get:
e1 2 0 3 2 1 −1 0 1 1

3

a2 −1
2 1 −1 −1

2 0 1
2 0 1

e3 −21
2 0 1 11

2 0 −1
2 1 0 0

−1
2 0 4 31

2 0 −21
2 0 1

Replace e3 by a3 to get:
e1 91

2 0 0 −21
2 1 1

2 −3 1 2
19

a2 −3 1 0 1 0 0 1 1
a3 −21

2 0 1 11
2 0 −1

2 1 0
91

2 0 0 −21
2 0 −1

2 −4 1
Replace e1 by a1 to get:
a1 1 0 0 − 5

19
2
19

1
19 − 6

19
2
19

a2 0 1 0 4
19

6
19

3
19

1
19 1 6

19

a3 0 0 1 16
19

5
19 − 7

19
4
19

5
19

0 0 0 0 −1 −1 −1 0

Since the value is 0, we have found a feasible starting point for the original prob-
lem.

Now to maximize. But first we must recalculate the π − p criterion row.
Here is the new initial tableau.

a1 a2 a3 a4 e1 e2 e3 q

Initial tableau:
a1 1 0 0 − 5

19
2
19

1
19 − 6

19
2
19

a2 0 1 0 4
19

6
19

3
19

1
19 1 6

19 61
4

a3 0 0 1 16
19

5
19 − 7

19
4
19

5
19

5
16

0 0 0 −1 6
19 − 9

19 −14
19 −11

19 −3 9
19
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Replace a3 by a4 to get:
a1 1 0 5

16 0 3
16 − 1

16 −1
4

3
16

a2 0 1 −1
4 0 1

4
1
4 0 11

4

a4 0 0 1 3
16 1 5

16 − 7
16

1
4

5
16

0 0 1 9
16 0 − 1

16 −1 5
16 −1

4 −3 1
16

Thus a solution is

x =
(

3
16 , 11

4 , 0, 5
16

)

Verify the constraints are satisfied:

1( 3
16) + 2(11

4) + 1(0) + 1( 5
16) = 3

16 + 21
2 + 0 + 5

16 = 3 = 3
1( 3

16) − 2(11
4) + 2(0) + 1( 5

16) = 3
16 − 21

2 + 0 + 5
16 = −2 = −2

3( 3
16) − 1(11

4) + 0(0) − 1( 5
16) = 9

16 − 11
4 + 0 − 5

16 = −1 = −1

The value is −3 1
16 .

According to the criterion row we see that a solution to the dual is y =(
− 1

16 , −1 5
16 , −1

4

)
. But this is a solution to the modified dual, not the original

dual. To convert it we must flip the signs on the components corresponding to
negative right-hand sides in the original problem. These are the second and third
components. Thus a solution to the original dual is

y =
(
− 1

16 , 1 5
16 , 1

4

)
.

Recall that the original dual problem is

minimize
y

3y1 − 2y2 − y3

subject to
y1 + y2 + 3y3 ⩾ 2

2y1 − 2y2 − y3 ⩾ −3
y1 + 2y2 ⩾ 1

y1 + y2 − y3 ⩾ 1
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Check that the value of the dual solution is

3(− 1
16) − 2(1 5

16) − 1(1
4) = − 3

16 − 25
8 − 1

4 = −3 1
16 .

Now verify the feasibility of the dual solution for the original dual.

1(− 1
16) + 1(1 5

16) + 3(1
4) = − 1

16 + 1 5
16 + 3

4 = 2 = 2
2(− 1

16) − 2(1 5
16) − 1(1

4) = −1
8 − 25

8 − 1
4 = −3 = −3

1(− 1
16) + 2(1 5

16) + 0(1
4) = − 1

16 + 25
8 + 0 = 2 9

16 > 1
1(− 1

16) + 1(1 5
16) − 1(1

4) = − 1
16 + 1 5

16 − 1
4 = 1 = 1

29.12.3 A tricky point with negative right-hand side constants

If the constraints are inequality constraints and the right-hand side has negative
values, simply adding slack variables does not immediately lead to a feasible point,
so Phase 1 cannot be combined with Phase 2.

Change the constraints in the previous problem to inequalities.

maximize
x

2x1 − 3x2 + x3 + x4

subject to x ≧ 0, and

x1 + 2x2 + x3 + x4 ⩽ 3
x1 − 2x2 + 2x3 + x4 ⩽ −2
3x1 − x2 − x4 ⩽ −1

Add nonnegative slack variables to convert the constraints to equalities.

x1 + 2x2 + x3 + x4 + z1 = 3
x1 − 2x2 + 2x3 + x4 + z2 = −2
3x1 − x2 − x4 + z3 = −1

Now multiply the second and third equations by −1 to get

x1 + 2x2 + x3 + x4 + z1 = 3
− x1 + 2x2 − 2x3 − x4 − z2 = 2
−3x1 + x2 + x4 − z3 = 1

In this case setting x = 0 and z = q does not give a feasible solution to the
primal. To find a nonnegative feasible point, solve the ancillary problem

minimize
u

u1 + u2 + u3
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subject to x ≧ 0, z ≧ 0, u ≧ 0, and

x1 + 2x2 + x3 + x4 + z1 + u1 = 3
− x1 + 2x2 − 2x3 − x4 − z2 + u2 = 2
−3x1 + x2 + x4 − z3 + u3 = 1

This problem has a trivial starting point, given by x = 0, z = 0, and u =
(3, 2, 1).

Here is the initial tableau.

a1 a2 a3 a4 e1 e2 e3 u1 u2 u3 q

Initial tableau:
u1 1 2 1 1 1 0 0 1 0 0 3 11

2

u2 −1 2 −2 −1 0 −1 0 0 1 0 2 1
u3 −3 1 0 1 0 0 −1 0 0 1 1 1

−3 5 −1 1 1 −1 −1 0 0 0 6
Replace u2 by a2 to get:
u1 2 0 3 2 1 1 0 1 −1 0 1 1

3

a2 −1
2 1 −1 −1

2 0 −1
2 0 0 1

2 0 1
u3 −21

2 0 1 11
2 0 1

2 −1 0 −1
2 1 0 0

−1
2 0 4 31

2 1 11
2 −1 0 −21

2 0 1
Replace u3 by a3 to get:
u1 91

2 0 0 −21
2 1 −1

2 3 1 1
2 −3 1 2

19

a2 −3 1 0 1 0 0 −1 0 0 1 1
a3 −21

2 0 1 11
2 0 1

2 −1 0 −1
2 1 0

91
2 0 0 −21

2 1 −1
2 3 0 −1

2 −4 1
Replace u1 by a1 to get:
a1 1 0 0 − 5

19
2
19 − 1

19
6
19

2
19

1
19 − 6

19
2
19

a2 0 1 0 4
19

6
19 − 3

19 − 1
19

6
19

3
19

1
19 1 6

19

a3 0 0 1 16
19

5
19

7
19 − 4

19
5
19 − 7

19
4
19

5
19

0 0 0 0 0 0 0 −1 −1 −1 0

The value is 0, so we have found a feasible starting point for Phase 2. Now to
recalculate the π − p criterion row and maximize. Here is the new initial tableau.
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a1 a2 a3 a4 e1 e2 e3 u1 u2 u3 q

Initial tableau:
a1 1 0 0 − 5

19
2
19 − 1

19
6
19

2
19

1
19 − 6

19
2
19

a2 0 1 0 4
19

6
19 − 3

19 − 1
19

6
19

3
19

1
19 1 6

19 61
4

a3 0 0 1 16
19

5
19

7
19 − 4

19
5
19 − 7

19
4
19

5
19

5
16

0 0 0 −1 6
19 − 9

19
14
19

11
19 − 9

19 −14
19 −11

19 −3 9
19

Replace a3 by a4 to get:
a1 1 0 5

16 0 3
16

1
16

1
4

3
16 − 1

16 −1
4

3
16 1

a2 0 1 −1
4 0 1

4 −1
4 0 1

4
1
4 0 11

4 5
a4 0 0 1 3

16 1 5
16

7
16 −1

4
5
16 − 7

16
1
4

5
16 1

0 0 1 9
16 0 − 1

16 1 5
16

1
4 − 1

16 −1 5
16 −1

4 −3 1
16

Replace a1 by e1 to get:
e1 51

3 0 12
3 0 1 1

3 11
3 1 −1

3 −11
3 1

a2 −11
3 1 −2

3 0 0 −1
3 −1

3 0 1
3

1
3 1

a4 −12
3 0 2

3 1 0 1
3 −2

3 0 −1
3

2
3 0

1
3 0 12

3 0 0 11
3

1
3 0 −11

3 −1
3 −3

Thus a solution is

x = (0, 1, 0, 0)

Verify the constraints are satisfied:

1(0) + 2(1) + 1(0) + 1(0) = 0 + 2 + 0 + 0 = 2 < 3
1(0) − 2(1) + 2(0) + 1(0) = 0 − 2 + 0 + 0 = −2 = −2
3(0) − 1(1) + 0(0) − 1(0) = 0 − 1 + 0 + 0 = −1 = −1

The value is −3.

Note that by relaxing the constraints from equations in the previous section to
inequalities, the value has increased.

A solution to the dual is

y =
(
0, 11

3 , 1
3

)
.
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This can be read off the criterion row in two places, under the slack variables,
or by appropriate sign flips under the auxiliary variables. Recall that the dual
problem is

minimize
y

3y1 − 2y2 − y3

subject to
y1 + y2 + 3y3 ⩾ 2

2y1 − 2y2 − y3 ⩾ −3
y1 + 2y2 ⩾ 1

y1 + y2 − y3 ⩾ 1
Check that the value of the dual is

3(0) − 2(11
3) − 1(1

3) = 0 − 22
3 − 1

3 = −3.

Now verify the feasibility of the dual.

1(0) + 1(11
3) + 3(1

3) = 0 + 11
3 + 1 = 21

3 > 2
2(0) − 2(11

3) − 1(1
3) = 0 − 22

3 − 1
3 = −3 = −3

1(0) + 2(11
3) + 0(1

3) = 0 + 22
3 + 0 = 22

3 > 1
1(0) + 1(11

3) − 1(1
3) = 0 + 11

3 − 1
3 = 1 = 1
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