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The material for this chapter is based largely on the beautifully written book by
David Gale [2].

28.1 Primal and dual linear programs

A maximum linear program in standard inequality form1 is a constrained
maximization problem of the form

maximize
x

p · x (1)

subject to

Ax ≦ q (2)
x ≧ 0 (3)

where x and p belong to Rn, q belongs to Rm, and A is m × n. Thus there are n
variables and m constraints plus n nonnegativity constraints on the variables.

The program is feasible if there is some x satisfying the constraints (2) and (3),
that is, if the constraint set is nonempty. It is easy to write down inconsistent
constraints, so that we are not guaranteed that an arbitrary program is feasible.

Every maximum linear program in standard inequality form has an associated
dual program, which is the following minimization problem:

minimize
y

q · y (4)

subject to

A′y ≧ p (5)
y ≧ 0. (6)

Here A′ denotes the transpose of A. The original maximum linear program may
be called the primal program to distinguish it from the dual. Note that the roles

1 Gale [2, p. 74] refers to this as the “standard form” of a linear program. However Dantzig [1,
p. 60] defines a standard linear program to be one where a linear function is minimized subject
to linear equality constraints and nonnegativity constraints.
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of p and q are interchanged in the primal and dual program, and that the matrix
A is transposed.

The next result describes an important relationship between feasible points
for the primal and its dual.

28.1.1 Lemma (Optimality Criterion for LP) If x is feasible for the primal
program and y is feasible for its dual, then

p · x ⩽ q · y.

If in addition p · x = q · y, then x is optimal and y is optimal for the dual
program, and p · x = q · y = xAy.

Proof : Suppose x satisfies (2), Ax ≦ q, and y ≧ 0. Then yAx ⩽ y · q. Likewise
if y satisfies (5), A′y = yA ≧ p, and x ≧ 0, then yAx ⩾ p · x. Combining these
pieces proves the lemma.

If by some means we have found an optimum for the primal and the dual,
then:

The Optimality Criterion gives a simple method to prove
that a pair of solutions to the primal and dual solution
are indeed optimal.

Most other optimization techniques do not include a proof that the outcome is
optimal.

Gale refers to the following corollary as the Equilibrium Theorem. It is also
known as the Complementary Slackness Theorem. It is a simple consequence
of the Optimality Criterion (Lemma 28.1.1), and provides a perhaps even simpler
method to verify that

28.1.2 Complementary Slackness Theorem Suppose x and y are feasible
for the primal and dual respectively. They are optimal if and only if both

(Ax)i < qi =⇒ yi = 0 (7)

and
(A′y)j > pj =⇒ xj = 0. (8)

Proof : Suppose x and y are feasible for the primal and dual respectively. From
Ax ≦ q and y ≧ 0, we have yAx ⩽ y · q with equality if and only if (7) holds.
Similarly, (8) holds if and only if yAx = x · p. The conclusion now follows from
the Optimality Criterion 28.1.1, which says that x and y are optimal if and only
if p · x = q · y = yAx.

The Optimality Criterion and the Complementary Slackness Theorem are vac-
uous unless both programs have feasible points. We shall show below that if x̄ is
optimal for the primal, then the dual has an optimal solution ȳ and that p·x̄ = q ·ȳ
(instead of p · x̄ < q · ȳ).
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28.2 The primal is the dual of the dual

The dual program can be rewritten as the following maximum LP in standard
inequality form:

maximize
y

−q · y

subject to

(−A)′y ≦ −p

y ≧ 0,

where A′ is the transpose of A. The dual of this program is:

minimize
x

−p · x

subject to

−Ax ≧ −q

x ≧ 0,

or
maximize

x
p · x

subject to

xA ≦ p

x ≧ 0,

which is the primal program.

28.3 Lagrangeans for linear programs

There is another important relationship between the primal and the dual—they
have the same Lagrangeans.

Let us start by examining the Lagrangean for the primal program. Let Ai

denote the ith row of A and rewrite (2) as

qi − Ai · x ⩾ 0, i = 1, . . . , m,

and let yi denote the Lagrange multiplier for this constraint. The constraint
functions are affine and so concave. Incorporate (3) by setting the domain X =
Rn

+. The Lagrangean can then be written as

L(x; y) = p · x +
m∑

i=1
yi(qi − Ai · x) = p · x + q · y − yAx. (9)

KC Border: for Ec 181, 2019–2020 src: LPTheory v. 2020.01.07::13.50



Ec 181 AY 2019–2020
KC Border Linear Programming: Theory 28–4

Here when I write yAx, y is treated as a row matrix and x is treated as a column
matrix.

For the dual problem, let us write (5) as

pj − Aj · y ⩾ 0, j = 1, . . . , m,

where Aj is the jth column of A (or the jth row of A′). Since the constraint function
pj − Aj · y is affine in y, it is convex. Thus we have the situation discussed in
Section 10.4, so we want to write the Lagrangean with a minus sign in front of
the Lagrange multipliers. Letting xj denote the Lagrange multiplier on the jth

constraint, the Lagrangean for the dual (as a convex minimization problem) is

L′(y; x) = q · y −
n∑

j=1
xj(Aj · y − pj) = q · y + p · x − yAx, (10)

which is the same expression as the Lagrangean for the primal. So (x; y) is a
saddlepoint of the primal Lagrangean L if and only if (y; x) is a reverse saddlepoint
of dual Lagrangean L′.

28.4 The saddlepoint theorem for linear programs

By the easy half of the Saddlepoint Theorem 10.3.2, if (x̄, ȳ) is a saddlepoint of
L(x, y) = p · x + q · y − xAy over Rn

+ × Rm
+, then x̄ is optimal for the primal

program and ȳ is optimal (minimal) for the dual program. In particular, if there
is a saddlepoint, then both programs are feasible. If we knew that both programs
satisfied Slater’s Condition, then the Saddlepoint Theorem 10.3.6 would assert
that any pair of optimal solutions would be a saddlepoint of the Lagrangean.
Remarkably, for the linear programming case, we do not need Slater’s Condition—
all we need is that both programs are feasible.

28.4.1 Fundamental Duality Theorem of LP If both a maximum linear
program in standard inequality form and its dual are feasible, then both have
optimal solutions, and the values of the two programs are the same.

If one of the programs is infeasible, neither has an optimum.

Proof : (Gale [2]) The proof of the first part proceeds like this. The existence of
an optimum for both the primal and the dual can be formulated as the existence
of a solution to a set of linear inequalities. By Farkas’s Lemma, this is equivalent
to the nonexistence of a solution to the alternative. The fact that both the primal
and dual programs are feasible guarantees that the alternative has no solution.

So for the first part, assume both the primal and the dual are feasible.

• In light of the Optimality Criterion 28.1.1, if x and y are feasible for the
primal and dual respectively, then p · x ⩽ q · y, so if p · x ⩾ q · y, we must have
p · x = q · y.
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Thus both the primal and the dual have optimal solutions if and only if there is
a solution (x, y) ≧ 0 to the inequalities

Ax ≦ q

−A′y ≦ −p

y · q − x · p ⩽ 0,

or, in matrix form 
A 0
0 −A′

−p q


x

y

 ≦


q

−p

0

 . (11)

• Either these inequalities have a solution, or else by Farkas’s Lemma 25.3.1,
there is a nonnegative vector

[
u v α

]
≧ 0, where u ∈ Rm

+, v ∈ Rn
+, and α ∈ R+,

satisfying

[
u v α

] 
A 0
0 −A′

−p q

 ≧
[
0 0 0

]
(12)

and
[
u v α

] 
q

−p

0

 < 0. (13)

Note that (12) and (13) are homogeneous. That is, if
[
u v α

]
is a solution, then

so is
[
λu λv λα

]
for any λ > 0. Thus, if a solution exists, we can find a solution

where either Case 1: α = 0, or Case 2: α = 1.

• We shall show that this latter set of inequalities does not have a solution:
Suppose by way of contradiction that (12) and (13) have a nonnegative solution.
Rewriting (12), we have

aA ≧ αp (14)
and

Av ≦ αq, (15)
while (13) becomes

u · q < v · p. (16)

• We have assumed that each program is feasible, so let x̄ ≧ 0 be some feasible
solution for the primal, that is, Ax̄ ≦ q. Then premultiplying each side by u gives

uAx̄ ⩽ u · q (17)
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since u ≧ 0. Similarly let ȳ ≧ 0 be feasible for the dual, that is, A′ȳ ≧ p. Then
premultiplying each side by v gives vA′ȳ ⩾ v · p since v ≧ 0, so rearranging gives

ȳAv ⩾ v · p. (18)

• Case 1: α = 0. Then (14) becomes uA ≧ 0, which implies

uAx̄ ⩾ 0,

since x̄ ≧ 0. Also premultiplying (15) by ȳ implies

ȳAv ⩽ 0,

since ȳ ≧ 0. Combining this with (17) and (18) yields

u · q ⩾ uAx̄ ⩾ 0 ⩾ ȳAv ⩾ v · p,

which contradicts (16).

• Case 2: α = 1. In this case, (14) becomes uA ≧ p and (15) becomes Av ≦ q,
which imply that v is feasible for the primal program and u is feasible for the
dual. Therefore, by Lemma 28.1.1, q · u ⩾ p · v, which again contradicts (16).

• Since both Case 1 and Case 2 lead to contradictions, we have shown that if
both programs are feasible, then both have optimal solutions and both programs
have the same value.

• For the second part of the theorem, we have to show that if one program
is infeasible, then neither has an optimum. It could be that both programs are
infeasible, so certainly neither has an optimal solution. The case of interest is that
one program is infeasible, while the other is feasible. In this case we shall show
that the objective in the feasible program is unbounded.
• For concreteness, suppose that the primal program is infeasible, but the dual
is feasible. Since the primal is assumed infeasible, the system Ax ≦ q has no
nonnegative solution, so again by Farkas’ Lemma 25.3.1, there is a

ỹ ≧ 0 satisfying
ỹA = A′ỹ ≧ 0

and
q · ỹ < 0.

Now let z ≧ 0 be any feasible solution to the dual, that is, A′z ≧ p and let λ > 0.
Then (z + λỹ) ≧ 0 and

A′(z + λỹ) = A′z︸︷︷︸
≧p

+λ A′ỹ︸︷︷︸
≧0

≧ p,
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so z + λỹ is feasible for the dual. But

q · (z + λỹ) = q · z + λ q · ỹ︸︷︷︸
<0

→ −∞ as λ → ∞.

That is, ỹ is a direction that is feasible and in which the objective function is
unbounded below. Therefore no optimal (minimizing) solution exists for the dual.

A similar argument works if the dual is infeasible, but the primal is feasible.

We are now in a position to state these results in the form of a saddlepoint
theorem.

28.4.2 Saddlepoint Theorem for Linear Programming The following are
equivalent.

1. The Lagrangean
L(x, y) = p · x + q · y − xAy

has a saddlepoint over Rn
+ × Rm

+.
2. The primal has an optimal solution.
3. The dual has an optimal solution.
4. Both the primal and dual are feasible.

Also, the following are equivalent.
a. (x̄, ȳ) is a saddlepoint of the Lagrangean.
b. x̄ is optimal for the primal and ȳ is optimal for the dual.
c. x̄ is feasible for the primal program and ȳ is feasible for the dual, and p·x̄ = q·ȳ.

Proof :
• By the easy half of the Saddlepoint Theorem 10.3.2, if (x̄, ȳ) is a saddlepoint

of the Lagrangean, then x̄ is optimal for the primal and ȳ is optimal for the
dual. Thus (1) =⇒ (2) & (3) and (a) =⇒ (b).

• By the Optimality Criterion 28.1.1 if x̄ is optimal for the primal and ȳ is
optimal for the dual, then (x̄, ȳ) is a saddlepoint of the Lagrangean. It follows
that (b) =⇒ (c) =⇒ (a) and (2) & (3) =⇒ (1).

• Clearly (2) & (3) =⇒ (4).
• The Fundamental Duality Theorem 28.4.1 implies (2) ⇐⇒ (3) and that

(4) =⇒ (2) & (3).
This finishes the proof of the Saddlepoint Theorem for Linear Programing.

You may suspect that it is possible to combine linear constraints with more
general concave constraints that satisfy Slater’s Condition. This is indeed the case
as Uzawa [4] has shown. (See also Moore [3].)
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28.5 Other formulations

Not every linear program comes to us already in standard inequality form, nor is
the inequality form always the easiest to work with. There are other forms, some
of which have names, and all of which can be translated into one another. In fact,
we just translated a standard minimum inequality form into a standard maximum
inequality form above. Each of these forms also has a dual, and the program and
its dual satisfy the Fundamental Duality Theorem of LP 28.4.1. That is, if both
a linear program (in any form) and its dual are feasible, then both have optimal
solutions, and the values of the two programs are the same. If one of the programs
is infeasible, the other has no optimal solution. Table 28.6.1 summarizes these
forms and their dual programs. The characterization of the general form implies
the other results.

28.5.1 The general form

Let us start with a linear program in general maximum form, which allows
for both linear inequalities and equations, and optional sign constraints on the
components of x. We partition the set V = {1, . . . , n} of indices for the variables,
and the set C = {1, . . . , m} of indices for the constraints.

maximize
x

p · x =
n∑

j=1
pjxj

subject to

Ai · x ⩽ qi i ∈ CL

Ai · x = qi i ∈ CE

Ai · x ⩾ qi i ∈ CG

xj ⩽ 0 j ∈ VN

xj free j ∈ VF

xj ⩾ 0 j ∈ VP ,

so VN ∪ VF ∪ VP = V , and CL ∪ CE ∪ CP = C.
We can translate this into standard inequality maximum form as follows. Start

by rewriting all the constraints as ⩽ inequalities,

Ai · x ⩽ qi i ∈ CL

Ai · x ⩽ qi i ∈ CE

−(Ai) · x ⩽ −qi i ∈ CE

−(Ai) · x ⩽ −qi i ∈ CG.
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Next replace x by u − v, where both u ≧ 0 and v ≧ 0. This places no sign
restrictions on the components of x. To capture the requirement that xj ⩽ 0 for
j ∈ VN , we require u · ej ⩽ 0, where ej is the jth unit coordinate vector in Rn.
(Do you see why this works?) Similarly xj ⩾ 0 corresponds to v · ej ⩽ 0. Thus
our rewritten problem is

maximize
u,v

p · (u − v)

subject to

Ai · (u − v) ⩽ qi i ∈ CL

Ai · (u − v) ⩽ qi i ∈ CE

−(Ai) · (u − v) ⩽ −qi i ∈ CE

−(Ai) · (u − v) ⩽ −qi i ∈ CG

u · ej ⩽ 0 j ∈ VN

v · ei ⩽ 0 j ∈ VP

u ≧ 0
v ≧ 0.

Or in matrix form
maximize

u,v
(p, −p) · (u, v)

subject to 

AL −AL

AE −AE

−AE AE

−AG AG

IN 0N

0P IP



u

v

 ≦



qL

qE

−qE

−qG

0N

0P


,

where AL, AE, and AG are matrices with n columns and whose rows are the rows
Ai of A for i ∈ CL, i ∈ CE, and i ∈ CG respectively; the rows of IN and IP are
unit coordinate vectors ej i Rn for j ∈ VN and j ∈ VP respectively; and qL, qE,
and qP have components qi for i ∈ CL, i ∈ CE, and i ∈ CG respectively. The zeros
are of the dimension they need to be.

The dual of this maximum problem in standard inequality form is thus the
following:

minimize
z, w

(qL, qE, −qE, −qG, 0N , 0P ) · (zL, zE, wE, zG, zN , zP )
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subject to z ≧ 0, w ≧ 0, and

 A′
L A′

E −A′
E −A′

G I ′
N 0′

P

−A′
L −A′

E A′
E A′

G 0′
N I ′

P





zL

zE

wE

zG

zN

zP


≧

 p

−p

 ,

where zL, zE, wE, zG, zN , zP are of the appropriate dimensions.
Define y ∈ Rm by

yi =


zi i ∈ CL

zi − wi i ∈ CE

−zi i ∈ CG

so that

yi ⩾ 0 i ∈ CL

yi unsigned i ∈ CE

yi ⩽ 0 i ∈ CG

and rewrite the dual as
minimize

y
q · y

subject to z ≧ 0, w ≧ 0, and A

−A

 y +

IN 0
0 IP


zN

zP

 ≧

 p

−p

 ,

where A is the m × n matrix of columns A1, . . . , An. What this says is

Ay +
∑
j∈N

zje
j ≧ p

Ay −
∑
j∈P

zje
j ≦ p

Since z ≧ 0, the dual can be written:
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minimize
y

q · y

subject to

Ajy ⩾ pj j ∈ VN

Ajy = pj j ∈ VF

Ajy ⩽ pj j ∈ VP

yi ⩾ 0 i ∈ CL

yi free i ∈ CE

yi ⩽ 0 i ∈ CG

Recall that the variables in the dual are the Lagrange multipliers for the primal.
Thus we see that, the Lagrange multipliers associated with the equality constraints
(j ∈ CE) are not a priori restricted in sign, while the multipliers for the ⩽-
inequality constraints (i ∈ CL) are nonnegative, and the multipliers for the ⩾-
inequality constraints (i ∈ CG) are nonpositive. Since the primal variables are the
Lagrange multipliers for the dual program, the nonnegativity constraints (j ∈ VP )
on the primal correspond to ⩽-inequality constraints in the dual, the nonpositivity
constraints (j ∈ VN) on the primal correspond to ⩾-inequality constraints in the
dual, and the unrestricted primal variable are associated with equality constraints
in the dual.

28.5.2 Canonical (equality) form

There is one more useful form for linear programs, the canonical or equality
form.2 In it, all the constraints are equations, and all the variables are nonnega-
tive. An LP is in canonical maximum form if it is written as:

maximize
x

p · x

subject to

Ax = q

x ≧ 0

To transform an inequality form into the equality form, introduce slack variables
z ∈ Rm and observe that

Ax ≦ q ⇐⇒ Ax + z = q, z ≧ 0.

2 The equality form is what Gale [2, p. 75] calls the canonical form, while Dantzig [1, p. 60]
calls this the standard form.
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It follows from the characterization of the dual to the general maximum problem
that the dual program can be written as the decidedly non-equality minimum
problemElaborate this.

minimize
y

q · y

subject to

A′y ≧ p

Note the lack of sign restrictions on y.Define the
canonical
minimum
problem.

28.5.3 The “altitude” form

Here is an interesting curiosity. We can convert any LP problem to the problem of
finding the “highest point” in a constraint set. For instance, consider the standard
maximum LP:

maximize
x

p · x

subject to

Ax ≦ q

x ≧ 0

where x and p belong to Rn, q belongs to Rm, and A is m × n. Introduce a new
variable ζ (altitude) and consider the transformed problem

maximize
x,ζ

ζ

subject to

Ax ≦ q

ζ − p · x ⩽ 0
x ≧ 0.

In the transformed problem, the added the constraint is that ζ cannot exceed
p · x, so in order to maximize ζ, we have to maximize p · x, which is the original
problem.

28.5.1 Exercise Show that the dual to the altitude form is the same as the dual
to the standard maximum problem, namely:

minimize
y

q · y
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subject to

A′y ≧ p

y ≧ 0.

□

Sample answer: The find the dual of the altitude form, rewrite the primal as

maximize
x,ζ

[
0 1

]
·

[
x ζ

]
subject to  A 0

−p 1

 [
x ζ

]
≦

q

0


x ≧ 0.

The dual has an extra variable, call it η and can be written as

minimize
y,η

[
q 0

]
·

[
y η

]
= q · y

subject to A′ −p

0 1


y

η

 ≧

0
1


y ≧ 0.

These constraints reduce to

A′y ≧ ηp

η ⩾ 1
y ≧ 0.

The only rôle of η is to add restrictions on y, so y is least restricted when η = 1,
and the dual problem reduces to

minimize
y

q · y (19)

subject to

A′y ≧ p (20)
y ≧ 0. (21)
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28.6 Basic optimal solutions
Tie this in with
Dantzig, pages
154–156In the canonical maximization problem, we are looking to write q as a linear

combination of the columns of A. In discussing algorithms for solving linear
programs it is useful to be able to restrict attention to solutions where q is a linear
combination of a linearly independent set of columns. That is, we want to make
sure that if an optimum exists, then there is an optimum x̄ where {Aj : x̄j > 0}
is a linearly independent set, where Aj denotes the jth column of A. We shall call
such a x̄ a basic solution to the linear program. To prove the existence of a basic
solution we must first derive and prove the proper version of the Complementary
Slackness Theorem for canonical programs.

28.6.1 Theorem (Complementary Slackness for Canonical Form) Let x
and y be feasible for the canonical maximum problem and its dual. That is, x ≧ 0,
Ax = q, and A′y ≧ p. Then x and y are optimal if and only for i = 1, . . . , m,

Aj · y > pj =⇒ xj = 0.

Proof : Let x ≧ 0, Ax = q, and A′y ≧ p.
( =⇒ ) Assume that x and y are optimal and that Aj · y > pj. Since x and

y are optimal, we know by the Fundamental Duality Theorem that p · x = q · y.
Since x ≧ 0 and A′y ≧ p, we have that

x · A′y ⩾ x · p = q · y.

On the other hand Ax = q, so

q · y = Ax · y = yAx =
n∑

j=1
(Aj · y)xj.

Combining these we get

yAx = p · x or
m∑

j=1
(Aj · y − pj)xj = 0.

Since each xj ⩾ 0 and each Aj · y − pj ⩾ 0, the only way the sum can be zero is
that each product term (Aj · y − pj)xj is zero. So if Aj · y − pj > 0, then xj = 0.

( ⇐= ) Assume that xj = 0 whenever Aj · y > pj. Then since A′y ⩾ p and
x ≧ 0, we must have xA′y = yAx = p · x. But Ax = q so q · y = Ax · y = p · y,
which implies thatx and y are both optimal.

28.6.2 Theorem If a canonical (equality constraint) linear programming prob-
lem has an optimal solution, then it has a basic optimal solution.
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Proof : Let x and y be an optimal solution to the primal and the dual, so that
Ax = q and A′y ≧ p, and let B = {j : xj > 0}. Then by the contrapositive of
Complementary Slackness 28.6.1, Aj · y = pj for all j ∈ B.

By Lemma 2.3.3 on nonnegative basic solutions, since Ax = q, there exists x̃
satisfying Ax̃ = q such that B̃ = {j : x̃j > 0} ⊂ B and {Aj : x̃j > 0} is linearly
independent. Now for all j ∈ B̃ ⊂ B we also have Aj · y = pj. That is, Aj · y > pj

implies x̃j = 0, so by Complementary Slackness 28.6.1 again, x̃ is also optimal.

28.7 Basic feasible solutions are vertices

The next result has implications for computing optimal solutions via the Simplex
Method as discussed in Section 29.7 below, but it is interesting in its own right.
Recall (Definition 2.6.1) that vertex of a polyhedron or polytope is an extreme
point, that is, it is not a proper convex combination of two other points in the
set. The next Proposition may be found, for instance, in Dantzig [1, Theorem 3,
pp.154–155].

28.7.1 Proposition Consider the polyhedron

C = {x : Ax = q, x ≧ 0}.

Then x̄ is a basic nonnegative solution of Ax = q if and only if it is a vertex of C.

Proof : ( =⇒ ) Assume that x̄ is a basic nonnegative solution of Ax = q. Then
{Aj : xj > 0} is linearly independent. By rearranging the columns of A we may
assume without loss of generality that for some k, x̄ = (x̄1, . . . , x̄k, 0, . . . , 0), and
that A1, . . . , Ak are independent, and

q =
k∑

j=1
xjA

j.

Now let x̄ = (1 − λ)y + λz with 0 < λ < 1, and y, z ∈ C. Since y, z ≧ 0, and Check the case
k = 0.

0 = x̄j = (1 − λ)ȳj + λz̄j, j > k,

we have
x̄j = yj = zj = 0, j > k.

Since y, z ∈ C we must have Ay = Az = q, or

q =
k∑

j=1
yjA

j =
k∑

j=1
zjA

j.

So by independence
x̄j = yj = zj, j = 1, . . . , k.
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Primal program Dual program
General maximum form General minimum form

maximizex p · x minimizey q · y

subject to subject to
Ai · x ⩽ qi i ∈ CL

Ai · x = qi i ∈ CE

Ai · x ⩾ qi i ∈ CG

xj ⩽ 0 j ∈ VN

xj free j ∈ VF

xj ⩾ 0 j ∈ VP ,

Ajy ⩾ pj j ∈ VN

Ajy = pj j ∈ VF

Ajy ⩽ pj j ∈ VP

yi ⩾ 0 i ∈ CL

yi free i ∈ CE

yi ⩽ 0 i ∈ CG

Standard maximum form Standard minimum form

maximizex p · x minimizey q · y

subject to subject to
Ax ≦ q

x ≧ 0
A′y ≧ p

y ≧ 0

Canonical maximum form

maximizex p · x minimizey q · y

subject to subject to
Ax = q

x ≧ 0
A′y ≧ p

y free

Canonical minimum form

minimizex p · x maximizey q · y

subject to subject to
Ax = q

x ≧ 0
A′y ≦ p

y free

Table 28.6.1. Selected forms of linear programs and their duals.
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Thus
y = z = x̄,

so x̄ is an extreme point of C, that is, a vertex.
( ⇐= ) Assume that x̄ is an extreme point of C. We wish to show that it

is a basic nonnegative solution Ax = q. So assume by way of contradiction that
{Aj : x̄j > 0} is dependent. Again without loss of generality we may assume
x̄ = (x̄1, . . . , x̄k, 0, . . . , 0) and that there are numbers α1, . . . , αk, not all zero such
that

k∑
j=1

αjA
j = 0.

Thus for every γ,

q =
k∑

j=1
(x̄j − γαj)Aj.

Let a = (α1, . . . , αk, 0, . . . , 0). Then for for every γ we have

A(x̄ + γa) = q,

and γ > 0 small enough (0 ⩽ γ ⩽ min{x̄j/αj : j ⩽ k and αj ̸= 0}) we have
x ± γa ≧ 0. Then

x̄ = 1
2(x̄ + γa) + 1

2(x̄ − γa)
is a proper convex combination of distinct elements of C. This contradicts the
hypothesis that x is an extreme point, and the conclusion is proved.

28.8 Linear equations as LPs

It is possible to recast the problem of solving linear equations and inequalities as
LP problems. Consider the problem of finding a nonnegative solution to a system
of equations. That is, find x such that

Ax = q

x ≧ 0.

Consider the linear program in equality minimum form:

minimize
x,z

1 · z

subject to

Ax + z = q

x, z ≧ 0

Here 1 is the vector whose components are all 1. Without loss of generality we
may assume q ≧ 0, for if qi < 0 we may multiply AIi and qi by −1 without
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affecting the solution set. Then note that this program is feasible, since x = 0,
z = q is a nonnegative feasible solution. Since we require z ≧ 0, we have 1 · z ⩾ 0
and 1 · z = 0 if and only if z = 0, in which case Ax = q. Thus, if this linear
program has value 0 if and only Ax = q, x ≧ 0 has a solution, and any optimal
(x, 0) provides a nonnegative solution to the equation.

At this point you might be inclined to say “so what?” In the next lecture, I
describe the simplex algorithm, which is a special version of Gauss–Jordan elimi-
nation, that is a reasonably efficient and easily programmable method for solving
linear programs. In other words, it also finds nonnegative solutions to linear
equations when they exist.
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