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In this section we will work with matrix equations where it is convenient to index
the rows and columns by various finite sets, and not just natural numbers. You
can cope. We will also make use of the Kronecker delta,

δa,b =

1 if a = b,

0 if a ̸= b.

27.1 Revealed preference and utility maximization

Here is an abstract formal model of choice behavior. There is a nonempty finite set
X = {x1, . . . , xm} of objects. We have a finite set of observations of a subject mak-
ing choices from various subsets of X. That is, we have a list B = (B1, . . . , Bn),
where each Bi is nonempty subset of X, and for each Bi we observe that subject
chose some x ∈ Bi. We denote this choice by writing x = c(Bi). The function
c : B → X is called a choice function We want to know under what conditions
we can guarantee that there is a utility function u : X → R that rationalizes
the choice function c in the sense that for each i = 1, . . . , n,

x = c(Bi) =⇒ ( ∀ y ∈ Bi ) [ x ̸= y =⇒ u(x) > u(y) ]. (1)

Note that the way I have formulated this problem is not the most general
rationalization framework. I have required that for each observation the subject
chooses exactly one object, but I do allow for Bi = Bj, that is, we have more
than one observation with the same set. Under my notion of rationalization, if
the choice were made by maximizing utility over the set, the choice would have
to be the same. I essentially do not allow for indifference. You might want to
allow for indifference, but it is still an interesting question as to whether we can
rationalize the choice without it.

The first step is to define the strict revealed preference relation S by

x S y if there exists some Bi with x, y ∈ Bi, x ̸= y, & x = c(Bi).

That is, x S y if x is observed to be chosen from some set contains y and y ̸= x.
Knowing the relation S is not the same as knowing c, it contains less information,
but nonetheless S determines whether c is rational in the sense of (1).

We say that the observations satisfy the Strong Axiom of Revealed Pref-
erence if the revealed preference relation S has no cycles.
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27.1.1 Theorem The observations are rational in the sense of (1) if and only if
they satisfy the Strong Axiom of Revealed Preference.

Sketch of proof : We start by constructing a matrix A with columns indexed by
X and rows indexed by the relation S, viewed as a set of ordered pairs. That is
the rows of A are indexed by {(x, y) : x S y}. In row (x, y) put 1 in column x and
−1 in column y with a zero in every other column. Then (1) is equivalent to the
existence of a vector u ∈ RX satisfying

Au ≫ 0.

By Gordan’s Alternative 25.3.9 the alternative to this is that there exist a p ∈ RS

such that
pA = 0, p > 0.

We now show that this alternative is equivalent to violating the Strong Axiom.
Since p > 0, there is some row r1 of A with pr1 > 0. Let this row be indexed

by a pair (x1, x2) that is, x1 S x2. So the row r1 has 1 in column x1 and −1 in
column x2. Since p · Ax2 = 0, there must be some other row r2 with pr2 > 0 and
the row r2, column x2 entry must be an offsetting 1. That means that r2 must be
an ordered pair (x2, x3) with x2 S x3. Then the row r2, column x3 entry is −1,
pr2 > 0, and p · Ax3 = 0. Thus there is a row r3 where the row r3, column x3 entry
is 1. This row’s ordered pair is this of the form x3 S x4. Since X is finite, we
eventually repeat some x, which by renumbering if need be, forms a cycle with

x1 S x2 S · · · S xk S x1,

which violates the Strong Axiom.

27.2 Subjective probability

The main references here are Scott [29] and Kraft, Pratt, and Seidenberg [21].
The modern approach to uncertainty, as formalized by Kolmogorov, has as its

fundamentals:

S, a set of states of the world.
E, a collection of events.
p, a probability on E.

The states are assumed to be exhaustive and mutually exclusive. What you
choose as the set of states is a modeling decision. For the purpose of these notes
S is assumed to be finite.

The collection E of events is usually assumed to be an algebra of subsets of
S. That is, E satisfies:

i. S ∈ E, ∅ ∈ E.
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ii. If E ∈ E, then Ec ∈ E.

iii. If E, F ∈ E, then E ∩ F ∈ E and E ∪ F ∈ E.

A probability p on an algebra E is a function that satisfies the following
properties:

i. For each E ∈ E,

0 ⩽ p(E) ⩽ 1, p(S) = 1, and p(∅) = 0.

ii. If E ∩ F = ∅, then
p(E ∪ F ) = p(E) + p(F ).

A probability vector p ∈ RS satisfies

pi ⩾ 0, i ∈ S and
∑
i∈S

pi = 1.

A probability vector defines a probability p on E = 2S via

p(E) =
∑
i∈E

pi.

The subjective relative likelihood of an individual is a binary relation on events
(subsets of S). We write

E ≽ F

to mean that event E is at least as likely as event F . As usual, we write E ≻ F to
mean E ≽ F & F ̸≽ E, and E ∼ F to mean E ≽ F & F ≽ E. The graph of ≽ is

gr ≽= {(E, F ) : E ≽ F}.

Let us say that the subjective likelihood relation ≽ is represented by a
probability measure p if

E ≽ F ⇐⇒ p(E) ⩾ p(F ).

Savage [28, p. 32] calls such subjective likelihood relation a qualitative prob-
ability if it satisfies the following obvious necessary conditions to have a repre-
sentation by a probability p:

C (Completeness) For all E, F , either E ≽ F or F ≽ E, or both.

T (Transitivity) For all E, F, G,

[E ≽ F & F ≽ G] =⇒ E ≽ G.

A (Additivity) If E ∩ G = ∅ and F ∩ G = ∅, then

E ≽ F ⇐⇒ E ∪ G ≽ F ∪ G.
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N (Nontriviality) S ≻∅, and for every event E, E ≽ ∅.

Bruno de Finetti [12] posed the question of whether these conditions were sufficient
to guarantee that ≽ was representable by a probability. The following example
due to Kraft, Pratt, and Seidenberg [21] shows that is not the case. (There is
an unfortunate typographical error on page 414 of their paper, but it is corrected
later on.)

27.2.1 Example (Qualitative probability not representable) Partially
define ≽ on the finite set {a, b, c, d, e} by

{a, b, d} ≻{c, e} ≻{a, b, c} ≻{b, e} ≻{a, d} ≻{a, c} ≻{b, c, d} ≻{e}
≻{c, d} ≻{a, b} ≻{a} ≻{b, d} ≻{b, c} ≻{d} ≻{c} ≻{b} ≻∅

(2)

This orders seventeen of the thirty-two subsets. Each of the remaining fifteen
subsets is a complement of one of these, so if we assign a probability to each of
these sets, the probability of the remainder is determined. The complements must
be ordered in the reverse order. That is, we must have

{a, b, c, d, e} ≻{a, c, d, e} ≻{a, b, d, e} ≻{a, d, e} ≻{a, c, e} ≻{b, c, d, e} ≻{a, b, e}
≻{a, b, c, d} ≻{a, e} ≻{b, d, e} ≻{b, c, e} ≻{a, c, d} ≻{d, e} ≻{a, b, d} ≻{c, e}

This specifies a linear order on all the subsets. Checking additivity is simple, but
tedious. K–P–S prove a little lemma to simplify things a bit, but I leave to you
to verify that the additivity condition A is satisfied. (Their lemma is that under
a linear order, if the bottom half of the order satisfies additivity, and the top half
consists of the complements of the bottom half ordered in reverse, then the entire
order satisfies additivity.)

Now to show that this order has no probability representation. From (2) we
have

{a} ≻{b, d}, {c, d} ≻{a, b}, {b, e} ≻{a, d}

so a representation p would have to satisfy

p(a) > p(b) + p(d), p(c) + p(d) > p(a) + p(b), p(b) + p(e) > p(a) + p(d).

Adding these inequalities, we would have to have

p(a) + p(b) + p(c) + p(d) + p(e) > 2p(a) + 2p(b) + 2p(d),

or
p(c) + p(e) > p(a) + p(b) + p(d),

which contradicts {a, b, d} ≻{c, e}. Thus no representation exists. □

K–P–S give a necessary and sufficient condition for a likelihood relation (on
a finite set) to be representable by a probability, but their condition is expressed
in terms of monomials in the letters representing the elements of the set. The
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next result, due to Dana Scott [29, Theorem 4.1] gives a friendlier set-theoretic
statement. I have replaced Scott’s condition (4B) with a similar condition that
is perhaps more transparent. I refer to it as Condition S, but there should be a
better name. The proof is also mine.

27.2.2 Theorem Let S be a finite set and let E be an algebra of subsets of S
and let ≽ be a binary relation on E. For ≽ to be representable by a probability
measure p on E, that is,

E ≽ F ⇐⇒ p(E) ⩾ p(F ),

it is necessary and sufficient that ≽ satisfy the following three conditions:

N (Nontriviality) S ≻∅, and for every event E, E ≽ ∅.

C (Completeness) For all E, F ∈ E, either E ≽ F or F ≽ E, or both. (Or
equivalently, for all E, F ∈ E, exactly one of E ≻ F , F ≻ E, or E ∼ F holds.)

S (Condition S) For every finite list (E1, F1), . . . , (En, Fn) of pairs of events (where
repetitions are allowed),[

(Ei ≽ Fi, i = 1, . . . , n) &
n∑

i=1
1Ei

=
n∑

i=1
1Fi

]
=⇒ Ei ∼ Fi, i = 1, . . . , n.

Proof : ( =⇒ ) Assume that ≽ is representable by p. Then it is obvious that
Nontriviality and Completeness must be satisfied.

To see that Condition S is also necessary, recall that 1E is the indicator func-
tion of E. That is, 1E(s) = 1 if s ∈ E and 1E(s) = 0 if s /∈ E. Thus ∑n

i=1 1Ei
(s)

is the count of the events E1, . . . , En that contain s. Also observe that for any
event E,

p(E) =
∑
s∈E

p(s) =
∑
s∈S

p(s)1E(s).

Thus for events E1, . . . , En, we have
n∑

i=1
p(Ei) =

n∑
i=1

(∑
s∈S

p(s)1Ei
(s)
)

=
∑
s∈S

p(s)
(

n∑
i=1

1Ei
(s)
)

. (3)

In other words, the function ∑n
i=1 1Ei

is a random variable whose expected value
is the sum of probabilities ∑n

i=1 p(Ei).
Let (E1, F1), . . . , (En, Fn) be a list of pairs of events satisfying (i) Ei ≽ Fi,

i = 1, . . . , n and (ii) ∑n
i=1 1Ei

= ∑n
i=1 1Fi

. By (ii) and (3), we have that
n∑

i=1
p(Ei) =

n∑
i=1

p(Fi).

From (i), we have p(Ei) ⩾ p(Fi) for each i. Therefore we must actually have
p(Ei) = p(Fi), or Ei ∼ Fi, for each i.
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( ⇐= ) We prove the converse by proving its contrapositive. That is, we shall
show that if ≽ is not representable, but satisfies Nontriviality and Completeness,
then it must violate Condition S.

Consider the following system of inequalities, where the rows of the first matrix
are indexed by the graph of ≻ and rows are of the second matrix are indexed by
the graph of ≽, and the columns are indexed by the states S.



s

...
E ≻ F · · · 1E(s) − 1F (s) · · ·

...


p(s)

 ≫ 0



s

...
E≽F · · · 1E(s) − 1F (s) · · ·

...


p(s)

 ≧ 0

(4)

If the system (4) has a solution p, then the row corresponding to {s} ≽ ∅ implies
p(s) ⩾ 0. The row corresponding to S ≻∅ implies ∑s∈S p(s) > 0. We may nor-
malize p so that it is indeed a probability measure on S. Thus ≽ is representable
if and only if (4) has a solution. We now show that if no solution exists, then
Condition S is violated.

So suppose (4) does not have a solution. Then by Motzkin’s Rational Transpo-
sition Theorem 25.3.16 there exist integer-valued nonnegative vectors k≻ (indexed
by the graph of ≻) and k≽ (indexed by the graph of ≽) such that for each column
s ∈ S, ∑

(E,F ):E ≻ F

k≻
(E,F )

(
1E(s) − 1F (s)

)
+

∑
(E,F ):E≽F

k≽
(E,F )

(
1E(s) − 1F (s)

)
= 0. (5)

Moreover, Motzkin’s Theorem guarantees that k≻ is nonzero.
Construct a list of pairs by taking k≻

(E,F ) copies of (E, F ) for each (E, F ) with
E ≻ F and k≽

(E,F ) copies of (E, F ) for (E, F ) with E ≽ F , and enumerate it as
(E1, F1), . . . , (En, Fn).

By construction, for each (Ei, Fi), we have Ei ≽ Fi and by (5) we have
n∑

i=1
1Ei

=
n∑

i=1
1Fi

.

But since k≻ is nonzero, for at least one pair we have Ei ≻ Fi, which violates
Condition S.

This completes the proof.
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27.2.3 Remark Note that Condition S and Completeness imply Transitivity.
We proceed by contraposition. Assume Completeness and that Transitivity fails.
That is, there are A, B, C with A ≽ B, B ≽ C, and C ≻ A. Set

E1 = A, F1 = B,

E2 = B, F2 = C,

E3 = C, F3 = A.

Then Ei ≽ Fi for all i and
3∑

i=1
1Ei

=
3∑

i=1
1Fi

= 1A + 1B + 1C .

But E3 ≻ F3, which violates Condition S.

27.2.4 Remark Now let’s see that Condition S and Completeness imply Addi-
tivity. So assume A ∩ C = ∅ and C ∩ C = ∅, then we want to show that

A ≽ B ⇐⇒ A ∪ C ≽ B ∪ C.

First assume A ≽ B, and suppose A ∪ C ≽ B ∪ C fails. Then B ∪ C ≻ A ∪ C.
Define

E1 = A, F1 = B,

E2 = B ∪ C, F2 = A ∪ C.

Since A ∩ C = ∅ we have that 1A ∪ C = 1A + 1C . Similarly, 1B ∪ C = 1B + 1C . So
now observe that

2∑
i=1

1Ei
= 1A + 1B + 1C = 1B + 1A + 1C =

2∑
i=1

1Fi
.

This violates Condition S.
For the converse, assume A ∪ C ≽ B ∪ C, but that A ≽ B fails, so that B ≻ C

and define

E1 = A ∪ C, F1 = B ∪ C,

E2 = B, F2 = C.

This violates Condition S.
This finishes the proof of Additivity.

27.2.5 Remark We now note that the Kraft–Pratt–Seidenberg example violates
Condition S. The following list of pairs will do. (These are the same pair we used
above to show that the relation was not representable.)

E1 = {a}, F1 = {b, d},

E2 = {c, d}, F2 = {a, b}.

E3 = {b, e}, F3 = {a, d}.

E4 = {a, b, d}, F4 = {c, e}.
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27.2.6 Remark I mentioned above that what I call Condition S is not Condi-
tion (4B) of his Theorem 4.1, [29, p.246]. In the notation of this note, condi-
tion (4B) is:

For every finite list (E0, F0), . . . , (En, Fn) of pairs of events (where repetitions
are allowed),[

(Ei ≽ Fi, i = 1, . . . , n) &
n∑

i=0
1Ei

=
n∑

i=0
1Fi

]
=⇒ F0 ≽ E0.

(Pay attention to the fact that his indices run from 1 to n in one place and from
0 to n in another place.)

My Condition S does not imply the conclusion F0 ≽ E0 in the situation
described—it only implies the weaker E0 ̸ ≻ F0. But in the presence of Com-
pleteness, F0 ≽ E0 is equivalent to E0 ̸ ≻ F0.

27.3 Subjective probability and betting

The payoffs for betting are usually described in terms of odds. If you wager an
amount b on the event E and the odds against E are given by λ(E), you receive
λb if E occurs and lose b if E fails to occur. We allow λ to take on any value in
[0, ∞]. The interpretation of λ(E) = ∞ is that for any positive bet b, if E occurs,
then the bettor may name any real number as his payoff. In a frictionless betting
market, the odds against Ec are given by

λ(Ec) = 1
λ(E)

,

where we use the conventions
1
∞

= 0,
1
0

= ∞.

More conveniently, instead of using λ, define

q(E) = 1
1 + λ(E)

,

q(Ec) = 1
1 + λ(Ec)

= 1
1 + 1

λ(E)
= λ(E)

1 + λ(E)
.

Note that
q(E) + q(Ec) = 1,

and that
λ(E) = q(Ec)

q(E)
.
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Moreover, if you bet q(E) = 1
1+λ(E) on E, then your payoff Π in state s is given

by

Π(s) = q(E) [λ(E)1E(s) − 1Ec(s)]

= q(E)
[

q(Ec)
q(E)

1E(s) − 1Ec(s)
]

= q(Ec)1E(s) − q(E)1Ec(s)
=
(
1 − q(E)

)
1E(s) − q(E)

(
1 − 1E(s)

)
= 1E(s) − q(E).

That is, q(E) is the price of a lottery ticket that pays $1 in event E. Let’s call
such a lottery ticket an E-ticket.1

27.3.1 Subjective probability theorem Either
(i) The function q is a probability and λ(E) = q(Ec)

q(E) for each E.
Or else
(ii) The odds are incoherent, that is, there is a combination of bets that guar-
antees the bettor will win a positive amount regardless of which state s occurs.

A set of incoherent odds is also known as a Dutch book.

Proof : Condition (ii) is equivalent to

S



E︷ ︸︸ ︷
...

1E(s) − q(E)
...




...
x(E)
...

 ≫ 0

(where x(E) is the number of E-tickets).
Gordan’s Alternative 25.3.9 assets that the alternative is that there is some

probability vector p ∈ RS, such that for each event E,∑
s∈S

p(s)1E(s) − q(E) = 0,

or
q(E) =

∑
s∈E

p(s) = p(E),

which is (i).
1 Young people think an E-ticket is something that lets you on an airplane, but we older

Southern Californians know you it’s what lets you get on the Matterhorn.
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27.4 No-arbitrage and Arrow–Debreu prices

There are only two time periods, “today” (t = 0) and “tomorrow” (t = 1). There
are finitely many possible states of nature tomorrow, and exactly one of them
will be realized tomorrow. Denote the set of states by S. The state of nature
tomorrow is not known today.

There are n purely financial assets. A purely financial asset is a contingent
claim denominated in dollars (as opposed to commodities).

There is a spot market today for assets and each asset has a market price
today or spot price. The price of asset i today is pi

0, and it pays pi
1(s) in state s

tomorrow.
The cash flow vector of asset i is

Ai =



−pi
0

pi
1(s)


∈ R × RS.

The cash flow convention is that positive numbers represent cash received by the
owner of the asset and negative quantities represent cash payed out by the owner.
Thus the 0th component of Ai is negative if pi

0 is positive, because to purchase a
unit of asset i requires a cash payment if the price is positive. If pi

0 is negative, the
“asset” i can be interpreted as a loan to the “owner.” Thus we allow for borrowing
in our framework, but whether or not the borrower defaults must be part of the
specification of the payoff of the asset.

It is even possible that one of the assets may be riskless in that

p1(s) = c for all s ∈ S.

That is, the asset pays the same amount in each state of nature. Suppose the
riskless asset has spot price p0 today. Then r defined by

(1 + r)p0 = c or r = c

p0
− 1,

is the riskless rate of interest. If the riskless rate of interest is positive, then
p0 < c. But as long as p0 and c are both positive we must have r > −1.

A portfolio is defined by the number of units of each asset held. Since there
are n assets, a portfolio is simply a vector x in Rn. The entry xi indicates the
number of units of asset i, which may be either positive or negative. The cash
flow vector of the portfolio is just

n∑
i=1

Aixi.

If xi < 0, then the ith asset has been sold short or issued by the portfolio holder.
We will not rule this out, so a portfolio need not be a nonnegative vector.
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27.4.1 Definition An arbitrage portfolio is a portfolio x whose cash flow
vector is semi-positive,

n∑
i=1

Aixi > 0.

27.4.2 Assumption (Iron Law of Theoretical Finance) There are no arbi-
trage portfolios.

This law has the following remarkable and useful consequence:

27.4.3 Asset pricing theorem In this model, either
(1) There is an arbitrage portfolio (that is, the Iron Law of Theoretical Finance

fails);
or else

(2) there are numbers π(s) > 0, s ∈ S, such that for each asset i,

pi
0 =

∑
s∈S

π(s)pi
1(s).

Proof : In algebraic terms, alternative (1) states that there is some x ∈ Rn

satisfying Ax > 0, where A is the (|S| + 1) × n matrix whose ith column is
Ai ∈ R × RS. If this is not true, then Stiemke’s Theorem 25.3.13 states that
there is y ≫ 0 ∈ R × RS such that for each i,

−y0p
i
0 +

∑
s∈S

ysp
i
1(s) = 0.

Clearly the numbers
π(s) = ys

y0

satisfy alternative (2). It also follows from Stiemke’s Theorem that alternatives (1)
and (2) are inconsistent.

The numbers π(s), s ∈ S are called Arrow–Debreu prices. The price π(s)
represents the current market price of a payment of $1 in state s tomorrow. The
theorem says that today’s price for any asset is computed by summing the market
value of its cash flow over all the future states.

27.4.1 Risk neutral probability

Also note that if a risk free asset exists, then the risk free rate of interest r is
determined by

r = 1∑
s∈S π(s)

− 1.

Even if there is no risk free asset, given Arrow–Debreu prices, we can still formally
define a risk free rate of interest.
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27.4.4 Definition The risk free rate of interest (given Arrow–Debreu prices
π) is defined by the equation

r = 1∑
s∈S π(s)

− 1 or
∑
s∈S

π(s) = 1
1 + r

.

Thus the vector (1 + r)π defines a probability measure µ on S by

µ(A) = (1 + r)
∑
s∈A

π(s).

The expected value Eµ X of a random variable X under the measure µ is given
by

Eµ X = (1 + r)
∑
s∈S

π(s)X(s),

so for asset i we have
pi

0 = 1
1 + r

Eµ pi
1.

That is, the price of each asset is just the present discounted value
(discounted at the risk-free interest rate) of the expected value of the
asset (under the probability measure µ).

For this reason, the measure µ is called the risk neutral probability for the
assets. If this probability is used on S, the price of each asset is simply its
discounted expected value, and there are no risk premia.

27.5 Statistical inference—the game

Θ is a set of urns, each urn θ describes a probability pθ on S. A particular urn θ0 is
used to choose signal s ∈ S according to probability pθ0 . We observe signal s ∈ S.
What information does this convey about θ0? (Statisticians don’t call elements of
Θ urns, they call them states of the world. In other words, statisticians believe
that God does nothing but play dice.)

27.5.1 Conditional probability

The conditional probability of event E given event F is

p(E|F ) = p(E ∩ F )
p(F )

.

Thus
p(E|F )p(F ) = p(E ∩ F ) = p(F |E)p(E),

Or
p(E|F ) = p(E)

p(F )
· p(F |E),

which is known as Bayes’ Law.
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27.5.2 Bayesian updating

Select urn θ0 according to probability P on Θ, and select s according to pθ0 . Then
the probability that θ0 ∈ T , given s is

P (T |s) =
∑

θ∈T pθ(s)P (θ)∑
θ∈Θ pθ(s)P (θ)

.

P is known as a prior, and P (·|s) is the corresponding posterior.
Should Bayes’ Law govern our betting behavior? Let’s see.

27.5.3 Statistical inference: the game

Freedman and Purves [17] describe statistical inference in terms of the following
game.

The Master of Ceremonies chooses an urn, and announces the signal s.
A Bookie posts odds λ against subsets T ∈ T of Θ.
Bets are placed.
The MC reveals the urn, and bets are settled.
(In the real world, the MC never tells.)

27.5.4 Strategies

Bookie chooses q ≧ 0 ∈ RT ×S. For each s ∈ S,

q(T, s) + q(T c, s) = 1.

Bettor then chooses x ∈ RT ×S, and bets

x(T, s)q(T, s)

on T when s occurs.
Under these strategies, the expected payoff to the bettor when θ is the selected

urn is just ∑
s∈S

(∑
T ∈T

(
1T (θ) − q(T, s)

)
x(T, s)

)
pθ(s).

27.5.1 Bayesian updating theorem Either
(1) The Bookie chooses some prior P and posts odds according to the posterior

P (·|s)
Or else
(2) There is a betting strategy that gives the bettor a positive expected payoff

regardless of which urn θ is selected.
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Proof : (2) is equivalent to

Θ



T × S︷ ︸︸ ︷
(
1T (θ) − q(T, s)

)
pθ(s)




...
x(T, s)

...

 ≫ 0,

The alternative is the existence of a probability vector P ∈ RΘ such that for
each (T, s), ∑

θ∈Θ

(
1T (θ) − q(T, s)

)
pθ(s)P (θ) = 0.

In other words, ∑
θ∈T

pθ(s)P (θ) =
∑
θ∈Θ

q(T, s)pθ(s)P (θ),

or
q(T, s) =

∑
θ∈T pθ(s)P (θ)∑
θ∈Θ pθ(s)P (θ)

= P (T |s),

which is (1).

27.6 Dynamic asset pricing

In this model there are three periods: “today” (t = 0), “tomorrow” (t = 1), and
“later” (t = 2). The set S of states has the structure S = U × V , where u is
revealed tomorrow and v is revealed later. We assume that each asset i pays
nothing tomorrow and pi

2(u, v) later. The spot price of asset i today is pi
0. Its

spot price tomorrow in state u will be pi
1(u).

A dynamic portfolio is a vector

x =
(

(xi
0)i=1,...,n,

(
xi

1(u)
)

i=1,...,n, u∈U

)
∈ Rn × Rn×|U |.

The dynamic portfolio x is self-financing if
n∑

i=1
pi

0x
i
0 ⩽ 0,

and for each u ∈ U ,
n∑

i=1
pi

1(u)
(
xi

1(u) − xi
0

)
⩽ 0.

v. 2020.03.10::13.18 src: Alternatives KC Border: for Ec 181, 2019–2020



Ec 181 AY 2019–2020
KC Border The uses of alternatives in economic theory 27–15

The cash flow of a dynamic portfolio x is

...

u

...

...

(u,v)
...



−∑n
i=1 pi

0x
i
0

−∑n
i=1 pi

1(u)
(
xi

1(u) − xi
0

)

∑n
i=1 pi

2(u, v)xi
1(u)


A dynamic arbitrage portfolio is a portfolio that has a semi-positive cash flow.
Note that this implies that the portfolio is self-financing.

27.6.1 Dynamic pricing theorem If (and only if) there are no dynamic
arbitrage portfolios, then there are probability measures µ̂ and µ on S = U × V ,
a “one-period risk-free interest rate” r0,1 between periods 0 and 1, a “two-period
risk-free interest rate” r0,2 between periods 0 and 2, and for each partial state u,
there is a “one-period risk-free interest rate” r1,2(u) between period 1 in state u
and period 2, such that the following properties are satisfied.

1. For each asset i, today’s spot price is the expected present discounted value
of future prices. Specifically,

pi
0 = 1

1 + r0,1
Eµ̂ pi

1 = 1
1 + r0,2

Eµ pi
2.

2. The measures µ̂ and µ have the same conditional probabilities. That is, for
every (u, v),

µ̂(v|u) = µ(v|u).

3. For each partial state u, for each asset i, tomorrow’s spot price pi
1(u) in

state u is the conditional expected present discounted value of the payoffs
later. That is,

pi
1(u) = 1

1 + r1,2(u)
Eµ̂(pi

2 | u) = 1
1 + r1,2(u)

Eµ(pi
2 | u).

4. The term structure of interest rates and discount factors satisfies

1 + r0,2 = (1 + r0,1) Eµ(1 + r1,2),
1

1 + r0,2
= 1

1 + r0,1
Eµ̂

1
1 + r1,2

.
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Proof : A dynamic portfolio x is a dynamic arbitrage portfolio if it satisfies



j (i,u)

0 −pj
0 0 . . . 0

...
u′ pj

1(u′) −pi
1(u)δu,u′

...

...
(u′′,v) 0 pi

2(u, v)δu,u′′

...





xj
0

xi
1(u)

 > 0.

(Figure 27.6.1 illustrates this matrix inequality for n = 2, U = {1, 2, 3}, and
V = {1, 2}.)

The (Stiemke) alternative is that there is some

π =
(

π0,
(
π1(u)

)
u∈U

,
(
π2(u, v)

)
(u,v)∈U×V

)
≫ 0

such that for each j = 1, . . . , n

−pj
0π0 +

∑
u∈U

pj
1(u)π1(u) = 0,

and also for each (i, u), i = 1, . . . , n, u ∈ U ,

−pi
1(u)π1(u) +

∑
v∈V

pi
2(u, v)π2(u, v) = 0.

This is homogeneous in π, so without loss of generality π0 = 1, so we have

pi
0 =

∑
u∈U

pi
1(u)π1(u). (6)

and
pi

1(u) =
∑
v∈V

pi
2(u, v)π2(u, v)

π1(u)
(7)

so that
pi

0 =
∑

(u,v)∈U×V

pi
2(u, v)π2(u, v). (8)

Thus, we may interpret the π1(u) and π2(u, v) as today’s prices for a dollar at the
various dates and states of the world. As before we can normalize these prices to
define an interest rate and a probability measure.

Equation (8) suggests we define r0,2 by

(1 + r0,2)
∑

(u,v)∈U×V

π2(u, v) = 1. (9)
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It is the riskless rate of interest between periods 0 and 2. The corresponding
probability measure µ on U × V is defined by

µ(u, v) = (1 + r0,2)π2(u, v). (10)

Then (8) becomes

pi
0 = 1

1 + r0,2
Eµ pi

2. (11)

Similarly, equation (6) suggests defining r0,1 by

(1 + r0,1)
∑
u∈U

π1(u) = 1. (12)

It is the risk free one period rate between periods today and tomorrow. It deter-
mines a probability µ̂• on U by

µ̂•(u) = (1 + r0,1)π1(u). (13)

Then (8) can be rewritten as

pi
0 = 1

1 + r0,1
Eµ̂• pi

1. (14)

Equation (7) suggests that for each u ∈ U , we define r1,2(u) by
(
1 + r1,2(u)

) ∑
v∈V

π2(u, v)
π1(u)

= 1. (15)

It is the riskless rate of interest at time 1 in state u. (From the point of view of
period 0, the rate r1,2 is a random variable.) We also have a probability measure
µ̂(· | u) on V defined by

µ̂(v | u) =
(
1 + r1,2(u)

)π2(u, v)
π1(u)

. (16)

Therefore
pi

1(u) = 1
1 + r1,2(u)

Eµ̂|u pi
2. (17)

Now define the measure µ̂ on U × V by

µ̂(u, v) = µ̂(v | u)µ̂•(u). (18)

Then µ̂• is the marginal of µ̂ on U and µ̂(· | u) is the conditional probability on
V given u. So (14) becomes

pi
0 = 1

1 + r0,1
Eµ̂ pi

1.
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and (17) becomes

pi
1(u) = 1

1 + r1,2(u)
Eµ̂(pi

2 | u). (19)

Also observe that

µ̂(u, v) = µ̂(v | u)µ̂•(u) (18)

= (1 + r0,1)π1(u)
(
1 + r1,2(u)

)π2(u, v)
π1(u)

equations (13) and (16)

= (1 + r0,1)
(
1 + r1,2(u)

)
π2(u, v).

(20)

What is the relationship between µ̂ and µ? From (20) and (10) we have

µ(u, v) = 1 + r0,2

(1 + r0,1)
(
1 + r1,2(u)

) µ̂(u, v) (21)

Conditioning on u then gives

µ(v | u) = µ(u, v)∑
v′ µ(u, v′)

=

1 + r0,2

(1 + r0,1)
(
1 + r1,2(u)

) µ̂(u, v)

∑
v′

1 + r0,2

(1 + r0,1)
(
1 + r1,2(u)

) µ̂(u, v′)

= µ̂(u, v)∑
v′ µ̂(u, v′)

= µ̂(v | u).

Another way to see this is to note that (10) implies

µ(v | u) = π2(u, v)/
∑
v′

π2(u, v′)

and equations (15) and (16) imply

µ̂(v | u) = π2(u, v)/
∑
v′

π2(u, v′).

Either way

µ(v | u) = µ̂(v | u).

Thus (19) can also be written as

pi
1(u) = 1

1 + r1,2(u)
Eµ(pi

2 | u).

Summing both sides of (21) over U × V gives

Eµ̂
1 + r0,2

(1 + r0,1)(1 + r1,2)
= 1.

In other words, the term structure satisfies
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1
1 + r0,2

= 1
1 + r0,1

Eµ̂
1

1 + r1,2
.

On the other hand, rewriting (21) as

(1 + r0,1)
(
1 + r1,2(u)

)
µ(u, v) = (1 + r0,2)µ̂(u, v)

and summing, we see that

1 + r0,2 = (1 + r0,1) Eµ(1 + r1,2)

27.7 Stochastic dominance and expected utility

In this section we consider lotteries over monetary prizes. Given a finite set
m1 < · · · < mn of monetary prizes. A lottery is a probability distribution over
the prizes. Lotteries thus correspond to probability vectors in Rn. We say that q
stochastically dominates p if for each k = 1, . . . , n,

k∑
i=1

qi ⩽
k∑

i=1
pi,

and p ̸= q (so that there is strict inequality for some i). That is, q always
assigns lower probability than p to smaller prizes. Intuitively one should prefer
a stochastically dominating lottery. The next result is based on Border [6] and
Ledyard [22].

27.7.1 Expected utility theorem Suppose p and q are distinct probability
vectors. Either

(1) There are u1 < · · · < un such that
n∑

i=1
uipi >

n∑
i=1

uiqi

Or else
(2) q stochastically dominates p.

That is, as long as your choice is not dominated, you act as if you maximize
the expected utility of some strictly increasing utility.
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Proof : (1) is equivalent to

p1 − q1 p2 − q2 p3 − q3 pn−1− qn−1 pn − qn

−1 +1 0 0

0

0

0 0 −1 +1





u1

u2

un−1

un



≫ 0.

The alternative is: y = (y0, y1, . . . , yn−1) > 0 and

y0(p1 − q1) − y1 = 0
y0(p2 − q2) + y1 − y2 = 0

... ...

y0(pn−1 − qn−1) + yn−2 − yn−1 = 0
y0(pn − qn) + yn−1 = 0.

It is easy to see that y0 > 0, for if y0 = 0, everything unravels and y = 0, a
contradiction.

Write xi = yi

y0
⩾ 0, i = 1, . . . , n − 1. Then

p1 − q1 − x1 = 0
p2 − q2 + x1 − x2 = 0

... ...

pn−1 − qn−1 + xn−2 − xn−1 = 0
pn − qn + xn−1 = 0.
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In other words,

p1 − q1 = x1 ⩾ 0
(p1 + p2) − (q1 + q2) = x2 ⩾ 0

... ...

n−1∑
i=1

pi −
n−1∑
i=1

qi = xn−1 ⩾ 0

pn − qn = −xn−1 ⩽ 0

which, since p and q are distinct, is just (2).

27.8 Harsanyi’s utilitarianism theorem

27.8.1 Exercise Use an appropriate theorem of the alternative (or a separat-
ing hyperplane theorem if you can’t make the first approach work) to prove the
following result due to Harsanyi [18].

Let S be a finite set of states of the world. Let P be the set of probability
measures on S. Let N be a finite society of individuals. Each individual i has
a Bernoulli utility function ui on S, and evaluates elements of P by means of
expected utility:

Ui(p) =
∑
s∈S

ui(s)p(s).

Society also has a Bernoulli utility function u on S, and evaluates elements of P
by means of expected utility:

U(p) =
∑
s∈S

u(s)p(s).

Assume the social and individual von Neumann–Morgenstern utilities satisfy
the following unanimous indifference condition: for all p, q ∈ P,

( ∀i ∈ N ) [ Ui(p) = Ui(q) ] =⇒ U(p) = U(q).

Prove that there exist real numbers αi, i ∈ N , and β such that for all s ∈ S,

u(s) = β +
∑
i∈N

αiui(s)

so for all p ∈ P,
U(p) = β +

∑
i∈N

αiUi(p).
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□

27.9 Core of a TU game

An n-person game starts with a set N = {1, . . . , n} of players. A coalition is a
nonempty subset of N . Denote the set of coalitions by N. Given a player i, let
S(i) = {S ∈ N : i ∈ S}. A transferable utility (TU) game is described by its
characteristic function v : N → R. The idea is that for every coalition S, the
number v(S) represents a total payoff (utility) that can be transferred from the
coalition to its members. A vector x ∈ Rn is an allocation (sometimes called an
imputation) if ∑

i∈N

xi = v(N).

That is, it is an allocation of the payoff available to the grand coalition N . An
allocation x belongs to the core of v provided∑

i∈S

xi ⩾ v(S), S ∈ N.

In other words, just as in the case of the core of an economy, no coalition can
make all its members better off than they are with allocation x.

A vector π ∈ RN
+ is called a vector of balancing weights if∑

S(i)
πS = 1, i ∈ N.

The family {S ∈ N : πS > 0} is called a balanced family of coalitions.
A TU game v is a balanced game if for every vector π of balancing weights,

we have ∑
S∈N

πSv(S) ⩽ v(N).

27.9.1 Theorem A TU games has a nonempty core if and only if it is balanced.

Proof : The core is nonempty if and only if the following system of inequalities
has a solution x ∈ Rn: ∑

i∈S

xi ⩾ v(S), S ∈ N

−
∑
i∈N

xi ⩾ −v(S),
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or in matrix form



i∈N

...
S∈N · · · 1S(i) · · ·

...
N −1 · · · −1




x1

xn

 ≧


v(S)

−v(N)


where 1S(i) = 1 if i ∈ S and 1S(i) = 0 if i /∈ S. Note that this system includes two
inequalities involving v(N). By Corollary 25.3.5, the alternative is the existence
of a vector p = [. . . , π(S), . . . ; α] ∈ RN × R satisfying p > 0 and

[. . . , π(S), . . . ; α]


1S(i)

−1 −1


= 0, [. . . , pS, . . . ; α] ·


v(S)

−v(N)


> 0.

This can be written out as∑
S∈N

π(S)1S(i) = α, i = 1, . . . , n

∑
S∈N

π(S)v(S) > αv(N).

Since p > 0 and 1S(i) > 0 for each i ∈ S any solution of the alternative must have
α > 0, and so without loss of generality we may normalize p so that α = 1. The
alternative above then becomes∑

S(i)
π(S) = 1, i = 1, . . . , n

∑
S∈N

π(S)v(S) > v(N).

This says that {π(S) : S ∈ N} is a family of balancing weights and that the game
v is not balanced.

Since these alternatives are mutually exclusive, the core is empty if and only
if the game is not balanced.

27.10 Reduced form auctions

This section is based on Border [7], and is currently missing some key parts.
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An auction is an institution (set of rules) for selling an object to one of a group
of potential buyers or bidders. The following problem arises naturally in the study
of auctions, see Maskin and Riley [23], Matthews [24], and Border [5].

Let T be a finite nonempty set of types, let λ be a probability vector on T ,
and let P : T → [0, 1]. For convenience assume λ ≫ 0. A symmetric auction is
a vector p of functions pi : T N → [0, 1] satisfying

N∑
i=1

pi(t) ⩽ 1 (F)

for each t ∈ T N , and for each permutation π on {1, . . . , N}, each profile t ∈ T ,
and each i = 1, . . . , N ,

pi(t1, . . . , tN) = pπ−1(i)(tπ(1), . . . , tπ(N)). (S)

Here pi(t) is the probability that bidder i wins the auction in profile t. The
feasibility condition (F) is just that the probability of selling the object cannot
exceed unity. Conditions (S) is a symmetry condition that says a bidder’s number
does not matter, only his type.

From bidder i’s point of view, what is important to him about the auction p
is the conditional probability that he wins given his type. Assuming types are
independently and identically distributed according to the probability measure λ,
this is given by

P (τ) =
∑

t−i∈T N−1

pi(τ, t−i)λN−1(t−i). (R)

Here t−i for a typical element of T N−1

If P is the reduced form of some auction p, we may also say that P is imple-
mentable.

The question is, when is a function P : T → [0, 1] implementable?

27.10.1 Theorem (Maskin–Riley–Matthews–Border) For an indepen-
dently and identically distributed environment, a function P : T → [0, 1] is the
reduced form of a symmetric auction if and only if for every subset A of T , it
satisfies the Maskin–Riley–Matthews (MRM) condition

N
∑
τ∈A

P (τ)λ(τ) ⩽ 1 − λ(Ac)N . (MRM)

27.10.1 An example

Instead of proving the general theorem, I deal with a special case. The general
theorem is merely an exercise in keeping your subscripts straight. See Border [7]
for all the gory details, or see Border [5] for the symmetric case with an arbitrary
(possibly infinite) set T of types.
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27.10.2 Example Consider the case of N = 3 bidders, and 2 types, T = {1, 2},
with probabilities λ(1) > 0, λ(2) > 0. Given a potential reduced form P = (P1, P2),
0 ⩽ Pi ⩽ 1, i = 1, 2, we wish to find a symmetric auction function p : T 3 → [0, 1]
satisfying the following (in)equalities:

p(1; 1, 1)λ(1)2 + p(1; 1, 2)λ(1)λ(2) + p(1; 2, 1)λ(1)λ(2) + p(1; 2, 2)λ(2)2 = P1

p(2; 1, 1)λ(1)2 + p(2; 1, 2)λ(1)λ(2) + p(2; 2, 1)λ(1)λ(2) + p(2; 2, 2)λ(2)2 = P2

p1(1, 1, 1) + p2(1, 1, 1) + p3(1, 1, 1) = p(1; 1, 1) + p(1; 1, 1) + p(1; 1, 1) ⩽ 1
p1(1, 1, 2) + p2(1, 1, 2) + p3(1, 1, 2) = p(1; 1, 2) + p(1; 1, 2) + p(2; 1, 1) ⩽ 1
p1(1, 2, 1) + p2(1, 2, 1) + p3(1, 2, 1) = p(1; 2, 1) + p(2; 1, 1) + p(1; 2, 1) ⩽ 1
p1(1, 2, 2) + p2(1, 2, 2) + p3(1, 2, 2) = p(1; 2, 2) + p(2; 1, 2) + p(2; 2, 1) ⩽ 1
p1(2, 1, 1) + p2(2, 1, 1) + p3(2, 1, 1) = p(2; 1, 1) + p(1; 2, 1) + p(1; 1, 2) ⩽ 1
p1(2, 1, 2) + p2(2, 1, 2) + p3(2, 1, 2) = p(2; 1, 2) + p(1; 2, 2) + p(2; 1, 2) ⩽ 1
p1(2, 2, 1) + p2(2, 2, 1) + p3(2, 2, 1) = p(2; 2, 1) + p(2; 2, 1) + p(1; 2, 2) ⩽ 1
p1(2, 2, 2) + p2(2, 2, 2) + p3(2, 2, 2) = p(2; 2, 2) + p(2; 2, 2) + p(2; 2, 2) ⩽ 1

Because of symmetry, p(1; 1, 2) = p(1; 2, 1) and p(2; 1, 2) = p(2; 2, 1), so we can
reduce the system to:

p(1; 1, 1)λ(1)2 + 2p(1; 1, 2)λ(1)λ(2) + p(1; 2, 2)λ(2)2 = P1

p(2; 1, 1)λ(1)2 + 2p(2; 1, 2)λ(1)λ(2) + p(2; 2, 2)λ(2)2 = P2

3p(1; 1, 1) ⩽ 1
2p(1; 1, 2) + p(2; 1, 1) ⩽ 1
p(1; 2, 2) + 2p(2; 1, 2) ⩽ 1

3p(2; 2, 2) ⩽ 1

In matrix form this becomes



indices (1·11) (1·12) (1·22) (2·11) (2·12) (2·22)

(1) λ(1)2 2λ(1)λ(2) λ(2)2 0 0 0

(2) 0 0 0 λ(1)2 2λ(1)λ(2) λ(2)2

(111) 3 0 0 0 0 0

(112) 0 2 0 1 0 0

(122) 0 0 1 0 2 0

(222) 0 0 0 0 0 3





p1·11

p1·12

p1·22

p2·11

p2·12

p2·22



=

=

⩽
⩽
⩽
⩽



P1

P2

1

1

1

1


(22)

Need to explain
this!! Since we eliminated the redundant conditions resulting from symmetry, we may
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reindex so that what matters is distribution d of types. The new indices are



indices τ ;d=
1;(2,0)

τ ;d=
1;(1,1)

τ ;d=
1;(0,2)

τ ;d=
2;(2,0)

τ ;d=
2;(1,1)

τ ;d=
2;(0,2)

σ=1 λ(1)2 2λ(1)λ(2) λ(2)2 0 0 0

σ=2 0 0 0 λ(1)2 2λ(1)λ(2) λ(2)2

m=(3,0) 3 0 0 0 0 0

m=(2,1) 0 2 0 1 0 0

m=(1,2) 0 0 1 0 2 0

m=(0,3) 0 0 0 0 0 3





r
(
1; (2, 0)

)
r
(
1; (1, 1)

)
r
(
1; (0, 2)

)
r
(
2; (2, 0)

)
r
(
2; (1, 1)

)
r
(
2; (0, 2)

)



=

=

⩽
⩽
⩽
⩽



P1

P2

1

1

1

1


The dual system is:

Z1λ(1)2 − 3u3,0 ⩽ 0 (23)
2Z1λ(1)λ(2) − 2u2,1 ⩽ 0

Z1λ(2)2 − u1,2 ⩽ 0
Z2λ(1)2 − u2,1 ⩽ 0

2Z2λ(1)λ(2) − 2u1,2 ⩽ 0
Z2λ(2)2 − 3u0,3 ⩽ 0 (24)

Z1P1 + Z2P2 − u3,0 − u2,1 − u1,2 − u0,3 > 0 (25)

It is apparent that if the dual system has a solution, then it has a solution with Z1, Z2 >
0. Renumbering types if necessary, assume

Z1/λ(1) ⩾ Z2/λ(2). (26)

Fixing Z, we can choose u to make inequalities (23–24) bind. Simply set

u3,0 = Z1λ(1)2/3
u2,1 = max{Z1λ(1)λ(2), Z2λ(1)2} = Z1λ(1)λ(2)
u1,2 = max{Z1λ(2)2, Z2λ(1)λ(2)} = Z1λ(2)2

u0,3 = Z2λ(2)2/3,

where the maxima are given by (26). Then (25) becomes

Z1P1 + Z2P2 > Z1λ(1)2/3 + Z1λ(1)λ(2) + Z1λ(2)2 + Z2λ(2)2/3. (27)

Now this can be rewritten as

Z1
λ1

P1λ(1) + Z2
λ2

P2λ(2) >
Z1
3λ1

(
λ(1)3 + λ(1)2λ(2) + λ(1)λ(2)2

)
+ Z2

3λ(2)
λ(2)3

= Z1
3λ1

(
c
(
(3, 0)

)
+ c
(
(2, 1)

)
+ c
(
(1, 2)

))
+ Z2

3λ(2)
c
(
(0, 3)

)
,

where the equalities are taken to define c
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Multiply by 3λ(1)/Z1 to get

3
(

P1λ(1) + Z2λ(1)
Z1λ(2)

P2λ(2)
)

>
(
c
(
(3, 0)

)
+ c
(
(2, 1)

)
+ c
(
(1, 2)

))
+ Z2λ(1)

Z1λ(2)
c
(
(0, 3)

)
(28)

Case 1. If
3P1λ(1) > c

(
(3, 0)

)
+ c
(
(2, 1)

)
+ c
(
(1, 2)

)
,

the (MRM′) condition is violated for A = {1}.
Case 2. Otherwise, rearrange (28) as

3Z2λ(1)
Z1λ(2)

(
P2λ(2) − c

(
(0, 3)

))
> c

(
(3, 0)

)
+ c
(
(2, 1)

)
+ c
(
(1, 2)

)
− 3P1λ(1).

By (26), we have Z2λ(1)/Z1λ(2) ⩽ 1, so we can strengthen the inequality by writing

3
(
P2λ(2) − c

(
(0, 3)

))
> c

(
(3, 0)

)
+ c
(
(2, 1)

)
+ c
(
(1, 2)

)
− 3P1λ(1)

which can be rewritten as

3
(
P1λ(1) + P2λ(2)

)
> c

(
(3, 0)

)
+ c
(
(2, 1)

)
+ c
(
(1, 2)

)
+ c
(
(0, 3)

)
= 1.

This violates the (MRM′) condition for A = {1, 2}.
□

27.11 Simple rationality

27.12 Stochastic rationality

See my notes at http://www.hss.caltech.edu/~kcb/Notes/StochasticChoice.
pdf, which are based on McFadden and Richter [26]

27.13 Concave rationality

See Afriat [1, 2], Diewert [10], Kannai [20], Richter and Wong [27], Richter and
Matzkin [25], and Varian [31, 32, 33].

27.14 Dynamic Bayesian updating

Cf. Heath and Sudderth [19]

27.15 Representative voting

See Fishburn [14, 15].
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27.16 Probabilities with given marginals

See Blackwell , and ****.
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