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Topic 26: Polyhedra and polytopes

This chapter takes a closer look at the geometry of inequalities that was investi-
gated in Chapter 25.

26.1 Solution sets, polyhedra, and polytopes

26.1.1 Definition A polyhedron is a nonempty finite intersection of closed
half spaces. In a finite dimensional space, a polyhedron is simply a solution set as
defined in Section 4.1. A polyhedral cone is a cone that is also a polyhedron.
A polytope is the convex hull of a nonempty finite set.

Our goal is to show that in finite-dimensional spaces, the two kinds of sets are
essentially the same. Specifically, we shall show that every polytope is a polyhe-
dron and that every polyhedron is the algebraic sum of a polytope and a finitely
generated convex cone, and that every bounded polyhedron is a polytope. (We
allow finitely generated convex cones to be subspaces, including the degenerate
subspace {0}.) We are also interested in computational methods for transforming
one kind of description into the other.

26.2 Finitely generated cones

Recall that a finitely generated convex cone is the convex cone generated by a
finite set. Given vectors x1, . . . , xn let

⟨x1, . . . , xn⟩ denote the finitely generated convex cone generated by {x1, . . . , xn}.

In particular, ⟨x⟩ is the ray generated by x. From Lemma 3.1.7 we know that
every finitely generated convex cone is closed. Also in Exercise 3.1.6 you essentially
proved the following, which is sometimes taken to be the definition of a finitely
generated convex cone.

26.2.1 Proposition The finitely generated convex cone ⟨x1, . . . , xn⟩ is the sum
⟨x1⟩ + · · · + ⟨xn⟩ of rays.

26.2.2 Lemma The dual cone of a finitely generated convex cone in Rm is a
polyhedron.

Proof : This is almost trivial. Let C be the finitely generated convex cone

C = ⟨x1⟩ + · · · + ⟨xn⟩.
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The dual cone C∗ is defined to be

C∗ = {p ∈ Rm : p · x ⩽ 0 for all x ∈ C}

but I claim that is also the set

A = {p ∈ Rm : p · xi ⩽ 0, i = 1, . . . , n},

which is the intersection of half spaces
n⋂

i=1
{xi ⩽ 0}.

To see this last claim observe that if p ∈ C∗, then a fortiori p ∈ A, that is,
C∗ ⊂ A. On the other hand assume p ∈ A, and x ∈ C. Then x is of the form
x = α1x1 + · · ·+αnxn, where each αi ⩾ 0. Thus p ·x = α1p ·x1 + · · ·+αnp ·xn ⩽ 0.
Since x is an arbitrary element of C, we see that p ∈ C∗. This proves that A ⊂ C∗,
so indeed C∗ = A is a polyhedron.

The next step is to prove that the a polyhedral cone is also a finitely generated
convex cone. This is more subtle than it sounds. We start with the following
lemma.

26.2.3 Lemma A finite dimensional linear subspace of a vector space is a finitely
generated convex cone.

Proof : To see this let M be an n-dimensional subspace of the vector space X, let
b1, . . . , bn be a basis for M , and put

b0 = −(b1 + · · · + bn).

I claim that every point x ∈ M is a nonnegative linear combination of b0, b1, . . . , bn.
To see this, start by writing x = ∑n

i=1 αibi as a linear combination of the basis
vectors. Renumbering if necessary, assume that αn is the least αi, so αi − αn ⩾ 0
for each i. If αn ⩾ 0, there is nothing to do, but if αn < 0, observe that by the
definition of b0 we have b0 + b1 + · · · + bn = 0 so

x =
n∑

i=1
αibi =

n∑
i=1

αibi − αn

n∑
i=0

bi =
n∑

i=1
(αi − αn)bi − αnb0,

which is a nonnegative linear combination of b0, . . . , bn.

The next result is an important but rather technical lemma.

26.2.4 Lemma The intersection of a linear subspace and the nonnegative orthant
in Rm is a finitely generated convex cone.

Figure 26.2.1 shows the intersection of the 2-dimensional subspace orthogonal
to (−1/2, −1/2, 1) with the nonnegative orthant of R3. It is the finitely generated
convex cone ⟨(2, 0, 1)⟩ + ⟨(0, 2, 1)⟩.
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Figure 26.2.1. The intersection of the 2-dimensional subspace orthogonal to
(−1/2, −1/2, 1) with the nonnegative orthant of R3 is the finitely generated
convex cone ⟨(2, 0, 1)⟩ + ⟨(0, 2, 1)⟩. Also shown is the unit simplex.

Proof : Let M be a linear subspace of Rm, and let M+ = M ∩ Rm
+. If M = Rm,

then M+ = Rm
+, which is the finitely generated convex cone generated by the

unit coordinate vectors. If M = {0}, then M+ = {0}, which is the trivial finitely
generated convex cone. So assume M is a proper nontrivial subspace.

• Step 1: M+ is a cone.
The orthogonal complement M⊥ of M has a basis p1, . . . , pk, and

M+ =
{
x ∈ Rm : x ≧ 0, & ( ∀i = 1, . . . , k ) [ pi · x = 0 ]

}
.

From this it is apparent that M+ is closed under multiplication by positive
scalars and is in fact a polyhedral cone.

• Step 2: M+ is the cone generated by the nonnegative solutions of (1) below.
If a nonzero vector x̄ belongs to M+, the sum σ of its coordinates, σ = 1 · x,
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is strictly positive, and x = (1/σ)x̄ is a nonnegative solution of

· · · p1 · · ·

· · · pk · · ·
· · · 1 · · ·


︸ ︷︷ ︸

A

x

 =



0

0
1

 , (1)

where A is the (k+1)×m matrix whose ith row is pi, for i = 1, . . . , k and the
last row is the row vector 1. Since x̄ = σx, is an arbitrary nonzero element
of M+, the cone M+ is generated by the set of nonnegative solutions of (1).

Recall that a basic solution to a system Ax = b of equations is a solution that
depends on a linearly independent set of columns of A. We next show that every
solution of (1) is a linear combination of basic solutions.

• Step 3: Every nonnegative solution of (1) is a linear combination of non-
negative basic solutions of (1).
The following clever argument is taken from Gale [19, pp. 57–58]. Let x
be a nonnegative solution of (1). The proof proceeds by induction on the
number of nonzero coordinates of x. Let P(n) denote the proposition:

“If x is a nonnegative solution of (1), and x has at most n
nonzero coordinates, then x is a linear combination of basic non-
negative solutions of (1).”

– If the number of nonzero coordinates of x is 1, say xj ̸= 0, then (1)
implies then xj = 1 and Aj, the jth column of A, is equal to the nonzero
right-hand side of (1). Thus x itself is a basic solution, which proves
that P(1) is true.

– Now assume the induction hypothesis that P(n − 1) is true. We now
show that this implies the truth of P(n).
So let x̄ be a nonnegative solution of (1) with n nonzero coordinates.
To ease notation, assume that we have renumbered things so that the
first n components of x̄ are nonzero. If the first n columns of A are
linearly independent, then x is basic, and we are done.
So assume that the first n columns A1, . . . , An are dependent, say

λ1A
1 + · · · + λnAn = 0,

where not all λi are zero. By Lemma 2.3.3 there is a solution x′ ≧ 0 of
(1) that depends on a linearly independent subset of the first n columns
of A. Since x and x′ are both solutions of (1), we have

1 · x = 1 · x′ = 1.
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But x′ has fewer nonzero components than x since x′ depends on a
subset of the columns that x depends on. Therefore at least one com-
ponent j satisfies

x′
j > xj > 0.

Setting
µ = max

j:xj>0
x′

j/xj we see that µ > 1.

For the sake of concreteness suppose µ = x′
1/x1.

Since x and x′ are both nonnegative, we see that

µx ≧ x′ and (µx)1 = x′
1.

Now set
x′′ = 1

µ − 1
(µx − x′).

I claim that x′′ is a nonnegative solution of (1): Clearly pi · x′′ = 0 for
i = 1, . . . , k since pi ·x = pi ·x′ = 0. And 1·x′′ = 1 since 1·x = 1·x′ = 1.
The nonnegativity of x′′ follows from µx ≧ x′. But µ was chosen to
make the first coordinates satisfy

x′′
1 = 0, while x′

1 > 0,

so x′′ has at most n − 1 nonzero components. Then P(n − 1) implies
that x′′ is a linear combination of basic solutions. By construction x′

is basic, so
x = x′ + (µ − 1)x′′

µ
,

is a linear combination of basic solutions.
The Principle of Induction thus shows that P[n] holds for any n. Thus
any nonnegative solution of (1) is a linear combination of basic non-
negative solutions.

• Step 4: Since there are only finitely many independent sets of columns of A,
there are finitely many basic solutions of (1), and these generate the cone
M+.

This completes the proof that Rm
+
⋂

M is a finitely generated convex cone.

26.2.5 Corollary The set of nonnegative solutions of a matrix equation Ax = 0
is a finitely generated convex cone.

Proof : The set of solutions to Ax = 0 is linear subspace. Use the lemma.

We now come to one of the main results of this section.
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26.2.6 Theorem Every polyhedral cone in Rm is a finitely generated convex
cone.

Proof : Let C be a cone that is the polyhedron
n⋂

i=1
{pi ⩾ αi}. Since C is a cone it

must be that each αi = 0, so that

C =
n⋂

i=1
{pi ⩾ 0} = {x ∈ Rm : Px ≧ 0}

where P is the n × m matrix where the rows are the pi’s.
Let M be the linear subspace of vectors in Rn of the form Px,

M = {Px ∈ Rn : x ∈ Rm}.

The preceding Lemma 26.2.4 shows that M+ = Rn
+
⋂

M is a finitely generated
convex cone in Rn, say

M+ = ⟨y1⟩ + · · · + ⟨yr⟩.
In particular, each yi ∈ M so we may write

yi = Pxi where xi ∈ Rm, i = 1, . . . , r.

Now observe that

x ∈ C ⇐⇒ Px ∈ M+ ⇐⇒ Px ∈ ⟨y1⟩ + · · · + ⟨yr⟩. (2)

Thus x ∈ C if and only if the vector Px can be written as

Px =
r∑

i=1
λiyi =

r∑
i=1

λiPxi, λi ⩾ 0, i = 1, . . . , r,

or equivalently

Px −
r∑

i=1
λiPxi = P

(
x −

r∑
i=1

λixi

)
= 0. (3)

Now the linear subspace {z ∈ Rm : Pz = 0} is a finitely generated convex cone
(Corollary 26.2.5), say

{z ∈ Rm : Pz = 0} = ⟨z1⟩ + · · · + ⟨zs⟩,

so by (3) we may write

x −
r∑

i=1
λixi =

s∑
j=1

µjzj, µj ⩾ 0, j = 1, . . . , s

or, rearranging,

x =
r∑

i=1
λixi +

s∑
j=1

µjzj
λi ⩾ 0, i = 1, . . . , r,

µj ⩾ 0, j = 1, . . . , s
.

In other words,
C = ⟨x1⟩ + · · · + ⟨xr⟩ + ⟨z1⟩ + · · · + ⟨zs⟩.
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26.2.7 Corollary The dual cone of a finitely generated convex cone in Rm is a
finitely generated convex cone.

Proof : Lemma 26.2.2 asserts that the dual cone of a finitely generated convex
cone is polyhedral so Theorem 26.2.6 applies.

Now comes the converse.

26.2.8 Corollary Every finitely generated convex cone is a polyhedron.

Proof : By the lemma just proven, if C is a finitely generated convex cone, then
C∗ a finitely generated convex cone. By Lemma 26.2.2 the dual C∗∗ of the finitely
generated convex cone C∗ is a polyhedron. But C∗∗ = C.

26.3 Finitely generated cones and alternatives

The next result summarizes properties of finitely generated convex cones. It may
be found for instance in Gale [19, Theorem 2.14] or [16].

26.3.1 Proposition (Properties of finitely generated convex cones and their duals)
The following apply to finitely generated convex cones in Rm.

1. The dual of a finitely generated convex cone is a finitely generated convex
cone.

2. A finitely generated convex cone is the dual cone of its dual cone.

3. The sum of two finitely generated convex cones is a finitely generated convex
cone.

4. The intersection of two finitely generated convex cones is a finitely generated
convex cone.

The following relations hold for finitely generated convex cones C1 and C2 in Rm.

5. (C1 + C2)∗ = C∗
1 ∩ C∗

2 .

6. (C1 ∩ C2)∗ = C∗
1 + C∗

2 .

Proof : (1) is just Corollary 26.2.7. The Bipolar Theorem 8.3.3 proves (2). Prop-
erty (3) follows from the definitions.

Property (5) is true of arbitrary cones in Rm: If p · (x1 + x2) ⩽ 0 for every
x1 ∈ C1 and x2 ∈ C2, then setting x2 = 0 we see that p ∈ C∗

1 . Similarly p ∈ C∗
2 ,

and therefore p ∈ C∗
1 ∩C∗

2 . For the reverse inclusion, if p ∈ C∗
1 ∩C∗

2 , then p ·xi ⩽ 0
for xi ∈ Ci, i = 1, 2. Adding these inequalities gives p · (x1 + x2) ⩽ 0, that is,
p ∈ (C1 + C2)∗.
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Property (4) follows from the others: If C1 and C2 are finitely generated convex
cones, then C∗

1 and C∗
2 are finitely generated convex cones by (1). Therefore

C∗
1 + C∗

2 is a finitely generated convex cone by (3), so (C∗
1 + C∗

2)∗ is a finitely
generated convex cone by 1 again. Observe that

(C∗
1 + C∗

2)∗ = C∗∗
1 ∩ C∗∗

2 = C1 ∩ C2,

where the first follows from (5) and the second from (1). Since the left-hand side
is a finitely generated convex cone, so is the right-hand side.

For Property (6), it is clear that (C1 ∩ C2)∗ ⊂ C∗
1 + C∗

2 for arbitrary cones
in Rm. Now observe that if C1 and C2 are finitely generated convex cones, then
C1 ∩ C2 = C∗∗

1 ∩ C∗∗
2 is a finitely generated convex cone and by (5) we have

C1 ∩ C2 = C∗∗
1 ∩ C∗∗

2 = (C∗
1 + C∗

2)∗.

Taking the dual of each side gives

(C1 ∩ C2)∗ = (C∗
1 + C∗

2)∗∗ = C∗
1 + C∗

2 .

While Property (5) above holds for arbitrary cones in Rm, Property (6) need
not. For example, in R2, let C1 = {(0, 0)} ∪ {(x, y) : x > 0, y > 0}, and let
C2 = {(0, 0)} ∪ {(x, y) : x < 0, y > 0}. Then (C1 ∩ C2)∗ = R2, but C∗

1 + C∗
2 =

{(x, y) : y ⩽ 0}.

26.3.2 Exercise Does Property (6) in Lemma above hold for closed convex cones
in Rm? (Prove it or give a counterexample.) □

Sample answer: The answer is no. Let A = {(x, y, z) : z = 1, x > 0, y = 1/x},
B = {(x, y, z) : z = 1, x < 0, y = −1/x}. Let C be the cone generated by A, and
let D be the cone generated by B.

Then C and D are closed, but C + D = {0} ∪{(x, y, z) : z ⩾ 0, y > 0} is not
closed.

Let K = C∗ and L = D∗. Now (K ∩ L)∗ is closed, but K∗ + L∗ = C + D is
not closed.

26.4 Polytopes

We have seen in the last section that finitely generated convex cones (finite sums of
rays) and polyhedral cones (finite intersections of closed half-spaces) are the same
objects. In this section we use that equivalence to prove that every polyhedron is
the sum of a polytope and a finitely generated convex cone. We do this by taking
a set A in Rm and “translating it up” into Rm ×R to get the set Â = {x̂ : x ∈ A},
where

x̂ = (x, 1) ∈ Rm × R for x ∈ Rm.
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We then consider the cone C generated by A, and observe that A = {x ∈ Rm :
x̂ ∈ C}. See Figure 26.4.1. This procedure is called “homogenization,” since con-
vex cones are defined by homogeneous linear inequalities. The argument follows
Ziegler [35, § 1.1] and rests on two relatively simple lemmas that give us what we
need.

A = Č

Â

C

Figure 26.4.1

26.4.1 Lemma Let P be a polyhedron in Rm ×R. Then P̌ = {x ∈ Rm : x̂ ∈ P}
is a polyhedron in Rm.

Proof : Write a typical element in Rm × R as (x, α) where x ∈ Rm and α ∈ R.
Now P is the intersection of finitely many half-spaces {(pi, γi) ⩽ βi}, i = 1, . . . , n.
That is,

P = {(x, α)Rm × R : pi · x + γiα ⩽ βi, i = 1, . . . , n}.

Then

P̌ = {x ∈ Rm : x̂ ∈ P} = {x ∈ Rm : pi · x+ ⩽ βi − γi, i = 1, . . . , n},

which is the intersection of the half-spaces {pi ⩽ βi − γi}.
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26.4.2 Corollary If K is a polytope, then it is a polyhedron.

Proof : Let K = co{x1, . . . , xk} ⊂ Rm and let C be the finitely generated convex
cone generated by {x̂1, . . . , x̂k} ⊂ Rm × R. Then by Corollary 26.2.8, C is a
polyhedral cone. Now K = Č = {x ∈ Rm : x̂ ∈ C}. (Why?) So by Lemma 26.4.1,
K is a polyhedron.

26.4.3 Lemma If C is a finitely generated convex cone in Rm × R+ = {(x, α) ∈
Rm × R : α ⩾ 0}, then Č = {x ∈ Rm : x̂ ∈ C} is the sum of a polytope and a
finitely generated convex cone.

Proof : The vectors that generate C can be normalized so that their m + 1st
coordinate is either zero or one, so we may write C as

C =
〈v1

1

〉+ · · · +
〈vk

1

〉+
〈y1

0

〉+ · · · +
〈yn

0

〉 .

Then you can verify that

Č = {x ∈ Rm : x̂ ∈ C} = co{v1, . . . , vk} + cone{y1, . . . , yn},

which is the sum of a polytope and a finitely generated convex cone.

26.4.4 Corollary If P is a polyhedron, then it is the sum of a polytope and a
finitely generated convex cone.

Proof : Let P be the polyhedron {x ∈ Rm : pi · x ⩽ βi, i = 1, . . . , n}. Then

C = {(x, α) ∈ Rm × R : α ⩾ 0, pi · x − αβi ⩽ 0, i = 1, . . . , n}

is a polyhedral cone in Rm × R+. Therefore by Theorem 26.2.6, C is a finitely
generated convex cone. You can verify that

P = Č = {x ∈ Rm : x̂ ∈ C}.

Therefore by Lemma 26.4.3, P is the sum of a polytope and a finitely generated
convex cone.

26.4.5 Corollary If P is a bounded polyhedron, then it is a polytope.

This seems like a good time to recall Proposition 2.6.7, which we reprint here.

26.4.6 Proposition Every polytope is the convex hull of the set of its extreme
points.
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26.5 Extreme rays of finitely generated convex cones
This whole section
is really inelegant.
Find a better way
to exposit this. I
need a lot more
pictures.

26.5.1 Definition Let C be a convex cone in a vector space. Recall that a ray
R ⊂ C is called an extreme ray if whenever x ∈ R can be written as a convex
combination of points y, z of C, then in fact y and z also belong to R.

The condition that y and z belong to the same ray implies that they are linearly
dependent, and the definition is often written in terms of linear dependence.

Not all closed convex cones have extreme rays. For instance, if C is a nontrivial
linear subspace, then C has no extreme rays.

However if C is a pointed cone (that is, −C ∩ C = {0}) in Rm then it has
extreme rays, and indeed it is the closed convex hull of its extreme rays. I won’t
prove that general result here, but the monograph by Phelps [30] has an elegant
exposition.

26.5.2 Definition We say that a set A of vectors is positively independent if
any strictly positive linear combination of vectors in A is nonzero. In other words
A is positively independent if whenever xi ∈ A and λi ⩾ 0, i = 1, . . . , n,

λ1x1 + · · · + λnxn = 0 =⇒ λ1 = · · · = λn = 0.

The next result is a restatement of Gordan’s Alternative 25.3.9 in terms of
positive independence.

26.5.3 Lemma The set {x1, . . . , xn} is positively independent if and only if there
is some nonzero p satisfying p · xi < 0 for i = 1, . . . , n.

Proof : ( =⇒ ) Assume positive independence. Then 0 does not belong to the
convex hull K = co{x1, . . . , xn}. Thus by the Strong Separating Hyperplane
Theorem, there is some nonzero p satisfying 0 = p · 0 < p · x for all x ∈ K. This
is the p we want.

( ⇐= ) Assume p · xi < 0 for i = 1, . . . , n, let λi ⩾ 0 for all i, and assume that
λ1x1 + · · · + λnxn = 0. Then

0 = p · 0 = λ1 p · x1︸ ︷︷ ︸
<0

+ · · · + λn p · xn︸ ︷︷ ︸
<0

,

which implies λ1 = · · · = λn = 0.

26.5.4 Proposition (Properties of pointed finitely generated convex cones)
Let x1, . . . , xn be nonzero vectors in Rm, and let C = ⟨x1, . . . , xn⟩ be the finitely Relate Gordan’s

Alternative 25.3.9.generated convex cone they generate. (Hence C is nondegenerate.)
1. The cone C is pointed if and only if x1, . . . , xn are positively independent.

2. If C is pointed, then it has nondegenerate extreme rays, and each is of the
form ⟨xi⟩ for some i. That is, every extreme ray is one of the generators.
(But not every xi need be extreme.) Moreover, the cone C is the convex
hull of its extreme rays.
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3. The dual cone C∗ of C is the polyhedron defined by

C∗ = {p ∈ Rm : p · xi ⩽ 0 for all i = 1, . . . , n.}

If C is pointed,

C∗ = {p ∈ Rm : p · xi ⩽ 0 for all i such that ⟨xi⟩ is an extreme ray of C}

4. If C is any cone that spans Rm, then C∗ is pointed.

Proof : (1) Assume first that C is pointed. Let and λi ⩾ 0, i = 1, . . . , n and
λ1x1 + · · · + λnxn = 0. If some λi > 0, say i = 1, then the nonzero point
λ1x1 = −(λ2x2 + · · · + λnxn) = 0 belongs to −C ∩ C, a contradiction.

Assume x1, . . . , xn are positively independent, and let x belong to −C ∩ C.
Then x = λ1x1 + · · · + λnxn = −(µ1x1 + · · · + µnxn), so 0 = x − x = (λ1 + µ1)x1 +
· · · + (λn + µn)xn, so by positive independence we conclude that λi = µi = 0, for
all i, which implies x = 0. Thus C is pointed.

(2) Assume that C is pointed. By part (1), the vectors x1, . . . , xn are positively
independent. Renumbering if necessary, let x1, . . . , xk be a minimal (smallest in
cardinality) subset of x1, . . . , xn satisfying C = ⟨x1, . . . , xk⟩. I claim that the
extreme rays of C are precisely ⟨x1⟩, . . . , ⟨xk⟩.

To see this, suppose xi = y + z where y, z ∈ C. To ease notation, renumber
so that i = 1. Write

y =
k∑

i=1
λixi and z =

k∑
i=1

µixi, where λi, µi ⩾ 0, i = 1, . . . , k. (4)

Then
(1 − λ1 − µ1)x1 =

k∑
i=2

(λi + µi)xi. (5)

There are three cases to consider. (i) If 1−λi −µi = 0, then positive independence
implies that λi = µi = 0 for i = 2, . . . , k. So (4) implies that y and z are both
multiples of x1, and so linearly dependent. Thus the ray ⟨x1⟩ is an extreme ray.
(ii) If 1−λi−µi > 0, we may divide (5) by it and conclude that x1 is a nonnegative
linear combination of x2, . . . , xk, contradicting the minimality hypothesis, so this
case is ruled out. (iii) If 1 − λi − µi < 0, we may divide (5) by it and conclude
that −x1 is a nonnegative linear combination of x2, . . . , xk, so −C ∩ C contains
x1, contradicting the hypothesis of pointedness. Thus every ray ⟨xi⟩, i = 1, . . . , k
is extreme.

To see that no other ray is extreme, suppose that x is a nonzero point in C
that is not any of the rays ⟨x1⟩, . . . , ⟨xp⟩. Since these rays generate C it must be
that x is a nonnegative linear combination of x1, . . . , xk with at least two nonzero
coefficients, which shows that x does not lie on an extreme ray.

This also shows that C is the convex hull of its extreme rays.
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(3) Let C ′ = {p ∈ Rm : p · xi ⩽ 0, i = 1, . . . , n}. Clearly C∗ ⊂ C ′. The
reverse inclusion is not much harder—if p ∈ C ′ and x ∈ C, then x = ∑n

i=1 λixi,
with λi ⩾ 0 so p · x = ∑n

i=1 λip · xi ⩽ 0, so p ∈ C∗. The result for pointed cones
follows from part (2).

(4) Assume that C spans Rm and let p ∈ −C∗ ∩ C∗. Then p · x ⩽ 0 and
−p · x ⩽ 0 for all x in C. Thus p · x = 0 for all x in C, and since C spans Rm, we
have p · x = 0 for all x ∈ Rm. This implies p = 0. Thus C∗ is pointed.

The next theorem characterizes the extreme rays of a finitely generated convex
cone and is due to Weyl [33, 34]. See also Gerstenhaber [20].

26.5.5 Weyl’s Facet Lemma Let C be the finitely generated convex cone
⟨x1, . . . , xn⟩ in Rm. Then nonzero p ∈ C∗ belongs to an extreme ray of C∗ if and
only if dim span{xi : p · xi = 0} = m − 1.

Proof : (cf. Gale [19, Theorem 2.16]) Let p ∈ C∗ be nonzero, let I0 = {i : p·xi = 0},
let I− = {i : p · xi < 0}, and let M = span{xi : i ∈ I0}.

( =⇒ ) Assume that p ∈ C∗ belongs to an extreme ray of C∗ and assume that
dim M < m − 1. Then there is exists q independent of p satisfying q · xi = 0
for i ∈ I0. For ε > 0 small enough we have (p ± εq) · xi < 0 for all i ∈ I−, so
p±εq ∈ C∗. But p+εq and p−εq are linearly independent: If α(p+εq)+β(p−εq) =
(α + β)p + (α − β)εq = 0, the independence of p and q implies α + β = α − β = 0,
which in turn implies α = β = 0. Thus we have written p as the sum of two
independent vectors in C∗, so it is not extreme.

( ⇐= ) Assume that dim M = m − 1. Then L = {q : q · xi = 0, i ∈ I0} is one-
dimensional as dim M + dim L = m. Thus if p = p1 + p2 for p1, p2 ∈ C∗ we have
(p1 + p2) · xi = 0, pj · xi ⩽ 0, so pj · xi = 0 for all i ∈ I0. Thus p, p1, p2 ∈ L, which
is one-dimensional, so p1 and p2 are dependent, proving that p is extreme.

26.6 How many extreme rays can a dual cone have?

It is easy to see that if C is a pointed cone in R2 that spans R2 (that is, it has
more than one ray), then in fact it has two extreme rays. It is also easy to see
then that its dual cone also has two extreme rays. The same is true in R3, but Prove or give a

cite.seeing it takes a little more work. This might tempt you to believe that it is true
in general, but that is not the case. Here is an example.

26.6.1 Example Consider the finite convex cone C in R4 generated by the 5
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columns of the 4 × 5 matrix

A =



a1 a2 a3 a4 a5

1 1 1 1 1
1 2 3 4 5
1 4 9 16 25
1 8 27 64 125


Then the cone C is just C = {Ax : x ≧ 0}.

It is easy to verify that every subset of {a1, . . . , a5} of size four is linearly
independent. Thus the cone C spans R4. It is also easy to see that C is pointed
(that is, it contains no lines, only half-lines), as it is a subset of the nonnegative
cone.

I claim that the dual cone C∗ is generated by the 6 points p1, . . . , p6 that make
up the 6 columns of the 4 × 6 matrix

P =



p1 p2 p3 p4 p5 p6

−60 −30 −10 6 12 20
47 31 17 −11 −19 −29

−12 −10 −8 6 8 10
1 1 1 −1 −1 −1


That is, C∗ = {Pz : z ≧ 0}. Moreover, I claim that the cone C has five ex-
treme rays (generated by a1, . . . , a5), and C∗ has six extreme rays (generated by
p1, . . . , p6).
Proof : We shall use Weyl’s Lemma 26.5.5 to find the extreme rays of C∗. In
our example m = 4 and n = 5. We shall use the “brute force” approach and
look at all subsets of {a1, . . . , a5} of rank 3. Since any four vectors belonging
to A are linearly independent, a subset of A has rank 3 if and only if it has
three elements. Fortunately there are only

(
5
3

)
= 10 of these subsets, so it is

feasible to enumerate them by hand. Each subset B of size three determines a
one-dimensional subspace in R4 (a line) consisting of vectors orthogonal to each
element of B (the orthogonal complement of B). It is straightforward to solve
for this subspace, and I have done so. Points pi taken from each of these ten lines
are used for the columns of the 4 × 10 matrix

P̂ =



p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

−60 −30 −10 6 12 20 −40 −24 −15 −8
47 31 17 −11 −19 −29 38 26 23 14

−12 −10 −8 6 8 10 −11 −9 −9 −7
1 1 1 −1 −1 −1 1 1 1 1


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(Note that you have seen p1, . . . , p6 before.) Now construct the 5 × 10 matrix
whose elements are the inner products pj · ai:

A′P̂ =



p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

a1 −24 −8 0 0 0 0 −12 −6 0 0
a2 −6 0 0 0 −2 −6 0 0 3 0
a3 0 0 −4 0 0 −4 2 0 0 −2
a4 0 −2 −6 −6 0 0 0 0 −3 0
a5 0 0 0 −24 −8 0 0 6 0 12


For the first six columns, all the entries are nonpositive, so p1, . . . , p6 each belong
to C∗. However for columns 7 through 10, there are entries of both signs. This
means that for i = 7, . . . , 10, no nonzero multiple of pj belongs to C∗.

Further inspection shows that

{ai : p1 · ai = 0} = {a3, a4, a5}
{ai : p2 · ai = 0} = {a2, a3, a5}
{ai : p3 · ai = 0} = {a1, a2, a5}
{ai : p4 · ai = 0} = {a1, a2, a3}
{ai : p5 · ai = 0} = {a1, a3, a4}
{ai : p6 · ai = 0} = {a1, a4, a5}
{ai : p7 · ai = 0} = {a2, a4, a5}
{ai : p8 · ai = 0} = {a2, a3, a4}
{ai : p9 · ai = 0} = {a1, a3, a5}
{ai : p10 · ai = 0} = {a1, a2, a4}

This accounts for all subsets of {a1, . . . , a5} of rank 3. So Weyl’s Facet Lemma
shows that C∗ is generated by p1, . . . , p6, which lie on distinct extreme rays of C∗.

As an aside, you should verify that

{pj : pj · a1 = 0} = {p3, p4, p5, p6} has rank 3
{pj : pj · a2 = 0} = {p2, p3, p4} has rank 3
{pj : pj · a3 = 0} = {p1, p2, p4, p5} has rank 3
{pj : pj · a4 = 0} = {p1, p5, p6} has rank 3
{pj : pj · a5 = 0} = {p1, p2, p3, p6} has rank 3,

confirming that a1, . . . , a5 are on distinct extreme rays of C∗∗ = C.

KC Border: for Ec 181, 2019–2020 src: Polyhedra v. 2019.12.23::02.50



Ec 181 AY 2019–2020
KC Border Polyhedra and polytopes 26–16

The points a1, . . . , a5 are multiples of five distinct nonzero points on the moment
curve in R4. The moment curve in Rm is the set of points of the form (t, t2, . . . , tm),
for t > 0. A polytope defined by points on the moment curve is called a cyclic poly-
tope. See G. M. Ziegler [35, Example 0.6, pp. 10–13] for more on cyclic polytopes.
McMullen [26] proves that the cyclic polytopes have the most faces for a given number
of vertexes.

I used T. Christof and A. Loebel’s computer program PORTA [4, 5] to compute the
dual cone and the facets of C. The program uses the Fourier–Motzkin Elimination
Algorithm described below with extensions due to N. V. Chernikova [2, 3] to efficiently
find the six extreme rays of C∗. That left me with only four subsets of rank 3 to find the
orthogonal complement by hand. After finding two by hand, I used Mathematica 5.0
to compute p7, . . . , p10 and all the inner products pj · ai, and its MatrixRank function
to double check the ranks. Feel free to check any of these computations by hand. □

The moral of this example is that you should not trust
your intuition about polyhedra in dimensions greater
than three.

26.7 Fourier–Motzkin elimination

The next result is a generalization of Lemma 26.4.1.

26.7.1 Proposition (Projections of polyhedra) Let C be a polyhedron in
Rm+1. Then its projection on {z ∈ Rm+1 : zm+1 = 0} is a polyhedron.
Proof : We can write C as the set of z ∈ Rm+1 whose components satisfy a system
of inequalities

α1,1z1 + · · · + α1,mzm + α1,m+1zm+1 ⩽ β1

...
αi,1z1 + · · · + αi,mzm + αi,m+1zm+1 ⩽ βi

...
αn,1z1 + · · · + αn,mzm + αn,m+1zm+1 ⩽ βn.

(6)

Define the sets
P = {i : αi,m+1 > 0}, N = {i : αi,m+1 < 0}, Z = {i : αi,m+1 = 0}.

We may rewrite the system (6) as

zm+1 ⩽ βi − αi,1z1 − · · · − αi,mzm

αi,m+1
, i ∈ P

zm+1 ⩾ βi − αi,1z1 − · · · − αi,mzm

αi,m+1
, i ∈ N

0 ⩽ βi − αi,1z1 − · · · − αi,mzm, i ∈ Z.
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This system is equivalent to the following system

βj − αj,1z1 − · · · − αj,mzm

αj,m+1
⩽ zm+1 ⩽ βi − αi,1z1 − · · · − αi,mzm

αi,m+1
, i ∈ P, j ∈ N.

0 ⩽ βi − αi,1z1 − · · · − αi,mzm, i ∈ Z.

(7)

Typically (7) will have many more inequalities than (6) (on the order of n2/4 versus
n), but we can eliminate zm+1 from (7), and consider the following system in m
variables

βj − αj,1z1 − · · · − αj,mzm

αj,m+1
⩽ βi − αi,1z1 − · · · − αi,mzm

αi,m+1
, i ∈ P, j ∈ N.

0 ⩽ βi − αi,1z1 − · · · − αi,mzm, i ∈ Z.

(8)

Now (8) has a solution in Rm if and only if (6) has a solution in Rm+1. Indeed,
(z1, . . . , zm) ∈ Rm is a solution of (8) if and only (z1, . . . , zm, 0) ∈ Rm+1 belongs
to the projection of C. Thus the projection is a polyhedron.

The technique of eliminating zm+1 from the system of inequalities and ex-
panding the number of inequalities is called Motzkin elimination or Fourier–
Motzkin elimination.1 If we iterate this procedure, we can reduce a system
of inequalities in m variables to a much larger system in 1 variable. It is easy
to verify whether this latter system has a solution, and if it does, we know the
original solution has a solution. Thus Fourier–Motzkin elimination provides a test
for the solvability of a system of inequalities.

26.7.2 Example (Using Fourier–Motzkin elimination) Consider the fol-
lowing system of three inequalities in the two variables x and y.

x − y ⩽ 0
−x ⩽ −3
2x + 3y ⩽ 6

⇐⇒
x ⩽ y

−x + 3 ⩽ 0
2x − 6 ⩽ −3y

⇐⇒
x ⩽ y

−x + 3 ⩽ 0
−2

3x + 2 ⩾ y

1 According to Dantzig and Eaves [6], “For years the method was referred to as the Motzkin
Elimination Method. However, because of the odd grave-digging custom of looking for artifacts
in long forgotten papers, it is now known as the Fourier–Motzkin Elimination Method and
perhaps will eventually be known as the Fourier–Dines–Motzkin Elimination Method.” They
declined, however, to put their money where their collective mouth is and titled their paper
“Fourier–Motzkin Elimination and its Dual.” Here is some background: In 1826, Fourier [7,
10, 11, 12] used this method of elimination to reduce a special system of inequalities in three
variables to a system in two variables. Dines [9] in 1919 and Motzkin [27] in 1934 used this
method as a test of the existence of a solution in more general cases. The paper by Dines is
expressed in terms of minors of the coefficient matrix and is not very easy to follow. In 1956
Kuhn [25] used Motzkin’s method to prove the Farkas Alternative in a very clear and thorough
exposition of the technique. I highly recommend Kuhn’s paper to anyone interested in pursuing
this further.
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Combine the first and last inequality in the last system to eliminate y and get the
resulting system:

x ⩽ − 2
3x + 2

−x + 3 ⩽ 0
⇐⇒

−2 ⩽ −5
3x

3 ⩽ x
⇐⇒

6
5 ⩾ x

3 ⩽ x

These last two reduce to
6
5
⩾ 3, oops!

which is false. Therefore the original system is inconsistent. □

26.8 The Double Description Method

We have seen that polyhedra and polytopes are essentially the same things, but
given a description of an object as polyhedron, can we recover its vertices? Or
given a polytope can we find its bounding hyperplanes? Let’s start with the case
of cones, because we can use homogenization to reduce the general problem to
one for cones.

We know that if C is a finitely generated convex cone in Rm, so is its dual C∗.
So if C is a finitely generated convex cone, there are finite sets Y = {y1, . . . , yn}
and P = {p1, . . . , pk} and such that

C = ⟨y1⟩ + · · · + ⟨yn⟩ and C∗ = ⟨p1⟩ + · · · + ⟨pk⟩,

in which case we also have

C =
{
x : ( ∀ p ∈ P ) [ p · x ⩽ 0 ]

}
= P ∗,

which describes C as a polyhedron.
Recall that a closed convex cone C satisfies C = C∗∗.

26.8.1 Definition A pair (P, Y ) of finite sets of vectors in Rm is a double
description pair for the cone C if P generates C∗ and Y generates C. That is,

C = P ∗ = cone Y.

Note that unless we require y1, . . . , yn and p1, . . . , pk to be distinct extreme
rays that this representation is not unique.

26.8.2 Proposition The pair (P, Y ) is a double description for a cone C if and
only if the pair (Y, P ) is a double description for the cone C∗.

Proof : This is obvious given that C∗∗ = C.
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This definition is not the standard definition of a double description pair. It
is traditional to think of P = {p1, . . . , pk} as a k × m matrix whose ith row is pi

and Y = {y1, . . . , yn} as the m × n matrix whose jth column is yj. Then

C = {Y λ : λ ∈ Rn
+} = {x ∈ Rm : Px ≦ 0}.

Proposition 26.8.2 can be restated in matrix terms as follows. (Recall that for a
matrix A its transpose is denoted A′.)

26.8.3 Proposition The pair (P, Y ) is a double description for a cone C if and
only if the pair (Y ′, P ′) is a double description for the cone C∗.

The double description method is an algorithm for finding Y given P .
Or vice versa by using the dual cone. It is due to is due to Motzkin, Raiffa,
Thompson, and Thrall [29]. The discussion here is influenced by that of Fukuda
and Prodon [15].

The idea behind the algorithm is this:
Enumerate P = {p1, . . . , pk}. For each t = 1, . . . , k, define P t = {p1, . . . , pt},

so that P k is the original set P of generators of the dual cone of C. We shall show
how to recursively construct sets Y t, t = 1, . . . , k, so that at each stage (P t, Y t) is
a double description pair for the cone Ct = P t∗. That is, Y t is a set of generators
for Ct. Note that each additional vector pt imposes additional constraints on
P t−1∗, so C1 ⊃ C2 ⊃ · · · ⊃ Ck = C.

We start with P 1 = {p1}. We want a set Y 1 such that cone Y 1 is the half-
space {p1 ⩽ 0}. One way to do this is to first find a basis z1, . . . , zm−1 for
the m − 1 dimensional linear subspace {p1 = 0}, say by using the technique in
Example 25.9.4. Then the subspace {p1 = 0} is the finitely generated convex
cone ⟨z1, . . . , zm−1, zm⟩, where zm = −(z1 + · · · + zm−1) (Lemma 26.2.3). Fi-
nally, observe that the half-space {p1 ⩽ 0} is the finitely generated convex cone
⟨z1, . . . , zm−1, zm, −p1⟩. Thus we may take Y 1 = {z1, . . . , zm−1, zm, −p1}. Note
that the cardinality of Y 1 is m + 1, where m is the dimension of the space.

Now suppose we have constructed a double description pair (P t−1, Y t−1) for
the cone Ct−1 = P t−1∗. The set Y t is constructed as follows:

Enumerate Y t−1 as {yj : j ∈ J}. By construction, pi · yj ⩽ 0 for all j ∈ J and
i < t. So we now compute the inner product pt · yj for each j ∈ J . Let

J+ = {j ∈ J : pt ·yj > 0}, J0 = {j ∈ J : pt ·yj = 0}, J− = {j ∈ J : pt ·yj < 0}.

Now for ℓ ∈ J+, the ray ⟨yℓ⟩ cannot belong to the cone P t∗, so we have to discard
yℓ and replace it with a set of other points that lie on the hyperplane {pt = 0}.
So for each ℓ ∈ J+ and h ∈ J−, we find a point z that is a convex combination
of yℓ and yh which satisfies pt · z = 0. (Since pt · yℓ > 0 and pt · yh < 0, at some
point z = (1 − α)yℓ + αyh on the line segment joining yℓ and yh the value of pt · z
is zero.) The z we want is given by

z(ℓ, h) = (pt · yℓ)yh − (pt · yh)yℓ

pt · yℓ − pt · yh

.
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cone P t−1

pj
pi

pt

yh yℓz

P t−1∗ = cone Y t−1

{pt = 0}

cone P t

pj
pi

pt

yh z

P t∗ = cone Y t

Figure 26.8.1. Finding the point z(ℓ, h) and the new Y t when adding pt.

See Figure 26.8.1. Now we set

Y t = {yj : j ∈ J− ∪ J0} ∪ {z(ℓ, h) : (ℓ, h) ∈ J+ × J−}.

Observe that every such z(ℓ, h) already belongs to cone Y t−1, so cone Y t−1 ⊃
cone Y t. In general, many of these z vectors are redundant. Also note that Y t can
be much larger (in cardinality) than Y t−1. The worst case is when |J+| = |J−| =
|Y t−1| /2, so that |Y t| = |Y t−1|2 /4.

We now need to show that (P t, Y t) is a double description pair for P t∗:

Lemma: cone Y t = P t∗.
Proof : By construction, if y ∈ Y t and p ∈ P t, then p · y ⩽ 0, so
cone Y t ⊂ P t∗.

For the reverse inclusion, let x belong to P t∗, that is, p · x ⩽ 0 for
all p ∈ P t. Then a fortiori, p · x ⩽ 0 for all p ∈ P t−1 ⊂ P t. Therefore
x ∈ P t−1∗. By hypothesis (P t−1, Y t−1) is a double description pair, so
x ∈ cone Y t−1. So write

x =
∑

j∈J+

λjyj +
∑

j∈J−

λjyj +
∑

j∈J0

λjyj, each λj ⩾ 0. (9)

If λj = 0 for all j ∈ J+, then x ∈ Y t and we are done. If λℓ > 0
for some ℓ ∈ J+, we show how to eliminate yℓ from (9) and replace it
with points from Y t. Since ℓ ∈ J+, we have pt ·yℓ > 0. By assumption
pt · x ⩽ 0, so there must be some offsetting h ∈ J− with λh > 0. Let
α = pt · yℓ − (pt · yh. Then z(ℓ, h) = (pt·yℓ)yh−(pt·yh)yℓ

α
belongs to Y t.

Adding and subtracting γz(ℓ, h) from (9) leads to

x = (λℓ +γ
pt · yh

α
)yℓ +(λh −γ

pt · yℓ

α
)yh +γz(ℓ, h)+

∑
j∈J\{ℓ,h}

λjyj. (9′)
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We need to choose γ > 0 so that both λℓ + γ p·yh

α
⩾ 0 and λh − γ p·yℓ

α

and one of them is equal to zero. That is, set

γ = min
{

αλℓ

−pt · yh

,
αλj

pt · yℓ

}
.

(This is an example of the technique noted in Remark 2.3.4.) If the
minimum occurs for γ = −αλℓ/pt ·yh, then the coefficient on yℓ in (9’)
is zero, and we are done. If not, then the coefficient on λh is zero. This
may not seem helpful, but note that in this case (9’) expresses x as a
linear combination that depends on one fewer vector in J−. Since by
construction, pt · z(ℓ, h) = 0, if λ′

ℓ = λℓ +γpt ·yh > 0, then there is still
some h′ ∈ J− \ {h} with λh′ > 0. We can repeat the same argument
as often as needed until the coefficient on yℓ = 0. (Since pt · x ⩽ 0 we
cannot run out of indices in J− before the coefficient on yℓ is zero.)

This can be done for every j ∈ J+, so x can be written as a
nonnegative linear combination of elements of Y t. This completes the
proof that (P t, Y t) is a double description pair.

This process is iterated until t = k.
This algorithm can be modified to deal with general polyhedra, not just poly-

hedral cones. A major problem with this algorithm is that the number of points
of Y t can grow extremely large. It also turns out that the order of the points
of P can make a huge difference in the number of steps. Practical implemen-
tations use Weyl’s Facet Lemma 26.5.5 to eliminate redundant generators. See
Ziegler [35, Notes, pp. 47–49], Fukuda and Prodon [15] and Fukuda [13] for more
on computation.
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