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Topic 25: Inequalities and alternatives

This chapter discusses both the solution of linear inequalities and the geometry of
polyhedra. The two are intimately related, since the set of solutions to a system
of linear inequalities is a polyhedron and vice versa.

Some of these results are in the form of an alternative, that is, “an opportunity
for choice between two things, courses, or propositions, either of which may be
chosen, but not both” [18]. These theorems will be proven twice. First we shall
prove them geometrically using simple separating hyperplane arguments. Then
we shall prove them algebraically and explore algorithms for solution. The latter
approach also provides results on rational solutions.

25.1 Solutions of systems of equalities

Consider the system of linear equations

Ax = b,

where A =
[
ai,j

]
is an m×n matrix, x ∈ Rn, and b ∈ Rm. There are two or three

interpretations of this matrix equation, and, depending on the circumstances, one
may be more useful than the other. The first interpretation is as a system of m
equations in n variables

a1,1x1 + · · · + a1,nxn = b1

...
ai,1x1 + · · · + ai,nxn = bi

...
am,1x1 + · · · + am,nxn = bm.

or equivalently as a condition on m inner products,

Ai · x = bi, i = 1, . . . , m

where Ai is the ith row of A.
The other interpretation is as a vector equation in Rm,

x1A
1 + · · · + xnAn = b,

where Aj is the jth column of A.
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Likewise, the system
pA = c

can be interpreted as a system of equalities in the variables p1, . . . , pm, which by
transposition can be put in the form A′p = c, or

a1,1p1 + · · · + am,1pm = c1

...
a1,jp1 + · · · + am,jpm = cj

...
a1,np1 + · · · + am,npm = cn

or equivalently as a condition on n inner products,

Aj · p = cj, j = 1, . . . , n

where Aj is the jth column of A. Or we can interpret it as a vector equation in
Rn,

p1A1 + · · · pmAm = c,

where Ai is the ith row of A.
Do I need this
definition? 25.1.1 Definition A vector x̄ = (x̄1, . . . , x̄n) is a solution of the system

a1,1x1 + · · · + a1,nxn = b1

...
ai,1x1 + · · · + ai,nxn = bi

...
am,1x1 + · · · + am,nxn = bm.

if the statements

a1,1x̄1 + · · · + a1,nx̄n = b1

...
ai,1x̄1 + · · · + ai,nx̄n = bi

...
am,1x̄1 + · · · + am,nx̄n = bm.

are all true. The system is solvable if a solution exists.

If A has an inverse (which implies m = n), then the system Ax = b always has
a unique solution, namely x̄ = A−1b. But even if A does not have an inverse, the
system may have a solution, possibly several—or it may have none. This brings up
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the question of how to characterize the existence of a solution. The answer is given
by the following theorem. Following Riesz–Sz.-Nagy [21, p. 164] and wikipedia, II’ll bet there is an

earlier proof in the
finite-dimensional
case.

shall refer to it as the Fredholm Alternative, as Fredholm [8] proved it in 1903 in
the context of integral equations. But I do note that Marlow [14, p. 86] refers to
it as Gale’s Theorem. It does appear in Gale [10, Theorem 2.5, p. 41].

25.1.2 Theorem (Fredholm Alternative) Let A be an m × n matrix and let
b ∈ Rm. Exactly one of the following alternatives holds. Either there exists an
x ∈ Rn satisfying

Ax = b (1)
or else there exists p ∈ Rm satisfying

pA = 0
p · b > 0.

(2)

column space of A

A1

A2

b

p

Figure 25.1.1. Geometry of the Fredholm Alternative
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Proof : It is easy to see that both (1) and (2) cannot be true, for then we would
have

0 = 0 · x = pAx = p · b > 0,

a contradiction. Let M be the subspace spanned by the columns of A. Alter-
native (1) is that b belongs to M . If this is not the case, then by the Strong
Separating Hyperplane Theorem there is a nonzero vector p strongly separating
{b} from the closed convex set M , that is p · b > p · z for each z ∈ M . Since M is
a subspace we have p · z = 0 for every z ∈ M , and in particular for each column
of A, so pA = 0 and p · b > 0, which is just (2).

Proof using orthogonal decomposition: Using the notation of the above proof, de-
compose b as b = bM + p, where bM ∈ M and p ∈ M⊥. (In particular, pA = 0.)
Then p · b = p · bM + p · p = p · p. If b ∈ M , then p · b = 0, but if b /∈ M , then
p ̸= 0, so p · b = p · p > 0.

25.1.3 Remark There is another way to think about the Fredholm alternative,
which was expounded by Kuhn [12]. Either the system Ax = b has a solution, or
we can find weights p1, . . . , pn such that if we weight the equations

p1(a1,1x1 + · · · + a1,nxn) = p1b1

...
pi(ai,1x1 + · · · + ai,nxn) = pibi

...
pm(am,1x1 + · · · + am,nxn) = pmbm.

and add them up

(p1a1,1 + · · · + pmam,1)x1 + · · · + (p1a1,n + · · · + pmam,n)xn = p1b1 + · · · + pmbm

we get the inconsistent system

0x1 + · · · + 0xn = p1b1 + · · · + pmbm > 0.

But this means that the original system is inconsistent too. Thus solvability is
equivalent to consistency.

We can think of the weights p being chosen to “eliminate” the variables x from
the left-hand side. Or as Kuhn points out, we do not eliminate the variables, we
merely set their coefficients to zero.

The following corollary about linear functions is true in quite general linear
spaces, but we shall first provide a proof using some of the special properties of
Rn. Wim Luxemburg refers to this result as the Fundamental Theorem of
Duality.
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25.1.4 Corollary Let p0, p1, . . . , pm ∈ Rm and suppose that p0 · v = 0 for all v
such that pi · v = 0, i = 1, . . . , m. Then p0 is a linear combination of p1, . . . , pm.
That is, there exist scalars λ1, . . . , λm such that p0 = ∑m

i=1 λip
i.

Proof : Consider the matrix A whose columns are p1, . . . , pm, and set b = p0. By
hypothesis alternative (2) of Theorem 25.1.2 is false, so alternative (1) must hold.
But that is precisely the conclusion of this theorem.

Proof using orthogonal decomposition: Let M = span{p1, . . . , pm} and orthogo-
nally project p0 on M to get p0 = p0

M + p0
⊥, where p0

M ∈ M and p0
⊥ ⊥ M . That is,

p0
⊥ · p = 0 for all p ∈ M . In particular, pi · p0

⊥ = 0, i = 1, . . . , m. Consequently, by
hypothesis, p0 · p0

⊥ = 0 too. But

0 = p0 · p0
⊥ = p0

M · p0
⊥ + p0

⊥ · p0
⊥ = 0 + ∥p0

⊥∥.

Thus p0
⊥ = 0, so p0 = p0

M ∈ M . That is, p0 is a linear combination of p1, . . . , pm.

25.2 Nonnegative solutions of systems of equalities

The next theorem is one of many more or less equivalent results on the existence
of solutions to linear inequalities. It is often known as Farkas’ Lemma, and so is
Corollary 25.3.1. What Julius Farkas [6]1 did prove in 1902 is a hybrid result of
these two, which I present as Theorem 25.3.7 below.

25.2.1 Farkas’s Alternative Let A be an m×n matrix and let b ∈ Rm. Exactly
one of the following alternatives holds. Either there exists x ∈ Rn satisfying

Ax = b

x ≧ 0
(3)

or else there exists p ∈ Rm satisfying

pA ≧ 0
p · b < 0.

(4)

Proof : (3) =⇒ ¬(4) : Assume x ≧ 0 and Ax = b. Premultiplying by p, we get
pAx = p · b. Now if pA ≧ 0, then pAx ⩾ 0 as x ≧ 0, so p · b ⩾ 0. That is, (4) fails.

¬(3) =⇒ (4) : Let C = {Ax : x ≧ 0} be the cone generated by the
columns of A. If (3) fails, then b does not belong to C. By Lemma 3.1.7, the
finitely generated convex cone C is closed, so by the Strong Separating Hyperplane
Theorem there is some nonzero p such that p · z ⩾ 0 for all z ∈ C and p · b < 0.
Therefore (4).

1 According to Wikipedia, Gyula Farkas (1847–1930) was a Jewish Hungarian mathematician
and physicist (not to be confused with the linguist of the same name who was born about half a
century later), but this paper of his, published in German, bears his Germanized name, Julius
Farkas.
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Note that there are many trivial variations on this result. For instance, mul-
tiplying p by −1, I could have written (4) as pA ≦ 0 & p · b > 0. Or by replacing
A by its transpose, we could rewrite (3) with xA = b and (4) with Ap ≧ 0. Keep
this in mind as you look at the coming theorems.

25.3 Solutions of systems of inequalities

Once we have a result on nonnegative solutions of equalities, we get on one non-
negative solutions of inequalities almost free. This is because the system

Ax ≦ b

x ≧ 0

is equivalent to the system

Ax + z = b

x ≧ 0
z ≧ 0.

For the next result recall that p > 0 means that p is semipositive: p ≧ 0 and
p ̸= 0.

25.3.1 Corollary (Farkas’s Alternative) Let A be an m × n matrix and let
b ∈ Rm. Exactly one of the following alternatives holds. Either there exists an
x ∈ Rn satisfying

Ax ≦ b

x ≧ 0
(5)

or else there exists p ∈ Rm satisfying

pA ≧ 0
p · b < 0

p > 0.

(6)

25.3.2 Exercise Prove the corollary by converting the inequalities to equalities
as discussed above and apply the Farkas Lemma. □

There is a corollary of this where we do not impose the condition x ≧ 0. One
way to prove the following is to note that Ax ≦ b (with no restriction on x) is
equivalent to Ay − Az ≦ b, y ≧ 0, z ≧ 0.

25.3.3 Corollary Let A be an m × n matrix and let b ∈ Rm. Exactly one of the
following alternatives holds. Either there exists x ∈ Rn satisfying

Ax ≦ b (7)
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or else there exists p ∈ Rm satisfying

pA = 0
p · b < 0

p > 0.

(8)

25.3.4 Exercise Prove Corollary 25.3.3. □

We can of course reverse the inequality.

25.3.5 Corollary Let A be an m × n matrix and let b ∈ Rm. Exactly one of the
following alternatives holds. Either there exists x ∈ Rn satisfying

Ax ≧ b (9)

or else there exists p ∈ Rm satisfying

pA = 0
p · b > 0

p > 0.

(10)

25.3.6 Exercise Prove Corollary 25.3.5. □

Now we come to another theorem articulated by Farkas [6].

25.3.7 Farkas’s Alternative Let A be an m × n matrix, let B be an ℓ × n
matrix, let b ∈ Rm, and let c ∈ Rℓ. Exactly one of the following alternatives
holds. Either there exists x ∈ Rn satisfying

Ax = b

Bx ≦ c

x ≧ 0
(11)

or else there exist p ∈ Rm and q ∈ Rℓ satisfying

pA + qB ≧ 0
q ≧ 0

p · b + q · c < 0.

(12)

25.3.8 Exercise Prove this version of Farkas’s Alternative. Hint: Rewrite (11)
as A 0

B I


x

z

 =

b

c

, x ≧ 0, z ≧ 0.

□
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We can also handle strict inequalities. See Figure 25.3.1 for a geometric inter-
pretation of the next theorem.

The next alternative is from Gordan [11] in 1873.

25.3.9 Gordan’s Alternative Let A be an m × n matrix. Exactly one of the
following alternatives holds. Either there exists x ∈ Rn satisfying

Ax ≫ 0 (13)

or else there exists p ∈ Rm satisfying

pA = 0
p > 0.

(14)

There are two ways (14) can be satisfied. The first is that some row of A
is zero, say row i. Then p = ei satisfies (14). If no row of A is zero, then the
finitely generated convex cone ⟨A1⟩ + · · · + ⟨Am⟩, where ai is the ith row of A,
must contain a nonzero point and its negative. That is, the cone is not pointed.
Gordan’s Alternative says that if the cone is pointed, that is, (14) fails, then the
generators (rows of A) lie in the same open half space {x > 0}.

There is another, algebraic, interpretation of Gordan’s Alternative in terms
of consistency and solvability. It says that if (13) is not solvable, then we may
multiply each equality p · Aj = 0 by a multiplier xj and add them so that the
resulting coefficients on pi, namely Ai ·x are all strictly positive, but the right-hand
side remains zero, showing that (13) is inconsistent.

25.3.10 Exercise Prove Gordan’s Alternative. Hint: If x satisfies (13), it may
be scaled so that in fact Ax ≧ 1, where 1 is the vector of ones. Write x = u − v
where u ≧ 0 and v ≧ 0. Then (13) can be written as

[
A −A

]u

v

 ≧ 1. (13′)

Now use Corollary 25.3.5 to Farkas’s Alternative. □
Dantzig [5, p. 139] attributes the nest result to Jean Ville [27]. It may also be

found in Gale [10, Theorem 2.10, p. 49].

25.3.11 Corollary (Ville’s Alternative) Let A be an m × n matrix. Exactly
one of the following alternatives holds. Either there exists x ∈ Rn satisfying

Ax ≫ 0
x ≧ 0.

(15)

or else there exists p ∈ Rm satisfying

pA ≦ 0
p > 0

(16)
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column space of A
A1A2

p

Rm
++

Figure 25.3.1. Geometry of Farkas’s Alternative 25.3.1
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25.3.12 Exercise Prove the Ville’s Alternative. □
The following result was proved by Stiemke [23] in 1915.

25.3.13 Stiemke’s Alternative Let A be an m × n matrix. Exactly one of the
following alternatives holds. Either there exists x ∈ Rn satisfying

Ax > 0 (17)

or else there exists p ∈ Rm satisfying
pA = 0

p ≫ 0.
(18)

Proof : (17) =⇒ ¬(18): Clearly both cannot be true, for then we must have both
pAx = 0 (as pA = 0) and pAx > 0 (as p ≫ 0 and Ax > 0).

¬(17) =⇒ (18): Let ∆ = {z ∈ Rm : z ≧ 0 and ∑n
j=1 zj = 1} be the unit

simplex in Rm. In geometric terms, (17) asserts that the span M of the columns
{A1, . . . , An} intersects the nonnegative orthant Rm

+ at a nonzero point, namely
Ax. Since M is a linear subspace, we may rescale x so that Ax belongs to M ∩ ∆.
Thus the negation of (17) is equivalent to the disjointness of M and ∆,

So assume that (17) fails. Then since ∆ is compact and convex and M is
closed and convex, there is a hyperplane strongly separating ∆ and M . That is,
there is some nonzero p ∈ Rm and some ε > 0 satisfying

p · y + ε < p · z for all y ∈ M, z ∈ ∆.

Since M is a linear subspace, we must have p · y = 0 for all y ∈ M . Conse-
quently p · z > ε > 0 for all z ∈ ∆. Since the jth unit coordinate vector ej belongs
to ∆, we see that pj = p · ej > 0, That is, p ≫ 0.

Since each column Aj ∈ M , we have that p · Aj = 0, that is,

pA = 0.

This completes the proof.

Note that in (18), we could rescale p so that it is a strictly positive probabil-
ity vector. Also note that the previous proofs separated a single point from a
closed convex set. This one separated the entire unit simplex from a closed linear
subspace. There is another method of proof we could have used.

Alternate proof of Stiemke’s Theorem: If (17) holds, then for some coordinate i,
we may rescale x so that Ax ≧ ei, or equivalently,

A(u − v) ≧ ei, u ≧ 0, v ≧ 0.

Fixing i for the moment, if this fails, then we can use the Corollary to Farkas’s
Alternative 25.3.5 to deduce the existence of pi satisfying piA = 0, pi · ei > 0, and
pi > 0.

Now observe that if (17) fails, then for each i = 1, . . . , m, there must exist pi

as described. Now set p = p1 + · · · + pm to get p satisfying (18).
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column space of A

∆

A1

A2 p

Rn
++

Figure 25.3.2. Geometry of the Stiemke Alternative
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Finally we come to another alternative, Motzkin’s Transposition Theorem [16],
proven in his 1934 Ph.D. thesis. This statement is take from his 1951 paper [17].2

25.3.14 Motzkin’s Transposition Theorem Let A be an m × n matrix, let
B be an ℓ × n matrix, and let C be an r × n matrix, where B or C may be omitted
(but not A). Exactly one of the following alternatives holds. Either there exists
x ∈ Rn satisfying

Ax ≫ 0
Bx ≧ 0
Cx = 0

(19)

or else there exist p1 ∈ Rm, p2 ∈ Rℓ, and p3 ∈ Rr satisfying

p1A + p2B + p3C = 0
p1 > 0
p2 ≧ 0.

(20)

Motzkin expressed (20) in terms of the transpositions of A, B, and C.

25.3.15 Exercise Prove the Transposition Theorem. Hint: If x satisfies (19), it
can be scaled to satisfy 

A

B

C

−C

x ≧



1
0
0
0

.

Apply Corollary 25.3.5. □

Stoer and Witzgall [24] also provide a rational version of Motzkin’s theorem,
which can be recast as follows.

25.3.16 Motzkin’s Rational Transposition Theorem Let A be an m × n
rational matrix, let B be an ℓ × n rational matrix, and let C be an r × n rational
matrix, where B or C may be omitted (but not A). Exactly one of the following
alternatives holds. Either there exists x ∈ Rn satisfying

Ax ≫ 0
Bx ≧ 0
Cx = 0

(21)

2 Motzkin [17] contains an unfortunate typo. The condition Ax ≫ 0 is erroneously given as
Ax ≪ 0.
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or else there exist p1 ∈ Zm, p2 ∈ Zℓ, and p3 ∈ Zr satisfying

p1A + p2B + p3C = 0
p1 > 0
p2 ≧ 0.

(22)

The alternate proof of Stiemke’s Alternative points to another whole class of
theorems that I first encountered in Morris [15]. Here is Corollary A1 from his
paper.

25.3.17 Theorem (Morris’s Alternative) Let A be an m × n matrix. Let
S be a family of nonempty subsets of {1, . . . , m}. Exactly one of the following
alternatives holds. Either there exists x ∈ Rn and a set S ∈ S satisfying

Ax ≧ 0
Ai · x > 0 for all i ∈ S

(23)

or else there exists p ∈ Rm satisfying

pA = 0
p ≧ 0∑

i∈S

pi > 0 for all S ∈ S.
(24)

25.3.18 Remark Observe that Stiemke’s Alternative corresponds to the case
where S is the set of all singletons: (23) reduces to Ax being semipositive. And∑

i∈S pi > 0 for the singleton S = {i} (given that p ≧ 0) simply says pi > 0.
Requiring this for all singletons asserts that p ≫ 0.

Proof of Theorem 25.3.17: It is clear that (23) and (24) cannot both be true.
So assume that (23) fails. Then for each S ∈ S, let AS be the |S| × n matrix

with rows Ai for i ∈ S, and let BS be the matrix of the remaining rows. Then
there is no x satisfying ASx ≫ 0 and BSx ≧ 0. So by Motzkin’s Transposition
Theorem 25.3.14 there is qS ∈ R|S| and qSc ∈ R|Sc| satisfying qS ≫ 0, qSc ≧ 0,
and qSAS + qSc

BS = 0. Let pS ∈ Rm be defined pS
i = qS

i for i ∈ S and pi = qSc

i

for i ∈ Sc. Then pSA = 0, and ∑i∈S pS
i > 0. Now define p = ∑

S∈S pS and note
that it satisfies (24).

25.4 Tucker’s Theorem

Tucker [25, Lemma, p. 5] proves the following theorem that is related to Theorems
of the Alternative, but not stated as an alternative. See Nikaidô [19, Theorem 3.7,
pp. 36–37] for a proof of Tucker’s Theorem using the Stiemke’s Alternative, and
vice-versa.
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25.4.1 Tucker’s Theorem Let A be an m×n matrix. Then there exist x ∈ Rn

and p ∈ Rm satisfying

Ax = 0
x ≧ 0

A′p ≧ 0
A′p + x ≫ 0,

(25)

where A′ is the transpose of A.

To get an idea of the connection between Stiemke’s Alternative and Tucker’s
Theorem, consider the transposed version of Stiemke’s Alternative 25.3.13. It has
two “dual” systems of inequalities

A′p > 0 (17′)

and
Ax = 0, x ≫ 0 (18′)

exactly one of which has a solution. Tucker’s Theorem replaces these with the
weaker systems

A′p ≧ 0, (17′′)

Ax = 0, x ≧ 0. (18′′)

These always have the trivial solution p = 0, x = 0. What Tucker’s Theorem says
is that there is a solution (p̄, x̄) of ((17’’)–(18’’)) such that if the ith component
(A′p̄)i = 0, then the ith component x̄i > 0; and if x̄i = 0, then the ith component
(A′p̄)i > 0. Not only that, but since Ax̄ = 0, we have (A′p̄) · x̄ = p̄Ax̄ = 0, so for
each i we cannot have both (A′p̄)i > 0 and x̄i > 0. Thus we conclude that A′p̄
and x̄ exhibit complementary slackness:

(A′p̄)i > 0 if and only if x̄i = 0, and x̄i > 0 if and only if (A′p̄)i = 0.

Tucker’s Theorem is also a statement about nonnegative vectors in comple-
mentary orthogonal linear subspaces. The requirement that Ax = 0 says that x
belong to the null space (kernel) of A. The vector A′p belongs to the range of A′.
It is well-known (see, e.g., § 6.2 of my notes on linear algebra [3]) that the null
space of A and the range of A′ are complementary orthogonal linear subspaces.
Moreover every pair of complementary orthogonal subspaces arises this way. (Let
A be the orthogonal projection onto one of the subspaces. Thus we have the fol-
lowing equivalent version of Tucker’s Theorem, which appears as Corollary 4.7 in
Bachem and Kern [2], and which takes the form of an alternative.
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25.4.2 Corollary Let M be a linear subspace of Rm, and let M⊥ be its orthog-
onal complement. For each i = 1, . . . , m, either there exists x ∈ Rm satisfying

x ∈ M, x ≧ 0, xi > 0 (26)

or else there exists y ∈ Rm satisfying

y ∈ M⊥, y ≧ 0, yi > 0. (27)

25.5 The Gauss–Jordan method

The Gauss–Jordan method is a straightforward way to find solutions to systems
of linear equations using elementary row operations. Give a cite.

Apostol [1]?

25.5.1 Definition The three elementary row operations on a matrix are:

• Interchange two rows.

• Multiply a row by a nonzero scalar.

• Add one row to another.

It is often useful to combine these into a fourth operation.

• Add a nonzero scalar multiple of one row to another row.

We shall also refer to this last operation as an elementary row operation.3

You should convince yourself that each of these four operations is reversible using
only these four operations, and that none of these operations changes the set of
solutions.

Consider the following system of equations.

3x1 + 2x2 = 8
2x1 + 3x2 = 7

The first step in using elementary row operations to solve a system of equations
is to write down the so-called augmented coefficient matrix of the system, which
is the 2 × 3 matrix of just the numbers above: 3 2 8

2 3 7

 . (1′)

3 The operation ‘add α × row k to row i’ is the following sequence of truly elementary row
operations: multiply row k by α, add (new) row k to row i, multiply row k by 1/α.
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We apply elementary row operations until we get a matrix of the form 1 0 a

0 1 b


which is the augmented matrix of the system

x1 = a

x2 = b

and the system is solved. (If there is no solution, then the elementary row op-
erations cannot produce an identity matrix. There is more to say about this in
Section 25.9.) There is a simple algorithm for deciding which elementary row
operations to apply, namely, the Gauss–Jordan elimination algorithm.

First we multiply the first row by 1
3 , to get a leading 1: 1 2

3
8
3

2 3 7


We want to eliminate x1 from the second equation, so we add an appropriate
multiple of the first row to the second. In this case the multiple is −2, the result
is:  1 2

3
8
3

2 − 2 · 1 3 − 2 · 2
3 7 − 2 · 8

3

 =

 1 2
3

8
3

0 5
3

5
3

 . (2′)

Now multiply the second row by 3
5 to get 1 2

3
8
3

0 1 1

 .

Finally to eliminate x2 from the first row we add −2
3 times the second row to the

first and get 1 − 2
3 · 0 2

3 − 2
3 · 1 8

3 − 2
3 · 1

0 1 1

 =

 1 0 2
0 1 1

 , (()3′)

so the solution is x1 = 2 and x2 = 1.

25.6 A different look at the Gauss–Jordan method

David Gale [10] gives another way to look at what we just did. The problem of
finding x to solve

3x1 + 2x2 = 8
2x1 + 3x2 = 7
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can also be thought of as finding a coefficients x1 and x2 to solve the vector
equation

x1

3
2

+ x2

2
3

 =

8
7

.

That is, we want to write b =

8
7

 as a linear combination of a1 =

3
2

 and

a2 =

2
3

. One way to do this is to begin by writing b as a linear combination of

unit coordinate vectors e1 =

1
0

 and e2 =

0
1

, which is easy:

8

1
0

+ 7

0
1

 =

8
7

.

We can do likewise for a1 and a2:

3

1
0

+ 2

0
1

 =

3
2

, 2

1
0

+ 3

0
1

 =

2
3

.

We can summarize this information in the following tableau.4

a1 a2 b

e1 3 2 8
e2 2 3 7

(28)

There is a column for each of the vectors a1, a2, and b. There is a row for each
element of the basis e1, e2. A tableau is actually a statement. It asserts that the
vectors listed in the column titles can be written as linear combinations of the
vectors listed in the row titles, and that the coefficients of the linear combinations
are given in the matrix. Thus a1 = 3e1 + 2e2. b = 8e1 + 7e2, etc. So far, with
the exception of the margins, our tableau looks just like the augmented coefficient
matrix (1′), as it should.

But we don’t really want to express b in terms of e1 and e2, we want to express
it in terms of a1 and a2, so we do this in steps. Let us replace e1 in our basis with

4 The term tableau, a French word best translated as “picture” or “painting,” harkens back
to Quesnay’s Tableau économique [20], which inspired Leontief [13], whose work spurred the Air
Force’s interest in linear programming [5, p. 17].
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either a1 or a2. Let’s be unimaginative and use a1. The new tableau will look
something like this:

a1 a2 b

a1 ? ? ?
e2 ? ? ?

Note that the left marginal column now has a1 in place of e1. We now need to fill
in the tableau with the proper coefficients. It is clear that a1 = 1a1 + 0e2, so we
have

a1 a2 b

a1 1 ? ?
e2 0 ? ?

I claim the rest of the coefficients are

a1 a2 b

a1 1 2
3

8
3

e2 0 5
3

5
3

(29)

That is,

a1 = 1a1 + 0e2, a2 = 2
3

a1 + 5
3

e2, b = 8
3

a1 + 5
3

e2.

or 3
2

 = 1

3
2

+ 0

0
1

,

2
3

 = 2
3

3
2

+ 5
3

0
1

,

8
7

 = 8
3

3
2

+ 5
3

0
1

,

which is correct. Now observe that the tableau (29) is the same as (2′).
Now we proceed to replace e2 in our basis by a1. The resulting tableau is

a1 a2 b

a1 1 0 2
a2 0 1 1

(30)

This is the same as (3′). In other words, in terms of our original problem x1 = 2
and x2 = 1.

So far we have done nothing that we would not have done in the standard
method of solving linear equations. The only difference is in the description of
what we are doing.

Instead of describing our steps as eliminating variables from
equations one by one, we say that we are replacing one basis
by another, one vector at a time.
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We now formalize this notion more generally.

25.7 Tableaux and the replacement operation

Let A = {a1, . . . , an} be a set of vectors in some vector space, and let {b1, . . . , bm}
span A. That is, each aj can be written as a linear combination of bi’s. Let
T =

[
ti,j

]
be the m × n matrix of coordinates of the aj’s with respect to the bi’s.5

That is,
aj =

m∑
k=1

tk,jb
k, j = 1, . . . , n. (31)

We express this as the following tableau:

a1 . . . aj . . . an

b1 t1,1 . . . t1,j . . . t1,n

... ... ... ...
bi ti,1 . . . ti,j . . . ti,n

... ... ... ...
bm tm,1 . . . tm,j . . . tm,n

(31′)

• A tableau is actually a statement. It asserts that the equations (31) hold.
In this sense a tableau may be true or false, but we shall only consider true
tableaux.

• It is obvious that interchanging any two rows or interchanging any two
columns represents the same information, namely that each vector listed in
the top margin is a linear combination of the vectors in the left margin, with
the coefficients being displayed in the tableau’s matrix.

• We can rewrite (31) in terms of the coordinates of the vectors as

aj
i =

m∑
k=1

tk,jb
k
i

or perhaps more familiarly as the matrix equation

BT = A,

where A is the matrix m × n matrix whose columns are a1, . . . , an, B is the
matrix m × m matrix whose columns are b1, . . . , bm, and T is the m × n

matrix
[
ti,j

]
.

5 If the bi’s are linearly dependent, T may not be unique.
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The usefulness of the tableau is the ease with which we can change the basis
of a subspace. The next lemma is the key.

25.7.1 Replacement Lemma If {b1, . . . , bm} is a basis for A, then
tk,ℓ ̸= 0 if and only if {b1, . . . , bk−1, aℓ, bk+1, . . . , bm} is a basis for A.

Moreover, in the latter case the new tableau is derived from the old one
by applying elementary row operations that transform the ℓth column
into the kth unit coordinate vector. That is, the tableau

a1 . . . aℓ−1 aℓ aℓ+1 . . . an

b1 t′
1,1 . . . t′

1,ℓ−1 0 t′
1,ℓ+1 . . . t′

1,n

... ... ... ... ... ...
bk−1 t′

k−1,1 . . . t′
k−1,ℓ−1 0 t′

k−1,ℓ+1 . . . t′
k−1,n

aℓ t′
k,1 . . . t′

k,ℓ−1 1 t′
k,ℓ+1 . . . t′

k,n

bk+1 t′
k+1,1 . . . t′

k+1,ℓ−1 0 t′
k+1,ℓ+1 . . . t′

k+1,n

... ... ... ... ... ...
bm t′

m,1 . . . t′
m,ℓ−1 0 t′

m,ℓ+1 . . . t′
m,n

is obtained by dividing the kth row by tk,ℓ,

t′
k,j = tk,j

tk,ℓ

, j = 1, . . . , n,

and adding − ti,ℓ

tk,ℓ

times row k to row i for i ̸= k,

t′
i,j = ti,j − ti,ℓ

tk,ℓ

tk,j

(
= ti,j − ti,ℓt

′
k,j

)
,

i = 1, . . . , m, i ̸= k

j = 1, . . . , n
.

Proof : If tk,ℓ = 0, then
aℓ =

∑
i:i≠k

ti,ℓb
i,

or ∑
i:i ̸=k

ti,ℓb
i − 1aℓ = 0,

so {b1, . . . , bk−1, aℓ, bk+1, . . . , bm} is dependent.
For the converse, assume tk,ℓ ̸= 0, and that

0 = αaℓ +
∑

i:i ̸=k

βib
i

= α

(
m∑

i=1
ti,ℓb

i

)
+
∑

i:i ̸=k

βib
i

= αtk,ℓb
k +

∑
i:i ̸=k

(αti,ℓ + βi)bi.
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Since {b1, . . . , bm} is independent by hypothesis, we must have (i) αtk,ℓ = 0 and (ii)
αti,ℓ +βi = 0 for i ̸= k. Since tk,ℓ ̸= 0, (i) implies that α = 0. But then (ii) implies
that each βi = 0, too, which shows that the set {b1, . . . , bk−1, aℓ, bk+1, . . . , bm} is
linearly independent.

To show that this set spans A, and to verify the tableau, we must show that
for each j ̸= ℓ,

aj =
∑

i:i ̸=k

t′
i,jb

i + t′
k,ja

ℓ.

But the right-hand side is just

=
∑

i:i ̸=k

(
ti,j − ti,ℓ

tk,ℓ

tk,j︸ ︷︷ ︸
t′
i,j

)
bi + tk,j

tk,ℓ︸︷︷︸
t′
k,j

m∑
i=1

ti,ℓb
i

︸ ︷︷ ︸
aℓ

=
m∑

i=1
ti,jb

i

= aj,

which completes the proof.

Thus whenever tk,ℓ ̸= 0, we can replace bk by aℓ, and get a valid new tableau.
We call this the replacement operation and the entry tk,ℓ, the pivot. Note
that one replacement operation is actually m elementary row operations.

Here are some observations.

• If at some point, an entire row of the tableau becomes 0, then any replace-
ment operation leaves the row unchanged. This means that the dimension
of the span of A is less than m, and that row may be omitted.

• We can use this method to select a basis from A. Replace the standard
basis with elements of A until no additional replacements can be made.
By construction, the set B of elements of A appearing in the left-hand
margin of the tableau will constitute a linearly independent set. If no more
replacements can be made, then each row i associated with a vector not in A
must have ti,j = 0 for j /∈ B (otherwise we could make another replacement
with ti,j as pivot.) Thus B must be a basis for A. See Example 25.9.4.

• Note that elementary row operations preserve the scalar field to which the
coefficients belong. In particular, if the original coefficients belong to the
field of rational numbers, the coefficients after a replacement operation also
belong to the field of rational numbers.
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25.8 More on tableaux

An important feature of tableaux is given in the following proposition.

25.8.1 Proposition Let b1, . . . , bm be a basis for Rm and let a1, . . . , an be vectors
in Rm. Consider the following tableau.

a1 . . . aj . . . an e1 . . . em

b1 t1,1 . . . t1,j . . . t1,n y1,1 . . . . . . . . . y1,m

... ... ... ... ... . . . ... ...
bi ti,1 . . . ti,j . . . ti,n yi,1 . . . . . . . . . yi,m

... ... ... ... ... ... . . . ...
bm tm,1 . . . tm,j . . . tm,n ym,1 . . . . . . . . . ym,m

(32)

That is, for each j,
aj =

m∑
i=1

ti,jb
i (33)

and
ej =

m∑
i=1

yi,jb
i. (34)

Let yi be the (row) vector made from the last m elements of the ith row. Then
yi · aj = ti,j. (35)

Proof : Let B be the m × m matrix whose jth column is bj, let A be the m × n
matrix with column j equal to aj, let T be the m × n matrix with (i, j) element
ti,j, and let Y be the m × m matrix with (i, j) element yi,j (that is, yi is the ith

row of Y ). Then (33) is just
A = BT

where and (34) is just
I = BY.

Thus Y = B−1, so
Y A = B−1(BT ) = (B−1B)T = T,

which is equivalent to (35).
25.8.2 Corollary Let A be an m × m matrix with columns a1, . . . , am. If the
tableau

a1 . . . am e1 . . . em

a1 1 0 y1,1 . . . y1,m

... . . . ... ...
am 0 1 ym,1 . . . ym,m

is true, then the matrix Y is the inverse of A.
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25.9 The Fredholm Alternative revisited

Recall the Fredholm Alternative 25.1.2 that we previously proved using a sepa-
rating hyperplane argument. We can now prove a stronger version using a purely
algebraic argument.

25.9.1 Theorem (Fredholm Alternative) Let A be an m × n matrix and let
b ∈ Rm. Exactly one of the following alternatives holds. Either there exists an
x ∈ Rn satisfying

Ax = b (36)
or else there exists p ∈ Rm satisfying

pA = 0
p · b > 0.

(37)

Moreover, if A and b have all rational entries, then x or p may be taken to have
rational entries.

Proof : We prove the theorem based on the Replacement Lemma 25.7.1, and si-
multaneously compute x or p. Let A be the m × n with columns A1, . . . , An in
Rm. Then x ∈ Rn and b ∈ Rm. Begin with this tableau.

A1 . . . An b e1 . . . em

e1 α1,1 . . . α1,n β1 1 0
... ... ... ... . . .

em αm,1 . . . αm,n βm 0 1

Here αi,j is the ith row, jth column element of A and βi is the ith coordinate of b
with respect to the standard ordered basis. Now use the replacement operation
to replace as many non-column vectors as possible in the left-hand margin basis.
Say that we have replaced ℓ members of the standard basis with columns of A.
Interchange rows and columns as necessary to bring the tableau into this form:

Aj1 . . . Ajℓ Ajℓ+1 . . . Ajn b e1 . . . ek . . . em

Aj1 1 0 t1,ℓ+1 . . . t1,n ξ1 p1,1 . . . p1,k . . . p1,m

... . . . ... ... ... ... ... ...
Ajℓ 0 1 tℓ,ℓ+1 . . . tℓ,n ξℓ pℓ,1 . . . pℓ,k . . . pℓ,m

ei1 0 . . . 0 0 . . . 0 ξℓ+1 pℓ+1,1 . . . pℓ+1,k . . . pℓ+1,m

... ... ... ... ... ... ... ... ...
eir 0 . . . 0 0 . . . 0 ξℓ+r pℓ+r,1 . . . pℓ+r,k . . . pℓ+r,m

... ... ... ... ... ... ... ... ...
eim−ℓ 0 . . . 0 0 . . . 0 ξm pm,1 . . . pm,k . . . pm,m
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The ℓ × ℓ block in the upper left is an identity matrix, with an (m − ℓ) × ℓ block
of zeroes below it. This comes from the fact that the representation of columns
of A in the left-hand margin basis puts coefficient 1 on the basis element and 0
elsewhere. The (m − ℓ) × (n − ℓ) block to the right is zero since no additional
replacements can be made. The middle column indicates that

b =
ℓ∑

k=1
ξkAjk +

m−ℓ∑
r=1

ξℓ+re
ir .

If ξℓ+1 = · · · = ξm = 0 (which must be true if ℓ = m), then b is a linear
combination only of columns of A, so alternative (36) holds, and we have found a
solution. (We may have to rearrange the order of the coordinates of x.)

The Replacement Lemma 25.7.1 guarantees that Aj1 , . . . , Ajℓ , ei1 , . . . , eim−ℓ is
a basis for Rm. So if some ξk is not zero for m ⩾ k > ℓ, then Proposition 25.8.1
implies that the corresponding pk row vector satisfies pk ·b = ξk ̸= 0, and pk ·Aj = 0
for all j. Multiplying by −1 if necessary, pk satisfies alternative (37).

As for the rationality of x and p, if all the elements of A are rational, then all
the elements of the original tableau are rational, and the results of pivot operation
are all rational, so the final tableau is rational.

25.9.2 Remark As an aside, observe that Aj1 , . . . , Ajℓ is a basis for the column
space of A, and pℓ+1, . . . , pm is a basis for its orthogonal complement.

25.9.3 Remark Another corollary is that if all the columns of A are used in the
basis, the matrix P is the inverse of A. This is the well-known result that the
Gauss–Jordan method can be used to invert a matrix.

25.9.4 Example Find a basis for the column space of

1 2 0 1 1 1
0 1 1 1 0 1
3 2 −4 1 1 1
4 5 −3 3 2 3


and a basis for its orthogonal complement. Note that the last row is the sum of
the first three rows, so the rows are not independent.
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Start with a basis of unit coordinate vectors.

a1 a2 a3 a4 a5 a6 e1 e2 e3 e4

Initial tableau:
e1 1 2 0 1 1 1 1 0 0 0
e2 0 1 1 1 0 1 0 1 0 0
e3 3 2 −4 1 1 1 0 0 1 0
e4 4 5 −3 3 2 3 0 0 0 1

Replace e1 by a1 to get:
a1 1 2 0 1 1 1 1 0 0 0
e2 0 1 1 1 0 1 0 1 0 0
e3 0 −4 −4 −2 −2 −2 −3 0 1 0
e4 0 −3 −3 −1 −2 −1 −4 0 0 1

Replace e2 by a2 to get:
a1 1 0 −2 −1 1 −1 1 −2 0 0
a2 0 1 1 1 0 1 0 1 0 0
e3 0 0 0 2 −2 2 −3 4 1 0
e4 0 0 0 2 −2 2 −4 3 0 1

Replace e3 by a4 to get:
a1 1 0 −2 0 0 0 −1

2 0 1
2 0

a2 0 1 1 0 1 0 11
2 −1 −1

2 0
a4 0 0 0 1 −1 1 −11

2 2 1
2 0

e4 0 0 0 0 0 0 −1 −1 −1 1

We are unable to replace the unit coordinate vector e4, but none of the columns
of A depend on it. That is, {a1, a2, a4} is a basis for the column space (there are
others). Also observe that the vector (−1, −1, −1, 1) is orthogonal to each column,
and so is a basis vector for the one-dimensional orthogonal complement. □

25.10 Farkas’ Lemma Revisited

The Farkas Lemma concerns nonnegative solutions to linear inequalities. You
would think that we can apply the Replacement Lemma here to a constructive
proof of the Farkas Lemma, and indeed we can. But the choice of replacements
is more complicated when we are looking for nonnegative solutions to systems
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of inequalities, so I will postpone the discussion until we discuss the Simplex
Algorithm in Lecture 29. But that discussion will make use of the following
variation of the Replacement Lemma.

25.10.1 Replacement Lemma with Nonnegativity If the tableau

a1 . . . aℓ−1 aℓ aℓ+1 . . . an z

b1 t1,1 . . . t1,ℓ−1 t1,ℓ t1,ℓ+1 . . . t1,n ζ1
... ... ... ... ... ... ...

bk−1 tk−1,1 . . . tk−1,ℓ−1 tk−1,ℓ tk−1,ℓ+1 . . . tk−1,n ζk−1

bk tk,1 . . . tk,ℓ−1 tk,ℓ tk,ℓ+1 . . . tk,n ζk

bk+1 tk+1,1 . . . tk+1,ℓ−1 tk+1,ℓ tk+1,ℓ+1 . . . tk+1,n ζk+1
... ... ... ... ... ... ...

bm tm,1 . . . tm,ℓ−1 tm,ℓ tm,ℓ+1 . . . tm,n ζm

satisfies
ζi ⩾ 0, i = 1, . . . , m,

then the replacement operation with pivot tk,ℓ yields a new tableau with all ζ ′
i ⩾ 0

if and only if
tk,ℓ > 0

and
ζk

tk,ℓ

= min
{

ζi

ti,ℓ

: ti,ℓ > 0
}

.

That is, in order to keep the ζ’s nonnegative the pivot tk,ℓ must be chosen to be
strictly positive and also to minimize the ratio ζi/ti,ℓ for strictly positive ti,ℓ in
column ℓ.

Proof : Since ζ ′
k = ζk/tk,ℓ we need tk,ℓ > 0. For the other rows

ζ ′
i = ζi − ti,ℓ

tk,ℓ

ζk.

So if ti,ℓ ⩽ 0 we must have ζ ′
i ⩾ 0 given that we choose tk,ℓ > 0 since ζ ′

i ⩾ 0 by
hypothesis. Otherwise, if ti,ℓ > 0, then ζ ′

i ⩾ 0 if and only if

ζi

ti,ℓ

⩾ ζk

tk,ℓ

.

This completes the proof.
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25.11 Application to saddlepoint theorems

Recall the Saddlepoint Theorem 10.3.6 with Karlin’s condition.

25.11.1 Saddlepoint Theorem Let f, g1, . . . , gm : C → R be concave, where
C ⊂ Rn is convex. Assume in addition that Karlin’s Condition,

( ∀λ > 0 ) ( ∃x̄(λ) ∈ C )
[

λ · g
(
x̄(λ)

)
> 0

]
, (K)

is satisfied.
The following are equivalent.

1. The point x∗ maximizes f over C subject to the constraints gj(x) ⩾ 0,
j = 1, . . . , m.

2. Then there exist real numbers λ∗
1, . . . , λ∗

m ⩾ 0 such that (x∗; λ∗) is a saddle-
point of the Lagrangean L. That is,

f(x) +
m∑

j=1
λ∗

jgj(x) ⩽ f(x∗) +
m∑

j=1
λ∗

jgj(x∗) ⩽ f(x∗) +
m∑

j=1
λjgj(x∗)

for all x ∈ C and all λ1, . . . , λm ⩾ 0. Furthermore λ∗
jgj(x∗) = 0, j =

1, . . . , m.

Uzawa [26] proposed the following modification.
**********************
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