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Topic 24: Convexity and incentive design

Convex functions appear naturally in many incentive design problems.

24.1 Proper scoring rules

Scoring rules are used to elicit probabilistic beliefs from forecasters, and had their
origins in the evaluation of weather forecasters.1 The term comes from the use of
“skill scores”2 to evaluate weather forecasters. We shall describe the mathematical
results here, but you should read the papers by Murphy and Winkler [11] and
Savage [15] for a discussion of the practical aspects as well.

We start with a set S of states of the world, which for simplicity, we assume
is finite. (Vectors in RS have two interpretations: as random variables and as
(signed) measures on S. For infinite state spaces, the space of random variables
and the space of measures are not the same.) Let ∆ = {p ∈ RS

+ : p ·1 = 1} denote
the set of probability measures on S, viewed as vectors in RS. Thus the expected
value of a random variable x ∈ RS under the probability p ∈ ∆ is simply p · x.

An “expert” or “forecaster” is asked to state his or her subjective probability
measure p and will be awarded a “score” ξs(p) on the basis of the forecast p and
what state s occurs. The expert is assumed to care only about the expectation of
his score. If the forecaster’s probability is p, and he reports q, his expected score
is p · ξ(q) = ∑

s psξs(q).

24.1.1 Definition A scoring rule for ∆ is a function ξ : ∆ → RS. The value
ξ(p) is a random variable. The sth component ξs is the score in state s. A scoring
rule ξ is proper if for each p ∈ ∆,

p · ξ(p) ⩾ p · ξ(q) for all q ∈ ∆.

The scoring rule ξ is strictly proper if for each p ∈ ∆,

p · ξ(p) > p · ξ(q) for all q 6= p, q ∈ ∆.
1 The practice of expressing weather forecasts in terms of rough probabilities was initiated

in Western Australia by W. E. Cooke in 1905 [3]. Interestingly, his idea was criticized by E. B.
Garriot [4] of the U.S. because “the bewildering complication of uncertainties it involves would
confuse even the patient interpolator” and “our public insist upon having our forecasts expressed
concisely and in unequivocal terms.”

2 A skill score is intended to separate a forecaster’s skill from the difficulty of the forecasting
problem. For instance, Harris K. Telemacher, the “wacky weatherman” portrayed by Steve
Martin in the film L.A. Story was able to accurately forecast the weather days in advance,
not because he was a good forecaster, but because, as we all know, the weather here is always
perfect. You can find various skill score measures described at the American Meteorological
Society’s Online Glossary.
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In other words a proper scoring gives a risk neutral forecaster the incentive
to truthfully report his subjective belief. A strictly proper scoring rules gives the
forecaster a strict incentive to do so. (After all, a constant ξ is proper.)

Observe that if ξ is a (strictly) proper scoring rule, so is a positive affine
transformation αξ + β1, where α > 0 and 1 is, as usual, the vector with all its
components equal to 1.

A natural question is whether strictly proper scoring rules exist. It is generally
asserted that this question was answered affirmatively in 1950 by Brier [2], but I
find it hard to follow his argument. In 1951, Good [5] proved that

ξs(p) = ln ps

defined a strictly proper scoring rule. Finally in 1956, McCarthy [10] stated
without proof the following result (more or less). A full proof, for a not necessarily
finite state space, is provided by Hendrickson and Buehler [9].

24.1.2 Theorem A function ξ : ∆ → RS is a strictly proper scoring rule if and
only if there is a lower semicontinuous sublinear function f : RS

+ → R that is
strictly convex on ∆ such that for every p ∈ ∆,

ξ(p) ∈ ∂f(p),

where as usual, ∂f(p) denotes the subdifferential of f at p.

Proof : The proof of this result is surprisingly easy.
( =⇒ ) Assume ξ is a strictly proper scoring rule. Define f(0) = 0 and for

nonzero p ∈ RS+, define
f(p) = p · ξ(p/1 · p).

Then f is homogeneous of degree one by construction. From the definition of a
strictly proper scoring rule, for distinct q̄ and p̄ in ∆ and λ > 0, letting q = λq̄,
we have

f(q) = f(λq̄) = λq̄ · ξ(q̄) > λq̄ · ξ(p̄) = q · ξ(p̄), (1)
where the strict inequality is true because ξ is a strictly proper scoring rule. Note
that when p̄ = q̄ we have equality in (1). This tells us two things. First,

f(q) = max
p̄∈∆

ℓp̄(q), where ℓp̄ : q 7→ ξ(p̄) · q is linear in q.

Thus f is convex and lower semicontinuous on RS
+, since it is the pointwise max-

imum of linear functions.
The second thing we learn from (1) is that for q = λq̄,

f(q) > λq̄ · ξ(p̄) = f(p̄) − p̄ · ξ(p̄)︸ ︷︷ ︸
= 0

+λq̄ · ξ(p̄)

= f(p̄) + ξ(p̄) · (q − p̄),
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for all distinct q̄, p̄ in ∆, which is just the subgradient inequality for ξ(p̄) at f(p̄).
(This inequality holds as an equality for q = 0, since f(p̄) = ξ(p̄) · p̄.) That is,

ξ(p̄) ∈ ∂f(p̄) for all p̄ ∈ ∆.

Moreover, since the subgradient inequality is strict, Proposition 14.1.3 shows
that f is strictly convex on ∆.

( ⇐= ) Assume now that f : RS
+ → R is a lower semicontinuous sublinear

function that is strictly convex on ∆, and for each p ∈ ∆,

ξ(p) ∈ ∂f(p).

By Euler’s Theorem for subgradients 14.1.12, f satisfies f(λp) = λp · ξ(p) for
all p ∈ ∆. In particular,

f(p) = p · ξ(p) for all p ∈ ∆.

We can now run the previous argument in reverse.
Let p, q ∈ ∆, with q 6= p. Since f is strictly convex, the subgradient inequality

holds strictly (again by Proposition 14.1.3), that is,

f(p) > f(q) + ξ(q) · (p − q).

Replacing f(p) by p · ξ(p) and f(q) by ξ(q) · q, this reduces to

p · ξ(p) > p · ξ(q).

In other words, ξ is a proper scoring rule.

24.1.3 Remark When I first sat down to prove this result, I didn’t see the point
of defining f on all of RS

+, and requiring it to be homogeneous. In fact, the
first part of the proof shows that if ξ is a strictly proper scoring rule, then the
f(p) = ξ(p) ·p is strictly convex on ∆, and that ξ(p) ∈ ∂f(p). It is the second part
of the theorem where we need the fact that f is defined on RS

+ and not just ∆.
Here is the key point: Regarded as a function with domain ∆, f |∆ may have more
subgradient vectors than f as a function on RS

+. This is because the subgradient
inequality f(q) > f(p)+ξ(p)(q −p) need only hold for q in the domain of f . With
a smaller domain, more vectors ξ can be subgradients, and these extra vectors
may not be part of a strictly proper scoring rule. The homogeneity forces f to
satisfy f(p) = ξ(p) · p for p ∈ ∆, which is crucial to showing that the subgradient
inequality reduces to the definition of strict properness of ξ.

24.1.4 Remark By the way, defining g(p, q) = ξ(p) · q, we see that f is the
optimal value function for the parametrized optimization problem of maximizing
g(p, q) with respect to q. If f is differentiable at p, the Envelope Theorem tells us
that f ′(p) = ξ(p). This theorem extends that to the case where f is not necessarily
differentiable.
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24.1.5 Remark We have seen in Theorem 21.4.1 that every lower semicontinuous
positively homogeneous function is the support function of a closed convex set.
In this case, f is clearly the support function of co{ξ(p) : p ∈ ∆}.

24.1.6 Example I asserted earlier that Good [5] proved that

ξs(p) = ln ps

defined a strictly proper scoring rule. So according to the proof of Theorem 24.1.2,
it should be the subgradient of the differentiable function

f(p) = p · ξ(p/1 · p) =
S∑

s=1
ps ln

(
ps

1 · p

)
=

S∑
s=1

ps ln ps −
S∑

s=1
ps ln(1 · p).

Tedious differentiation3 reveals that

∂f(p)
∂ps

= ln ps − ln(1 · p).

So when p ∈ ∆, we have 1 · p = 1, and ln 1 = 0, so

∇f(p) = ξ(p),

as promised. □

24.1.7 Exercise Verify that the quadratic scoring rule given by ξs(p) = ps −
1
2p2

s is indeed a strictly proper scoring rule. What is the associated sublinear
function? □

24.1.8 Exercise A scoring rule ξ is called symmetric or local if the there is a�
function h such that for each state s ∈ S, ξs(p) = h(ps). If |S| ⩾ 3, show that the
logarithmic scoring rule is the unique (up to positive affine transformation) local
scoring rule. □

24.2 Private information and trade

The next example of the role of convexity is based on Myerson and Satterth-
waite [13].

Consider the problem of trading a discrete object. The seller initially owns the
object and values it at s. The buyer has value b. These values are not knowable

3 Write t(p) = 1 · p, so ∂t(p)/∂pk = 1, ∂ ln t(p)/∂pk = 1/t(p), for each k. Then writing
f(p) =

∑
i pi ln pi −

∑
i pi ln t(p), we have

∂f(p)
∂pk

= (1 + ln pk) −
∑

i

[
pi

(
1/t(p)

)
+ δik ln t(p)

]
= ln pk − ln t(p).

v. 2019.12.24::12.35 src: Incentives KC Border: for Ec 181, 2019–2020



Ec 181 AY 2019–2020
KC Border Convexity and incentive design 24–5

to the other agent. If the buyer’s value exceeds the seller’s value, b > s, then they
can trade at an intermediate price p and both will be better off. A mechanism for
trading must determine whether to trade and at what price. Moreover it can rely
only on information provided (perhaps indirectly) by the buyer and seller.

The current approach to modeling mechanisms like these was proposed by
John Harsanyi [6, 7, 8]. His approach is called the Bayesian game model. In
this model the buyer and seller act as if nature moves first and assigns the buyer
and seller their values by drawing them from known probability distributions.
A strategy is then a function from each trader’s information (his value) to an
action, depending on the rules of exchange. (Think of nature as dealing them a
hand from a deck of cards. Traders should be prepared to act on whatever hand
they possess.) A Bayes–Nash equilibrium is simply a Nash equilibrium of a
Bayesian game.

We shall refer to actions in this game as bids. But a strategy is a bidding
function. The bidding functions will be denoted β and σ, where β(b) is the bid
made by a buyer with value b and σ(s) is the bid made by a seller with value s.

For concreteness we shall assume that the buyer believes that nature chooses
s from a cumulative distribution function G, and the seller believes b is drawn
from distribution F . That is, the buyer believes that Prob {s ⩽ t} = G(t) and
the seller believes that Prob {b ⩽ t} = F (t). To simplify things, let’s suppose
that the distributions F and G have common support [0, 1], and are continuously
differentiable. This ensures that they have densities, so calculations are simpler.
Let’s also assume that the buyer and seller are risk neutral, and that prices and
values are commensurable, and that b and s are stochastically independent.

24.2.1 The revelation principle

A mechanism for trading sets up a Bayesian game by specifying an action set
for each trader and an outcome function. Let B be the buyer’s set of actions. (In
the split-the-difference rule, B is just the set of possible bids.) Let S denote the
seller’s action set. The mechanism specifies two functions:

t(β, σ) =

 1 if buyer gets object
0 if seller keeps object

p(β, σ) = payment from buyer to seller,

where β ∈ B is the buyer’s chosen action and σ ∈ S is the seller’s. Now let
β∗ : b 7→ β∗(b) denote the buyer’s Bayes–Nash equilibrium strategy. That is, a
buyer with value b chooses action β∗(b) in equilibrium. Similarly, σ∗ : s 7→ σ∗(s) is
the seller’s equilibrium strategy. When the values are b and s, the buyer acquires
the object if and only if t

(
β∗(b), σ∗(s)

)
= 1 and pays p

(
β∗(b), σ∗(s)

)
.

Consider another mechanism where B̂ is the set of buyer’s values and Ŝ is the
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set of seller’s values. Define the outcome functions by

t̂(b, s) = g
(
β∗(b), σ∗(s)

)
p̂(b, s) = p

(
β∗(b), σ∗(s)

)
.

It follows from the definition of equilibrium that an equilibrium strategy for the
buyer is to choose action b when his value is b, and for the seller to choose s when
his value is s. In other words, the first mechanism is equivalent to a mechanism in
which actions correspond to values and the equilibrium action choice is to choose
the true value. This observation is known as the revelation principle.

24.2.2 Revelation mechanisms

Because of the revelation principle the only mechanisms that need to be consid-
ered are the incentive compatible direct revelation mechanisms. That is,
mechanisms where strategies are values, and the equilibrium bidding functions are
truthful, that is, β(b) = b and σ(s) = s. Note that these bidding functions are
strictly increasing and continuously differentiable.

For the sake of concreteness again take B = S = [0, 1], and assume

F (0) = G(0) = 0 and F (1) = G(1) = 1.

Let
πB(b, β) =

∫ 1

0

[
b · t(β, s) − p(β, s)

]
G′(s) ds

be the buyer’s expected payoff when his value is b and he bids β, and the seller
bids his true value. Similarly let

πS(s, σ) =
∫ 1

0

[(
1 − t(b, σ)

)
s + p(b, σ)

]
F ′(b) db

be the seller’s expected payoff when his value is s and he bids σ and the buyer
bids his true value.

By incentive compatibility, bidding you value is optimal, so

πB(b, b) = max
β

πB(b, β),

and denote this value by VB(b). Likewise

πS(s, s) = max
σ

πS(s, σ) = VS(s).

Define

t̄(b) =
∫ 1

0
t(b, s)G′(s) ds, and p̄(b) =

∫ 1

0
p(b, s)G′(s) ds.
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That is, t̄(b) is the probability that the buyer receives the object when his type
is b, and p̄(b) is his expected payment (given that the seller is bidding his value).
Then

πB(b, β) = bt̄(β) − p̄(β).
So incentive compatibility for the buyer can be written as

VB(b) = πB(b, b) = bt̄(b) − p̄(b) ⩾ bt̄(b′) − p̄(b′) = bt̄(b′) −
[
b′t̄(b′) − VB(b′)

]
,

or
VB(b) ⩾ VB(b′) + t̄(b′)(b′ − b). (2)

This implies in fact

VB(b) = sup
b′

VB(b′) + b′t̄(b′) − t̄(b′)b.

Now the function b 7→ VB(b′) + b′t̄(b′) − t̄(b′)b is an affine function of b, so VB is
convex, being the pointwise supremum of affine functions. Moreover, by (2), we
see that for every point b′, t̄(b′) is a supergradient of VB at b′. Thus for all but
countably many values of b, the function VB is differentiable and

V ′
B(b) = t̄(b).

In particular, since convex functions are integrals of their supergradients, we also
know that

VB(b) = VB(0) +
∫ b

0
t̄(x) dx.

= VB(0) +
∫ b

0

∫ 1

0
t(x, s)G′(s) ds dx

(3)

A similar argument shows that

VS(s) = VS(1) −
∫ 1

s

∫ 1

0
t(b, x)F ′(b) db dx. (4)

24.2.3 Inefficiency is inevitable when trade is voluntary

We now show that in general, voluntary participation and efficiency are incompat-
ible. To do this, we need to make sure that the informational problem is nontrivial,
in that we are not ex ante sure whether trade should occur. A sufficient condition
is the following nondegeneracy condition:∫ 1

0
G(t)

(
1 − F (t)

)
dt > 0. (5)

What this condition does is guarantee that there is a set of positive measure of
values of t satisfying Prob {s ⩽ t} > 0 and Prob {b > t} > 0. This implies that
there is positive probability that trade is optimal.
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Traders will voluntarily participate only if their expected payoff is at least as
great as not participating. That is,

VB(b) ⩾ 0 and VS(s) ⩾ s for allb, s.

Now let us see what efficiency demands. An efficient outcome demands that

t(b, s) = 1 ⇐⇒ b > s, (6)

or
t(b, s) = 1b>s.

Now by (3), (4), and (6) we have

VB(b) = VB(0) +
∫ b

0

∫ 1

0
t(x, s)G′(s) ds dx

= VB(0) +
∫ b

0

∫ 1

0
1x>sG

′(s) ds dx

= VB(0) +
∫ b

0
G(x) dx.

Similarly
VS(s) = VS(1) −

∫ 1

s
F (b) db

Taking expectations,

EVB = VB(0) +
∫ 1

0

∫ b

0
G(s) ds dF (b) and EVS = VS(1) −

∫ 1

0

∫ 1

s
F (b) db dG(s).

Integrating by parts,
∫ 1

0

{∫ b

0
G(s) ds

}
dF (b) =

∫ 1

0
G(s) ds −

∫ 1

0
G(b)F (b) db =

∫ 1

0
G(x)

(
1 − F (x)

)
dx

∫ 1

0

{∫ 1

s
F (b) db

}
dG(s) = 0 +

∫ 1

0
G(x)F (x) dx.

Therefore

EVB + EVS =
{

VB(0) +
∫ 1

0
G(x)

(
1 − F (x)

)
dx
}

+
{

VS(1) −
∫ 1

0
G(x)F (x) dx

}
.

(7)
Now consider what happens when the buyer’s value is b and the seller’s value

is s. The sum of the ex post payoffs is

b1b>s − p(b, s) + s(1 − 1b>s) + p(b, s) = max{b, s}.
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Taking expectations with respect to both b and s,

E(VB + VS) = E max{b, s}

=
∫ 1

0

∫ 1

0
max{b, s}F ′(b)G′(s) db ds

=
∫ 1

0

∫ b

0
bF ′(b)G′(s) ds db +

∫ 1

0

∫ s

0
sF ′(b)G′(s) db ds

=
∫ 1

0
bF ′(b)G(b) db +

∫ 1

0
sF (s)G′(s) ds

=
∫ 1

0
x
[
F ′(x)G(x) + G′(x)F (x)

]
dx

= xF (x)G(x)
∣∣∣∣∣
1

0
−
∫ 1

0
F (x)G(x) dx

= 1 −
∫ 1

0
F (x)G(x) dx (8)

Equating the two expressions (7) and (8) for EVB + EVS gives

VB(0) +
∫ 1

0
G(x)

(
1 − F (x)

)
dx + VS(1) −

∫ 1

0
G(x)F (x) dx = 1 −

∫ 1

0
F (x)G(x) dx

so
VB(0) + VS(1) = 1 −

∫ 1

0
G(x)

(
1 − F (x)

)
dx

but by the voluntary participation constraints, VS(1) ⩾ 1 and VB(0) ⩾ 0, so

1 −
∫ 1

0
G(x)

(
1 − F (x)

)
dx ⩾ 1,

which contradicts nondegeneracy (5).
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