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23.1 Other approaches to separation theorems

The technique use to prove the Strong Separating Hyperplane Theorem 8.3.1 in
Lecture 8 has the virtue that it is relatively elementary—it uses only mathematics
found in say, Apostol’s Calculus [2]. But it is not the only approach.

One traditional approach used by convex analysts (e.g., Klee [5], Rockafel-
lar [7], Lay [6]) makes use of Zorn’s Lemma 22.2.1 to show that if A and B are
nonempty disjoint convex sets in a linear space X, then there are disjoint con-
vex sets Â and B̂ such that A ⊂ Â, B ⊂ B̂, and Â ∪ B̂ = X. This implies the
existence of a separating hyperplane.

Another approach used by analysts is based on the Hahn–Banach Extension
Theorem (e.g., Royden [8]). It is also proved using Zorn’s Lemma. Holmes [4]
points out that a version of the separating hyperplane theorem can be used to
prove the Hahn–Banach Theorem, and vice versa.

23.2 Extension of linear functionals

We first show that linear extensions of linear functionals always exist. This is
not the Hahn–Banach Extension Theorem. That theorem imposes additional
constraints on the extension.

23.2.1 Theorem Let X be a vector space, and let f : M → R be linear. Then
there is an extension f̂ of f to a linear functional on X.

Proof : We show below in Theorem 23.8.2 that there is a subspace N of X that is
complementary to M . That is, for each x ∈ X there is a unique decomposition

x = xM + xN , where xM ∈ M and xN ∈ N.

Define f̂ by
f̂(xM + xN) = f(xM),

so that f̂(z) = 0 for every z ∈ N . Then f̂ extends f and is linear on X:

f̂(αx + βy) = f̂
(
α(xM + xN) + β(yM + yN)

)
= f̂(αxM + βyM︸ ︷︷ ︸

∈M

+ αxN + βyN︸ ︷︷ ︸
∈N

)

= f(αxM + βyM) = αf(xM) + βf(yM) = αf̂(x) + βf̂(y).
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23.3 The Hahn–Banach Extension Theorem

One of the most important and far-reaching results in analysis is the seemingly
mild Hahn–Banach Extension Theorem.

23.3.1 Definition Let f, g : A → R. We say that g dominates f on A, written

g ≧ f

if
( ∀x ∈ A ) [ g(x) ⩾ f(x) ].

We say that g strictly dominates f on A, written

g � f

if
( ∀x ∈ A ) [ g(x) > f(x) ].

23.3.2 Definition Let A be a nonempty subset of a set X and let f : A → Y .
We say that a function f̂ : X → Y extends f to X, or is an extension of f to
X, if

( ∀x ∈ A )
[

f̂(x) = f(x)
]
.

In other words, f is the restriction of f̂ to A, often written

f = f̂ |A .

23.3.3 Hahn–Banach Extension Theorem Let X be a vector space and
let h : X → R be a convex function. Let V be a vector subspace of X and let
f : V → R be a linear functional dominated by h on V . Then there is a (not
generally unique) extension f̂ of f to a linear function defined on all of X that is
dominated by h on X.

23.3.4 Remark Some statements of the Hahn–Banach Theorem (e.g., Royden [8,
Theorem 10.3.4, p. 233], Dunford and Schwartz [3, Theorem II.3.10, p. 62],
Wilanksy [9, Theorem 12.4.1, p. 269]) impose other conditions on h, such as
sublinearity (positive homogeneity and subadditivity). Together these imply con-
vexity. It turns out the homogeneity is unnecessary, but it is typically satisfied
in the cases they have in mind. We shall see (I hope) that if a linear function f isMake sure we do

this. dominated by a convex function h, there is a sublinear function p (the directional
derivative) satisfying h ≧ p ≧ f .

Proof of Theorem 23.3.3: The proof is an excellent example of what is known as
transfinite induction. It has two parts. The first part says that any dominated
extension g of f whose domain is not all of X has a dominated extension to a
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strictly larger subspace. The second part says that this is enough to conclude that
there is a dominated extension defined on all of X.

So let M be a subspace of X that includes V and assume that we have an
extension g of f to M that satisfies g ≦ h on M . If M = X, then we are done. So
suppose there exists v ∈ X \ M . Let N be the linear span of M ∪{v}. For each
x ∈ N there is a unique decomposition

x = z + λv where z ∈ M.

(To see the uniqueness, suppose x = z1+λ1v = z2+λ2v. Then z1−z2 = (λ2−λ1)v.
Since z1 − z2 ∈ N and v /∈ N , it must be the case that λ2 − λ1 = 0. But then
λ1 = λ2 and z1 = z2.)

Any linear extension ĝ of g satisfies ĝ(z+λv) = g(z)+λĝ(v), so the requirement
that it be dominated by h on N becomes

( ∀z ∈ M ) ( ∀λ ∈ R ) [ g(z) + λĝ(v) ⩽ h(z + λv) ]. (1)

Thus the problem of finding a dominated extension of g to N reduces to showing
that we can pick ĝ(v) to satisfy (1). For λ = 0, the inequality in (1) is automati-
cally satisfied. For λ > 0, the inequality in (1) reduces to

ĝ(v) ⩽ h(z + λv) − g(z)
λ

,

and for λ < 0, the inequality in (1) reduces to

ĝ(v) ⩾ h(z + λv) − g(z)
λ

.

Letting µ = −λ, we can rewrite this as

ĝ(v) ⩾ g(z) − h(z − µv)
µ

.

So we have reduced the problem to showing that there is some real number
ĝ(v) such that

( ∀x, y ∈ M ) ( ∀µ, λ > 0 )
[

g(x) − h(x − µv)
µ

⩽ ĝ(v) ⩽ h(y + λv) − g(y)
λ

]
. (2)

The constant ĝ(v) plays no real rôle here, and we may simply omit it. Then
multiplying by µλ > 0 and rearranging terms, we see that (2) is equivalent to

( ∀x, y ∈ M ) ( ∀µ, λ > 0 ) [ g(λx + µy) ⩽ λh(x − µv) + µh(y + λv) ]. (3)
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Thus, a dominated extension of g to N exists if and only if (3) is valid. But
proving this is straightforward: if x, y ∈ M and λ, µ > 0, then

g(λx + µy) = (λ + µ)g
(

λ

λ + µ
x + µ

λ + µ
y

)
(linearity of g)

⩽ (λ + µ)h
(

λ

λ + µ
x + µ

λ + µ
y

)
(h dominates g)

= (λ + µ)h
(

λ

λ + µ
[x − µv] + µ

λ + µ
[y + λv]

)
(algebra)

⩽ (λ + µ)
[

λ

λ + µ
h(x − µv) + µ

λ + µ
h(y + λv)

]
(convexity of h)

= λh(x − µv) + µh(y + λv).

This shows that as long as there is some v /∈ M , there is a further extension ĝ of
g to the larger subspace N = span(M ∪{v}) that satisfies ĝ ≦ h on N .

To conclude the proof, consider the set G of all pairs (g, M) of such that M is a
linear subspace of X with V ⊂ M , g : M → R is a linear functional, g|V = f , and
g(x) ⩽ h(x) for all x ∈ M . Introduce the partial order ≥ on G by (g′, M ′) ≥ (g, M)
if M ′ ⊃ M and g′|M = g. Note that this relation is indeed a partial order.

If {(gα, Mα)} is a chain (a linearly ordered subset) in G, then the function g
defined on the linear subspace M = ⋃

α Mα by g(x) = gα(x) for x ∈ Mα is well
defined and linear, g(x) ⩽ h(x) for all x ∈ M , and (g, M) ⩾ (gα, Mα) for each α.
By Zorn’s Lemma 22.2.1, there is a maximal extension (f̂ , M) in G. By the first
part of the argument, an extension is not maximal unless M = X.

The next result tells us when a sublinear functional is actually linear.

23.3.5 Theorem A sublinear function h : X → R on a vector space is linear if
and only if it dominates exactly one linear functional on X.

Proof : First let h : X → R be a sublinear functional on a vector space. If h is
linear and f(x) ⩽ h(x) for all x ∈ X and some linear functional f : X → R, then
−f(x) = f(−x) ⩽ h(−x) = −h(x), so h(x) ⩽ f(x) for all x ∈ X, that is, f = h.

Now assume that the sublinear function h dominates exactly one linear func-
tional on X. Note that h is linear if and only if h(−x) = −h(x) for each x ∈ X.
So if we assume by way of contradiction that h is not linear, then there exists some
x0 6= 0 such that −h(−x0) < h(x0). Let V = {λx0 : λ ∈ R}, the vector subspace
generated by x0, and define the linear functionals f, g : V → R by f(λx0) = λh(x0)
and g(λx0) = −λh(−x0). From f(x0) = h(x0) and g(x0) = −h(−x0), we see that
f 6= g. Next, notice that f(z) ⩽ h(z) and g(z) ⩽ h(z) for each z ∈ V , that is,
h dominates both f and g on the subspace V . Now by the Hahn–Banach Theo-
rem 23.3.3, the two distinct linear functionals f and g have linear extensions to
all of X that are dominated by h, a contradiction.
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23.4 Another Separating Hyperplane Theorem

23.4.1 Theorem (Algebraic Separating Hyperplane Theorem) Let A
and B be disjoint nonempty convex subsets of X. Assume that cor A 6= ∅. Then
there is a hyperplane {φ = α} properly separating A and B.

That is, A ⊂ {φ ⩾ α} and B ⊂ {φ ⩽ α}, and there exists some a ∈ A and
b ∈ B with φ(a) > φ(b).

We may also say that the functional φ separates A and B.

23.5 Extension and Separation

Proof of Hahn–Banach 23.3.3 using Separation 23.4.1: Let M be a vector sub-
space of the vector space X, and let g : X → R be convex. Let φ : M → R be a
linear functional on M , and assume that g dominates φ on M .

Let

A = {(x, α) ∈ X × R : α > g(x)}, B = {(x, α) ∈ M × R : α ⩽ φ(x)},

Then A and B are disjoint (since g ≧ φ) and convex. Moreover it is easy to see
that every point in A is a core point.

Thus by the Algebraic Separating Hyperplane Theorem 23.4.1, there is a sep-
arating hyperplane, which must be non-vertical. It is thus the graph of an affine
function φ̂ + β, which satisfies Elaborate on this.

φ̂ + β ≧ φ on M,

so
φ̂ = φ on M and β ⩾ 0.

On the other hand
φ̂ ≦ φ̂ + β ≦ g everywhere.

Thus φ̂ is the desired extension of φ.

The next proof is standard, and is taken from the Hitchhiker’s Guide [1, The-
orem 5.61].

Proof of Separation 23.4.1 using Hahn–Banach 23.3.3: Let A and B be disjoint
nonempty convex sets in a vector space X, and suppose A has an internal point.

Then the nonempty convex set A − B has an internal point. Let z be an
internal point of A − B. Clearly, z 6= 0 and the set C = A − B − z is nonempty,
convex, absorbing, and satisfies −z /∈ C. (Why?) By part (2) of Lemma 9.3.6,
the gauge pC of C is a sublinear function.

We claim that pC(−z) ≥ 1. Indeed, if pC(−z) < 1, then there exist 0 ≤ α < 1
and c ∈ C such that −z = αc. Since 0 ∈ C, it follows that −z = αc+(1−α)0 ∈ C,
a contradiction. Hence pC(−z) ≥ 1.
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Let M =
{
α(−z) : α ∈ R

}
, the one-dimensional subspace generated by −z,

and define f : M → R by f(α(−z)) = α. Clearly, f is linear and moreover f ≤ pC

on M , since for each α ⩾ 0 we have pC(α(−z)) = αpC(−z) ≥ α = f(α(−z)),
and α < 0 yields f(α(−z)) < 0 ≤ pC(α(−z)). By the Hahn–Banach Extension
Theorem 23.3.3, f extends to f̂ defined on all of X satisfying f̂(x) ≤ pC(x) for all
x ∈ X. Note that f̂(z) = −1, so f̂ is nonzero.

To see that f̂ separates A and B let a ∈ A and b ∈ B. Then we have

f̂(a) = f̂(a − b − z) + f̂(z) + f̂(b) ≤ pC(a − b − z) + f̂(z) + f̂(b)
= pC(a − b − z) − 1 + f̂(b) ≤ 1 − 1 + f̂(b) = f̂(b).

This shows that the nonzero linear functional f̂ separates the convex sets A and
B.

To see that the separation is proper, let z = a − b, where a ∈ A and b ∈ B.
Since f̂(z) = −1, we have f̂(a) 6= f̂(b), so A and B cannot lie in the same
hyperplane.

23.6 Other equivalent propositions

23.6.1 Extension of Positive Operators

23.6.1 Theorem (Krein–Rutman Theorem) Let P be the positive cone of
X, and M a linear subspace of X. Assume that P ∩ M contains a core point of
P . Consider M to be an ordered vector space with positive cone P ∩ M .

If φ : M → R is a positive linear functional on M , then there is an extension
φ̂ of φ to X so that φ̂ is a positive functional on X

23.6.2 Existence of Positive Operators

23.6.2 Definition A wedge P is a convex cone in X. It defines a partial order
≧ on X by

x ≧ y ⇐⇒ x − y ∈ P.

P = {x : x ⩾ 0} is the positive cone. A linear functional φ : X → R is positive
if

( ∀x ≧ 0 ) [ φ(x) ⩾ 0 ].

Note that the zero functional is positive.

23.6.3 Theorem (Existence of Positive Operators) If P is a proper subset
of X and cor P 6= ∅, then there exists a nonzero positive linear functional on X.
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23.6.3 Support Theorem

23.6.4 Definition Let H = {φ = α} and let A be a convex set in X. H sup-
ports A at x if A lies in a half-space determined by H, and x ∈ A ∩ H. The
support is proper if A is not a subset of H. The point x is called a support
point of A.

23.6.5 Lemma Let A be a convex subset of X and assume icr A 6= ∅. If x /∈
icr A, then there is a linear functional φ on X such that ( ∀y ∈ icr A ) [ φ(x) > φ(y) ].

23.6.6 Corollary (Support Theorem) Let A be a convex subset of X and
assume that icr A 6= ∅. Then x is a proper support point of A if and only if
x ∈ A \ (cor A).

23.6.4 Subdifferentiability

23.6.7 Definition Let g : A → R be a convex function. A linear functional φ is
a subgradient of g at a ∈ A if

( ∀x ∈ A ) [ g(x) ⩾ g(a) + φ(x − a) ].

If g has a subgradient at a, then we say that g is subdifferentiable at a.

23.6.8 Theorem (Subdifferentiability Theorem) If g is a convex function
on the convex set A in X, and a ∈ icr A, then g is subdifferentiable at a.

23.6.5 The plan

Separation Theorem

=⇒

Support Theorem ⇐⇒ Subgradients

=⇒

Nonzero Positive Functionals

=⇒

Krein–Rutman
=⇒

Hahn–Banach

=⇒
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23.6.6 Ancillary concepts

23.6.9 Fact (cf. [4, pp. 2–3]) If M is a linear subspace of a vector space
X, there is a (not unique) subspace N that is complementary to M . That is,
M ∩ N = {0}, and every x ∈ X has a unique representation as x = xM + xN ,
where xM ∈ M and xN ∈ N . This is expressed as X = M ⊕ N .

23.6.10 Corollary If φ is a linear functional on M , then it can be extended to
all of X via φ̂(x) = φ(xM).

23.6.7 Hahn–Banach implies Krein–Rutman

Let ≧ be the order induced by P , and let φ be positive on M . Let Y be the span
of P ∪ M , and let Y = M ⊕ N . For y ∈ Y , we may write

y = p1 − p2 + x,

where p1, p2 ∈ P and x ∈ M .
Let

g(y) = inf{φ(x) : x ∈ M & x ≧ y}.

Then g is sublinear and φ ≦ g on M . Extend φ to φ̂ ≦ g on Y by Hahn–Banach.
Now show that φ̂ is positive:

Let x ∈ P and let x̄ ∈ P ∩ M . For λ ⩾ 0, we have

x̄ + λx ∈ P.

Thus
x̄/λ ≧ −x.

But x̄/λ ∈ M , so by definition of g,

g(−x) ⩽ φ(x̄/λ).

Thus
φ̂(−x) ⩽ g(−x) ⩽ φ(x̄)/λ.

Let λ → ∞ to get φ̂(−x) ⩽ 0, which proves that φ̂ is positive on Y . Then use
complementary subspaces to extend φ̂ to all of X.

23.6.8 Krein–Rutman implies nonzero positive functionals

This is easy. Let 0 6= x̄ ∈ cor P , and let M = span {x}. Define φ on M by
φ(λx̄) = λ and apply Krein–Rutman.
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23.6.9 Nonzero positive functionals imply support points

Assume 0 ∈ A \ cor(A), and let P the cone generated by cor A. Any positive
functional supports A at 0.

23.6.10 Support points imply subdifferentiability

x

(
x, f(x)

)
f

epi f

(p, 0)
(p, −1)

H = [(p, −1) = β]

g : y 7→ p · y − β

Figure 23.6.1. The affine function g : y 7→ p · y − β satisfies g ≦ f and
g(x) = f(x). Equivalently, The hyperplane H = {(y, α) ∈ X × R : (p, −1) ·
(y, α) = β} supports epi f at the point

(
x, f(x)

)
, which maximizes (p, −1)

over epi f and the maximum values is β.

23.6.11 Subdifferentiability implies support points

Let x ∈ A \ (cor A), and let ρ be the gauge function of A. The epigraph of ρ is WTF? This makes
no sense.a convex cone. Let φ be a subgradient of ρ at x. It supports the epigraph at(

x, ρ(x)
)
. Slice through X × R with the horizontal plane {(x, α) : α = 1}.

23.6.12 Support points implies separating hyperplanes

23.6.11 Lemma A linear functional φ properly separates convex sets A and B
if and only if it properly supports A − B at 0.

23.7 ⋆ Digression: Quotient spaces

An equivalence relation ∼ on a set X is a binary relation that is transitive,
symmetric, and reflexive. In other words, for all x, y, z ∈ X,

(x ∼ y & y ∼ z) =⇒ x ∼ z; x ∼ y =⇒ y ∼ x; and x ∼ x.
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The equivalence class [x] of x is defined by

[x] = {y : y ∼ x}.

Observe that

x ∼ y ⇐⇒ [x] = [y]; and x 6∼ y ⇐⇒ [x] ∩[y] = ∅.

Thus the ∼-equivalence classes form a partition of X into disjoint sets. The
collection of ∼-equivalence classes of X is called the quotient of X modulo
∼, often written as X/∼. The function x 7→ [x] from X to X/∼ is called the
quotient map.

In many contexts, mathematicians say that they identify the members of an
equivalence class. What they mean by this is that they write X instead of X/∼,
and they write x instead of [x].

Given any function f with domain X, we can define an equivalence relation
∼ on X by x ∼ y whenever f(x) = f(y). This is one of the most common ways
to define equivalence relations.

23.8 ⋆ Digression: Complementary subspaces

23.8.1 Definition Let M and N be linear subspaces of a vector space X. We say
that M and N are complementary subspaces if each x in X can be written
in a unique way as

x = xM + xN , where xM ∈ M and xN ∈ N.

In this case we write X = M ⊕ N and say that X is the direct sum of M and
N .

It is well-known that every linear subspace M of Rm has an orthogonal comple-
ment M⊥ =

{
x ∈ Rm : ( ∀z ∈ M ) [ x · z = 0 ]

}
. In more general linear subspaces

there may not be an inner product, but nevertheless we still have the following.

23.8.2 Theorem Every linear subspace of a vector space has a complementary
subspace.

Proof : (cf. Holmes[4, § C, pp. 2–3]) Let M be a linear subspace of the vector
space X. Define the relation ∼M on X by

x ∼M y if x − y ∈ M.

Exercise 4.2.2 proves that ∼M is an equivalence relation. Let X/M denote the set
of equivalence classes of ∼M , and let [x] denote the equivalence class of x. Then

[x] = x + M.
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(See Exercise 4.2.2.)
We can turn X/M into a vector space by defining vector addition and scalar

multiplication via
α[x] + β[y] = [αx + βy].

To verify that this is well defined, we need to show that if [x] = [x′] and [y] = [y′],
then [αx + βy] = [αx′ + βy′.] That is, we need to show that(

x − x′ ∈ M & y − y′ ∈ M
)

=⇒ (αx + βy) − (αx′ + βy′) ∈ M,

but this is clearly true. As a result [0] = M is the zero of the vector space X/M .
We now have to show that X/M can be identified with a complementary

subspace of X. Since X/M is a linear space, it has a basis {[bi] : i ∈ I} where
I is some index set, and each bi is a fixed representative of its ∼M -equivalence
class. It follows that {bi : i ∈ I} is a linearly independent subset of X. Moreover,
N = span{bi : i ∈ I} is complementary to M : Let x ∈ X. Then we can uniquely
write

[x] =
k∑

i=1
αi[bi]

since {[bi] : i ∈ I} is a basis for X/M . This means

k∑
i=1

αibi ∈ [x] = x + M.

Let
xN =

k∑
i=1

αibi and xM = xN − x.

Then xM ∈ M , and x = xM + xN . This decomposition is unique.
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