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Topic 22: Introduction to posets and lattices

22.1 Partially ordered sets

A partial order or partial ordering is a binary relation > on a set X. The
statement that satisfies the following properties:

1. > is reflexive, that is, for all z € X,

T > x.

2. » is transitive, that is, for all z,y,z € X

rrry&y-z = x=2z.

3. = is antisymmetric, that is, for all x,y € X,

rry&y-z = x=uy.

The expression x > y is read “x is greater than or equal to y.” We write x > v,
read x is strictly greater than y,” to mean = > y, but x # y. We may also write
y 2z tomean x = y, or y < x to mean xr > y.

A pair (X, >), where X is a nonempty set and > is a partial order is called
a partially ordered set, sometimes called a poset. Two elements x and y of a
partially ordered set are ordered if either x = y or y = x.

A partial order > is a linear order if it is complete, that is, every pair is
ordered. A linearly ordered subset of a partially ordered set is called a chain. Note
that a partial order (and hence a linear order) does not allow for “indifference,”
that is, we cannot have x = y, y = =, and = # y.

22.1.1 Example Here are some familiar examples of partially ordered sets.

1. The usual ordering > of the real numbers R is a partial order, in fact a
linear order.

2. Set inclusion D is a partial order on the power set of a set X. (Remember
that A C B allows for A = B.)

3. The pointwise ordering > of real-valued functions on a set X is a partial
order, where f > g if f(x) > g(z) for all € X. This includes as a special
case the coordinatewise ordering = on R", where x = y if x; > y; for each
1=1,...,n.
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4. First order stochastic dominance is a partial order of probability distribu-
tions (or random variables). Ditto for riskiness.

5. The set Bernoulli utility functions is partially ordered by de Finetti-Arrow—
Pratt risk aversion.

U

It is often useful for examples to describe a finite partially ordered set in
terms of its minimal directed graph. In this kind of diagram, points x and y are
connected by an arrow from x to y if = > y and there is no z with z > z > y. (In
this case we might say that x is an immediate successor of y. If there were such a z,
transitivity would imply = > ¥, so the arrow from z to y would be redundant.) See
Example 22.3.5 and Figure 22.3.1 for an example of such a diagram. This kind
of diagram, minus the arrowheads, is sometimes known as a Hasse diagram.
Without the arrowheads, the direction of the relation (x = y or y > z) is to be
inferred from their relative vertical positions.

An element x is an upper bound for a set A in a partially ordered set X if
x =y for each y € A. It is a lower bound if y = x for each y € A. An element
x is the greatest element of A if it belongs to A and is an upper bound for A.
An element z is the least element of A if it belongs to A and is an lower bound
for A. The element x is a maximal element of A if it belongs to A and there is
no y belonging to A with y >= x. The element x is a minimal element of A if it
belongs to A and there is no y belonging to A with y < .

The element z is the least upper bound or supremum of A if it is the least
element of the set of upper bounds of A. The element x is the greatest lower

bound or infimum of A if it is the greatest element of the set of lower bounds
of A.

22.1.2 Exercise The greatest element of A, if it exists, is unique. The greatest
element is the unique maximal element of A. 0J

22.2 Zorn’s Lemma

A number of propositions are equivalent to the Axiom of Choice. One of these
is Zorn’s Lemma, due to M. Zorn [6]. That is, Zorn’s Lemma is a theorem if the
Axiom of Choice is assumed, but if Zorn’s Lemma is taken as an axiom, then the
Axiom of Choice becomes a theorem.

22.2.1 Zorn’s Lemma If every chain in a partially ordered set X has an upper
bound, then X has a mazimal element.
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22.3 Lattices

A lattice is a partially ordered set (X,>) where every pair x,y in X has a
supremum and an infimum (in X'). The supremum of a pair x,y is also called the
join of x and y, denoted = V y. The infimum is also called the meet, denoted
x Ay. Note that by Exercise 22.1.2, the meet and join are unique whenever they
exist.

The meet and join are called lattice operations. It is convenient to restate
the definitions as follows. For any x,y, z, to show that z = x A y, that is, z is
the greatest lower bound of the set {z,y}, we need to show three things: = > z,
y = z, and

(xr=u&kyru) = zru

Likewise, to show that z = x V y, that is, z is the least upper bound of the set
{z,y}, we need to show: z > x, z > y, and

(u=z&ury) = urz

The following facts are now obvious (given the reflexivity of >) and will be
used over and over without any special mention. Let X be a lattice. For every
z,y,z € X,

l.zVy=a>=xAy. !

2. fz >y, thenz=azVyandy=xAy.
. xr=xNrx=xV.

4. xNy=yAxandzVy=yVz.

5. z = xVyif and only if (z = x & z = y). Likewise z < x A y if and only if
(z=x & z=2y).

The next facts are only a little less obvious.
22.3.1 Exercise (Associativity) Let X be a lattice. For every z,y,z € X,
zAyANz)=(xAy)ANz and zV(yVz)=(zxVy)Vz.
0

22.3.2 Exercise Every nonempty finite lattice has a greatest and a least element.
Every linearly ordered set is a lattice. U

22.3.3 Example Here are some familiar examples of lattices and partially or-
dered sets that are or are not lattices.

LA word on precedence: z V y = x means (z V y) = x, which should be apparent from the
fact that = V (y = z) is meaningless.

KC Border: for Ec 181, 2019-2020 src: Lattices v. 2019.12.24::12.35

Draw [ictures,

Write out an
answer.



Ec 181 AY 2019-2020
KC BORDER INTRODUCTION TO POSETS AND LATTICES 22-4

1. The numbers R with the usual ordering > is a lattice. (This is obvious, but
it also follows from Exercise 22.3.2, as it is a linearly ordered set.)

2. The power set is a lattice under set inclusion D. Indeed AV B = AU B and
ANB=nNB.

3. The set R" with the coordinatewise order = is a lattice, where z Ay =
(x1 Ay1, .2y Ayp) and zVy = (21 VY1, ..., Ty V Yp)-
But note that under the order >, defined by = > y if x = y or x; > y; for

1=1,...,n, the set R" is not a lattice.

4. The set of linear subspaces of a linear space X is a lattice under set inclusion,
but here M V N = span M U N.

5. The set of continuous real-valued functions on a topological space is a lattice
under the pointwise order, and (f V g)(z) = f(x) V g(z) and (f A g)(x) =
f(z) A g(x) for each z. I leave it to you to prove that fV g and f A g are
continuous.

6. The set of differentiable functions on a real interval is not a lattice under the
pointwise order. To see this, let f(z) = 2 and g(x) = —x, and ask yourself
what f V g would have to be.

O

22.3.4 Definition A lattice is distributive if if for all x, y, and z we have
zAyVz)=(xAy)V(zAz)

and
zV(yAz)=(xAy)V(xAz).

If you are like me, you might have guessed that every lattice is distributive,
and you would be wrong.

22.3.5 Example (A nondistributive lattice) Let X = {u,v,x,y,z} and
define = by u = z = v, u = y = v, and u > z > v. See Figure 22.3.1. Then
(X, >) is a lattice. But

cAyVz)=xzAu=z and (xAy)V(rAz)=vVv=u,
and
zV(yANz)=zVuv=x and (zVy A(zVz)=uVu=u.
Thus no distributive law holds. U
A sublattice of (X, >) is a subset A of X that contains the meet and join
(in X) of each pair of elements of A. This is not the same as A being a lattice in
its own right. It is possible that A (ordered by ) is a lattice, but the meet and

join of z and y may be different in A than in X, so be careful. See Section 22.5
for an important example.
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Figure 22.3.1. A non-distributive lattice.

22.4 Lattice homomorphisms

A lattice homomorphism between lattices (X, >x) and (Y, >y) is a function
p: X — Y satisfying

p(r Ax z) = o(x) Ay ¢(2), and ¢(x Vx 2) = p(x) Vy ¢(2),

A lattice isomorphism is one-to-one lattice homomorphism.

22.5 The lattice X of compact convex sets

Let X denote the collection of compact convex subsets of R™. It is a lattice under
the usual order of set inclusion,

K=C < K>C.
The lattice operations are
KANC=KnNC, KV C=co(KuQ).

The latter equivalence follows from the fact that the convex hull of the union of
two compact sets is compact (Lemma 2.1.6). This is an example where X has the
same partial order as the power set, and is itself a lattice, but is not a sublattice
of the power set since K U C' is not generally convex.

22.6 The lattice 8§ of continuous sublinear functions

Recall that the profit function 74 of a subset A of R™ is defined by ma(p) =
SUpgea P - . When A is nonempty, compact, and convex, then 74 is a con-
tinuous, finite-valued, sublinear function on R™. Conversely, every continuous,
finite-valued sublinear function 7 on R™ is the profit function of some nonempty
compact convex set.
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We can put the usual pointwise partial order on the set 8 of continuous sublin-
ear functions. This set is a lattice where fV g is just the usual pointwise maximum
of f and g. The meet however is more subtle. The pointwise minimum need not
be convex, so we need to define the meet to be the affine envelope of the pointwise
minimum.

22.7 The lattice isomorphism of X and 8

I now assert that the mapping
K— 7k

from K to 8 is a lattice isomorphism. That is,

K>C < 7 2 7c,

TKVC = Teo(KUC) = maX{WK,WC} =mg V7o,

Trnc = Tr nco = affine envelope min{ny, ¢} = 75 A e

If KNC = @, gy is an improper convex function, the constant —oo, and we shall
agree to make it an “honorary” sublinear function. It is also the affine envelope of
min{7g,7c}. The details may be found in Aliprantis and Border [I, Section 7.10,
pp. 288-292].

Even more is true:

Tk+C = Tk + TC,
Tok = amg for a > 0,
K,| K < 7k, | k.

22.8 Aside: More on profit functions

Recall that the profit function mo: X — R is defined by

o(p) = sup{p ‘rix € C}.

Note that this supremum may be co if C' is not compact. Given an extended
real-valued sublinear function h: X — (—o00, 00|, define

C’h:{pGX’:p-xgh(a:) foralleX}.

That is, C}, is the set of linear functionals that are dominated by h.

Also recall that the profit function of a nonempty closed convex subset is a
proper sublinear and lower semicontinuous functional.

Conversely, if h: X — (—o00,00] is a proper lower semicontinuous sublinear
function, then C), is a nonempty closed convex subset of X’.

Furthermore, we have the duality C' = C;, and h = 7¢, .

If, in addition, the set C' is compact, we can say more, namely that its support
functional is finite and continuous.
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22.8.1 Theorem Let K be a nonempty compact convex subset of R". Then the
profit functional 7y is a proper continuous sublinear function on R".

Conversely, if h: X — R is a continuous sublinear function, then Kj is a
nonempty compact convex subset of R".

Furthermore, we have the duality K = K, and h = 7, .

We take this opportunity to point out the following simple results.

22.8.2 Lemma For a dual pair (X, X'y we have the following.
1. The support functional of a singleton {p} is p itself.

2. The profit functional of the sum of two nonempty sets F' and C satisfies
Tp+e = TF + 7.

3. Let {K,} be a decreasing sequence of nonempty compact sets. If K =
>, K,, then K # @& and the sequence {m, } of support functionals satis-

fies hy, (x) | hrg(x) for each x.

22.8.3 Lemma Let C be a closed convex set with profit functional n¢. If g(x) =
p-x + c is a continuous affine function satisfying g < mw¢, then p € C' and ¢ < 0.

We can now describe the support functional of the intersection of two closed
convex sets.

22.8.4 Theorem Let A and B be closed convex sets with AN B # &. Then the
profit functional of AN B is the convex envelope of min{m4,7p}.

We now point out that the family of compact convex sets partially ordered
by inclusion is a lattice. (That is, every pair of sets has both an infimum and a
supremum.) The infimum of A and B, A A B, is just AN B, and the supremum
AV B is co(AU B). (See [I, Lemma 5.29, p. 183] for a proof that co(A U B) is
compact.) Likewise, the collection of continuous sublinear functions on X under
the pointwise ordering is a lattice with fV g = max{f, g}, and f A g is the convex
envelope of min{ f, g}. (Here we include the constant —oo as an honorary member
of the family.) Now consider the surjective one-to-one mapping A — m4 between
these two lattices. It follows from Lemma 22.8.2 and Theorem 22.8.4 that this
mapping preserves the algebraic and lattice operations in the following sense:

o Tayp=T4a V7 and @y =74 ATp.
e AC B implies 7y < mp.

e Tarp=7a+7p and mya = Amy for A > 0.
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22.9 Aside: Support functionals and the Hausdorff metric

The operator norm of a linear function p on a normed space is defined by

Il = sup{p(x) : [lz| <1}.

22.9.1 Proposition (Hausdorff metric on convex sets) Let A and B be
nonempty closed bounded convex subsets of a normed space. Then the Hausdorff
metric p satisfies

p(A,B) = sup |ma(p) —7B(p)|

pilpll<1

22.10 Aside: the Hausdorff metric

22.10.1 Definition Let (X,d) be a metric space. For each pair of nonempty
subsets A and B of X, define

hy(A, B) = max{sup d(a, B), supd(b, A)}
a€A beB
The extended real number hy(A, B) is the Hausdorff distance between A and
B relative to the semimetric d. The function h, is the Hausdorff semimetric
induced by d. By convention, hy(@, @) = 0 and hy(A, &) = oo for A # @.

While hy depends on d, we may omit the subscript when
d is clear from the context.

We can also define the Hausdorff distance in terms of
neighborhoods of sets. Recall that the e-neighborhood of a
nonempty subset A of the semimetric space (X, d) is the set

Ne(A) = {z € X :d(z,A) <&},
€1 = supyep d(b, A),

Recall that N..o N:(A) = A and note that £s = sup,. , d(a, B)

Ne i Az = U; Ne Az
(User 4:) = User Ne(A) Figure 22.10.1.

22.10.2 Lemma If A and B are nonempty subsets of a semimetric space (X, d),
then
h(4,B) =inf{e > 0: A C N.(B) and B C N.(A)}.

Proof: If {e¢ >0: A C N.(B) and B C N.(A)} = @, then for each ¢ > 0, either
there is some a € A with d(a, B) > ¢ or there is some b € B with d(b, A) > ¢. This
implies h(A, B) > ¢ for each € > 0, so h(A4, B) = co. (Recall that inf @ = c0.)
Now suppose § = inf{s >0:AC N.(B)and B C NE(A)} < oco. If € satisfies
A C N.(B) and B C N.(A), then d(a,B) < ¢ for all a € A and d(b,A) < ¢
for each b € B, so h(A,B) < e. Thus h(A4,B) < 4. On the other hand, if
e > h(A, B), then obviously A C N.(B) and B C N.(A), so indeed h(A, B) = ¢.
(See Figure 22.10.1.) |
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22.11 Aside: Strassen’s integrability theorem

The next result is due to Strassen [1, Theorem 1]. For a more rigorous statement
and proof (in a much more general setting) see [I, pp. 615-620].

22.11.1 Strassen’s Theorem Let (S,%, 1) be a probability space, and let X be
a separable Banach space (think R" if convenient). Let h: S x X — R satisfy the
following properties.

1. x> h(s,x) is a continuous sublinear function on X for each s € S. Thus
x +— h(s,x) is the profit function of a compact convez set ¢(s).

2. For each x € X, the function s — h(s,z) is integrable.

Define h: X — R by the integral

h(z) = /S h(s, ) dp(s).

Then h is continuous and sublinear, and is thus the profit function of a compact
convex set C. Moreover

C = {/Sf(s) du(s) : f is integrable and (Vs) [ f(s) € 4,0(5)]}
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