
Division of the Humanities
and Social Sciences

Ec 181 KC Border
Convex Analysis and Economic Theory AY 2019–2020

Topic 21: Rockafellar’s Closed Functions

21.1 ⋆ Closed convex functions

Convex analysts often refer to closed functions and the closure of a function. For
proper functions closedness and semicontinuity agree. There are differences for
improper functions

21.1.1 Definition Let C be a closed convex subset of a tvs X. (It may well be
that C = X). Let f : C → R♯ be an extended real-valued function on C. Define
the concave envelope f̂ of f on C by

f̂(x) = inf{g(x) : g ⩾ f on C and g is affine and continuous}

and the and the convex envelope f̌ of f by

f̌(x) = sup{g(x) : g ⩽ f and g is affine and continuous}

(where, as you may recall, sup∅ = −∞ and inf ∅ = ∞).

21.1.2 Lemma The convex envelope f̌ of a function f is a lower semicontinuous
convex function. The concave envelope f̂ of f is an upper semicontinuous concave
function. Moreover

f̌ ⩽ f ⩽ f̂ .

Proof : Clearly f̌ ⩽ f ⩽ f̂ . Moreover, every affine functions is both convex
and concave. Thus f̌ , being the supremum of a family of lower semicontinuous
convex functions is convex and lower semicontinuous (Exercise 1.3.3 and Proposi-
tion 13.4.5). Similarly f̂ , being the infimum of a family of upper semicontinuous
concave functions is concave and upper semicontinuous.

Warning! The definition I am about to give is not standard. However, it is
equivalent to the standard definition (see Section 13.5 ⋆ below), and in my view
more natural.

21.1.3 Definition (Closed functions) A proper convex function f is closed
if it is equal to its convex envelope, f = f̌ . A proper concave function is closed
if it is equal to its concave envelope f = f̂ .

• Since every affine function on Rm is continuous, we may omit that require-
ment from the definition for finite dimensional spaces.
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• This is not really subtle, but I should point out that a function can be
closed without having a closed effective domain. For example, the logarithm
function (extended to be an extended real-valued concave function) is closed,
but has (0, ∞) as its effective domain.

Closedness is closely related to semicontinuity.

21.1.4 Proposition A concave function on a locally convex Hausdorff space X
is closed if and only if one of the following conditions holds.

1. The function is identically +∞ (and hence improper).

2. The function is identically −∞ (and hence improper).

3. The function is proper and upper semicontinuous.

A convex function is closed if and only if (1), or (2), or

3′. The function is proper and lower semicontinuous.

Proof : For proper functions the conclusions follow from Theorem 13.3.3 and
Lemma 21.1.2.

Now consider the case of an improper convex function f . There a two ways f
can fail to be proper. The first is that f(x) = −∞ at some point x. In this case
there is no affine function that f dominates, so f̌(y) = inf ∅ = ∞ for all y. The
second way f can fail to be proper is if dom f = ∅, that is, f(y) = ∞ for all y.

21.2 ⋆ The difference between closedness and semicontinu-
ity

The next example clarifies the difference between closed and semicontinuous im-
proper functions.

21.2.1 Example (Closedness vs. semicontinuity: improper functions)
Define the improper concave function f by

f(x) =

+∞ x ∈ C

−∞ x /∈ C

where C is a nonempty closed convex set in Rm. Then the hypograph of f is a
nonempty closed convex set, but f is not a closed function (unless C = Rm). □

In fact this is the only kind of upper semicontinuous improper function on Rm.

21.2.2 Theorem If f is an improper concave function on Rm, then f(x) = ∞
for every x ∈ ri dom f . If f is an improper convex function, then f(x) = −∞ for
every x ∈ ri dom f .
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Proof : There are two ways a concave function f can be improper. The first is
that dom f is empty, in which case, the conclusion holds vacuously. The second
case is that f(x) = +∞ for some x ∈ dom f . Let y belong to ri dom f . Then
by Proposition 5.2.6, y is proper convex combination λx + (1 − λ)z (0 < λ < 1),
where z = x + ε(y − x) for some ε < 0 and z ∈ dom f (so that f(z) > −∞). Then
f(y) ⩾ λ∞ + (1 − λ)f(z) = +∞.

21.2.3 Proposition An upper semicontinuous improper concave function has no
finite values. Ditto for a lower semicontinuous improper convex function.

Proof : By Theorem 21.2.2, if a concave f has f(x) = +∞, then f(y) = +∞ for
all ∈ ri dom f . By upper semicontinuity, f(y) = +∞ for all y ∈ ri dom f ⊃ dom f .
By definition of the effective domain, f(y) = −∞ for y /∈ dom f . (This shows
that dom f is closed.)

There are some subtleties in dealing with closed and semicontinuous functions,
particularly if you are used to the conventional approach. For instance, if C is
nonempty convex subset of Rm that is not closed, the conventional approach
allows us to define a concave or convex function with domain C, and undefined
elsewhere. Consider the constant function zero on C. Its hypograph is closed in
C ×R, but not closed in Rm ×R. Regarded as a conventional function on C, it is
both upper and lower semicontinuous on C, but regarded as a concave extended
real-valued function on Rm, it is not upper semicontinuous. This is because at a
boundary point x, we have lim supy→x = 0 > f(x) = −∞.

21.3 The closure of a function

Warning: The following definition is not standard, but it is equivalent to the
standard definition. (Again see Section 13.5 ⋆.)

21.3.1 Definition The closure of a convex function is its convex envelope. The
closure of a concave function is its concave envelope.

Every continuous affine function is its own closure. (On infinite dimensional
spaces there are discontinuous affine functions. What about them? Can an affine
function be semicontinuous without being continuous? What continuous affine
functions can a semicontinuous affine function dominate?)

According to Rockafellar [2, p. 53], “the closure operation is a reasonable nor-
malization which makes convex functions more regular by redefining their values
at certain points where there are unnatural discontinuities. This is the secret of
the great usefulness of the operation in theory and in applications.” Implicit in
Rockafellar’s remark is that the closure operation only deals with bad behavior
on the boundary of the domain. Indeed we have the following result.
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21.3.2 Theorem Let f be a proper concave function on Rm. Then f̂ is a proper
closed concave function, and f and f̂ agree on ri dom f .

See [2, Theorem 7.4, p. 56].

21.3.3 Corollary If f is a proper concave or convex function and dom f is affine,
then f is closed.

This is because an affine set is its own relative interior. See [2, Corollary 7.4.2,
p. 56].

21.4 Closed sublinear functions

The next result refines Theorem 9.1.3, which asserts that every proper, lower
semicontinuous, sublinear function is a profit function. If the function is not
lower semicontinuous or proper we have the following.

21.4.1 Theorem Let π be a positively homogeneous convex function on Rm.
Define the closed convex set

C = cl{x ∈ Rm : ( ∀p ∈ Rm ) [ p · x ⩽ π(p) ]}.

Then the convex envelope π̌ of π is the profit function πC of C. That is,

π̌(p) = sup{p · x : x ∈ C}.

Proof : There are three cases: Cases (i) and (ii) cover the two ways π could fail
to be proper, and case (iii) is that π is proper.

(i) If π is improper by way of having π(p) = −∞ for some p, then C = ∅, so
πC(p) = −∞ = π̌(p) for all p.

(ii) If π is improper by way of being identically ∞, then C = Rm, so πC(p) =
∞ = π̌(p) for all p.

(iii) The remaining case is that π is proper, so π(p) > −∞ for all p and dom π
is nonempty.

Let ℓx denote the linear function defined by ℓx(p) = p ·x. Every affine function
is thus of the form ℓx +α, so let g(p) : p 7→ ℓx(p)+α be an affine function satisfying
g � π. Since π is positively homogeneous and proper, we have π(0) = 0, so g � π
implies that α < 0. Also, for every p and every λ > 0 we have

λx · p + α = ℓx(λp) + α = g(λp) < π(λp) = λπ(p).

Dividing by λ we see that for every p and λ > 0,

x · p. + α/λ < π(p).
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Letting λ → ∞ we see that g = ℓx + α is affine and satisfies g � π if and only if
ℓx ≦ π and α < 0. But ℓx ≦ π if and only if x ∈ C. Thus

π̌(p) = sup{g(p) : g � π, g is affine}
= sup{ℓx(p) : ℓx ≦ π} = sup{p · x : x ∈ C} = πC(p).
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