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Topic 20: When are Sums Closed?

20.1 Is a sum of closed sets closed?

Example 0.2.2 shows that the sum of two closed sets need not be closed. To
state sufficient conditions for the sum to be closed we must make a fairly long
digression.

20.2 Asymptotic cones

A cone is a nonempty subset of Rm closed under multiplication by nonnegative
scalars. That is, C is a cone if whenever x ∈ C and λ ∈ R+, then λx ∈ C. A
cone is nontrivial if it contains a point other than zero.

20.2.1 Definition Let E ⊂ Rm. The asymptotic cone of E, denoted AE is
the set of all possible limits z of sequences of the form (λnxn)n, where each xn ∈ E,
each λn > 0, and λn → 0. Let us call such a sequence a defining sequence for
z.

This definition is equivalent to that in Debreu [1], and generalizes the notion
of the recession cone of a convex set. This form of the definition was chosen
because it makes most properties of asymptotic cones trivial consequences of the
definition.

The recession cone 0+F of a closed convex set F is the set of all directions
in which F is unbounded, that is,

0+F = {z ∈ Rm : ( ∀x ∈ F ) ( ∀α ⩾ 0 ) [ x + αz ∈ F ]}.

(See Rockafellar [3, Theorem 8.2].)

20.2.2 Lemma (a) AE is indeed a cone.

(b) If E ⊂ F , then AE ⊂ AF .

(c) A(E + x) = AE for any x ∈ Rm.

(cc) 0+E ⊂ AE.

(d) AE1 ⊂ A(E1 + E2).

(e) A
∏

i∈I Ei ⊂ ∏
i∈I AEi.
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(f) AE is closed.

(g) If E is convex, then AE is convex.

(h) If E is closed and convex, then AE = 0+E. (The asymptotic cone really is a
generalization of the recession cone.)

(i) If C is a cone, then AC = C.

(j) A
∩

i∈I Ei ⊂ ∩
i∈I AEi. The reverse inclusion need not hold.

(k) If E + F is convex, then AE + AF ⊂ A(E + F ).

(l) A set E ⊂ Rm is bounded if and only if AE = {0}.

Proof : Here are proofs of selected parts. The others are easy, and should be
treated as an exercise.

(cc) 0+E ⊂ AE.
Let z ∈ 0+E. Then for any n > 0 and any x ∈ E, we have x + nz ∈ E. But
1
n
(x + nz) → z, so z ∈ AE.

(d) AE1 ⊂ A(E1 + E2).
For x2 ∈ E2, by definition E1 + x2 ⊂ E1 + E2, so by (b), A(E1 + x2) ⊂
A(E1 + E2), so by (c), AE1 ⊂ A(E1 + E2).

(f) AE is closed.
Let xn be a sequence in AE with xn → x. For each n there is a sequence
λn,mxn,m with limm λn,mxn,m = xn, λn,m → 0 as m → ∞, xn,m ∈ E, and each
λn,m > 0. Then for each k there is Nk such that for all n ⩾ Nk, ∥xn − x∥ <
1/k, and Mk such that for all m ⩾ Mk, ∥λNk,mxNk,m − xNk

∥ < 1/k, and Lk

such that for all m ⩾ Lk, λNk,m < 1/k. Set Pk = max{Mk, Lk}, yk = xNk,Pk
,

and λk = λNk,Pk
. Then each λk > 0, λk → 0 and ∥λkyk − x∥ < 2/k, so

x ∈ AE.

(g) If E is convex, then AE is convex.
Let x, y ∈ AE and α ∈ [0, 1]. Since AE is a cone, αx ∈ AE and (1 − α)y ∈
AE. Thus there are defining sequences λnxn → αx and γnyn → (1 − α)y.
Since E is convex, zn = λn

γn+λn
xn + γn

γn+λn
yn ∈ E for each n. Set δn =

γn + λn > 0. Then δn → 0 and δnzn = λnxn + γnyn → αx + (1 − α)y. Thus
αx + (1 − α)y ∈ AE.

(h) If E is closed and convex, then AE = 0+E.
In light of (cc), it suffices to prove that AE ⊂ 0+E, so let z ∈ AE, x ∈ E,
and α ⩾ 0. We wish to show that x + αz ∈ E. By definition of AE there
is a sequence λnzn → z with zn ∈ E, λn > 0, and λn → 0. Then for n

v. 2019.11.18::14.08 src: AsymptoticCones KC Border: for Ec 181, 2019–2020



Ec 181 AY 2019–2020
KC Border When are Sums Closed? 20–3

large enough 0 ⩽ αλn < 1, so (1 − αλn)x + αλnzn ∈ E as E is convex. But
(1 − αλn)x + αλnzn → x + αz. Since E is closed, x + αz ∈ E.

(i) If C is a cone, then AC = C.
It is easy to show that C ⊂ AC, as 1

n
nx → x is a defining sequence. Since

AC is closed by (f), we have C ⊂ AC. On the other hand if λn ⩾ 0 and
xn ∈ C, then λnxn ∈ C, as C is a cone, so AC ⊂ C.

(j) A
∩

i∈I Ei ⊂ ∩
i∈I AEi. The reverse inclusion need not hold.

By (b), A
∩

i∈I Ei ⊂ AEj for each j, so A
∩

i∈I Ei ⊂ ∩
i∈I AEi.

For a failure of the reverse inclusion, consider the even nonnegative integers But what if each
Ei is convex?

E1 = {0, 2, 4, . . .} and the odd nonnegative integers E2 = {1, 3, 5, . . .}. Then
E1 ∩ E2 = ∅, so A(E1 ∩ E2) = ∅, but AE1 = AE2 = AE1 ∩ AE2 = R+.

(k) If E + F is convex, then AE + AF ⊂ A(E + F ).
Let z belong to AE + AF . Then there exist defining sequences (λnxn) ⊂ E
and (αnyn) ⊂ F with λnxn + αnyn → z. Let x′ ∈ E and y′ ∈ F . (If either
E or F is empty, the result is trivial.) Then

(
λn(xn + y′)

)
⊂ E + F and(

αn(x′ + yn)
)

⊂ E + F , so

(λn + αn)
(

λn

λn + αn

(xn + y′) + αn

λn + αn

(x′ + yn)
)

→ z,

is a defining sequence for z in E + F .

(l) A set E ⊂ Rm is bounded if and only if AE = {0}.
If E is bounded, clearly AE = {0}. If E is not bounded, let {xn} be
an unbounded sequence in E. Then λn = ∥xn∥−1 → 0 and (λnxn) is a
sequence on the unit sphere, which is compact. Thus there is a subsequence
converging to some x in the unit sphere. Such an x is a nonzero member of
AE.

20.2.3 Example The asymptotic cone of a non-convex set need not be convex.
Let E = {(x, y) ∈ R2 : y = 1

x
, x > 0}. This hyperbola is not convex and its

asymptotic cone is the union of the nonnegative x- and y-axes. But the asymptotic
cone of a non-convex set may be convex. Just think of the integers in R1. □

20.2.4 Example It need not be the case that A(E + F ) ⊂ AE + AF , even if E
and F are closed and convex. For instance, let E be the set of points lying above
a standard parabola:

E = {(x, y) : y ⩾ x2}.
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The asymptotic cone of E, which is the same as its recession cone, is just the
positive y-axis:

AE = {(0, y) : y ⩾ 0}.

So AE + A(−E) is just the y-axis. Now observe that E + (−E) = R2, so
A
(
E + (−E)

)
= R2. Thus

AE + A(−E) ⊊ A
(
E + (−E)

)
.

□

20.3 When a sum of closed sets is closed

We now turn to the question of when a sum of closed sets is closed. The following
definition may be found in Debreu [1, 1.9. m., p. 22].

20.3.1 Definition Let C1, . . . , Cn be cones in Rm. We say that they are posi-
tively semi-independent if whenever xi ∈ Ci for each i = 1, . . . , n,

x1 + · · · + xn = 0 =⇒ x1 = · · · = xn = 0.

Clearly, any subcollection of a collection of semi-independent cones is also
semi-independent. Note that in Example 20.2.4, A(−E) = −A(E), so these
nontrivial asymptotic cones are not positively semi-independent.

20.3.2 Theorem (Closure of the sum of sets) Let E, F ⊂ Rm be closed
and nonempty. Suppose that AE and AF are positively semi-independent. (That
is, x ∈ AE, y ∈ AF and x + y = 0 together imply that x = y = 0.) Then E + F
is closed, and A(E + F ) ⊂ AE + AF .

The proof relies on the following simple lemma, which is closely related to
Lemma 1 in Gale and Rockwell [2].

20.3.3 Lemma Under the hypotheses of Theorem 20.3.2, if (λn) is a bounded
sequence of real numbers with each λn > 0, (xn) is a sequence in E, and (yn) is a
sequence in F , and if λn(xn +yn) converges to some point, then there is a common
subsequence along which both (λkxk) and (λkyk) converge.

Proof : It suffices to prove that both (λnxn) and (λnyn) are bounded sequences.
Suppose by way of contradiction that λn(xn + yn) converges to some point, but
say (λnxn) is unbounded. Since (λn) is bounded, it must be the case that both
∥λnxn∥ → ∞ and ∥xn∥ → ∞, so for large enough n we have ∥λxn∥ > 0. Thus for
large n we may divide by ∥λnxn∥ and define

x̂n = λn

∥λnxn∥
xn, ŷn = λn

∥λnxn∥
yn, ẑn = λn

∥λnxn∥
(xn + yn),
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and observe that
ẑn = x̂n + ŷn.

But
(
λn(xn + yn)

)
is convergent, and hence bounded, so ẑn → 0. In addition

the sequence (x̂n) lies on the unit sphere, so it has a convergent subsequence, say
x̂k → x̂, where ∥x̂∥ = 1. Then

ŷk = ẑk − x̂k −→ −x̂.

But ŷk = (λk/∥λkxk∥)yk, and λk/∥λkxk∥ → 0, so (λk/∥λkxk∥)yk is a defining
sequence that puts −x̂ ∈ AF. But a similar argument shows that x̂ ∈ AE. Since
AE and AF are positively semi-independent, it follows that x̂ = 0, contradicting
∥x̂∥ = 1.

Thus (λnxn), is a bounded sequence, and by a similar argument so is (λnyn),
so they have common subsequence on which they both converge.

Proof of Theorem 20.3.2: First, E + F is closed: Let xn + yn → z with {xn} ⊂
E, {yn} ⊂ F . By Lemma 20.3.3 (with λn = 1 for all n) there is a common
subsequence with xk → x and yk → y. Since E and F are closed, x ∈ E and
y ∈ F . Therefore z = x + y ∈ E + F , so E + F is closed.

To see that A(E + F ) ⊂ AE + AF , let z ∈ A(E + F ). That is, z is the
limit of a defining sequence

(
λn(xn + yn)

)
, where xn ∈ E and yn ∈ F . Since

λn → 0, it is a bounded sequence. Thus by Lemma 20.3.3 there is a common
convergent subsequence, and by definition limk λkxk ∈ AE and limk λkyk ∈ AF ,
so z ∈ AE + AF .

20.3.4 Corollary Let Ei ⊂ Rm, i = 1, . . . , n, be closed and nonempty. If
AEi, i = 1, . . . , n, are positively semi-independent, then ∑n

i=1 Ei is closed, and
A
∑n

i=1 Ei ⊂ ∑n
i=1 AEi.

Proof : This follows from Theorem 20.3.2 by induction on n.

20.3.5 Corollary Let E, F ⊂ Rm be closed and let F be compact. Then E + F
is closed.

Proof : A compact set is bounded, so by Lemma 20.2.2(l) its asymptotic cone is
{0}. Apply Theorem 20.3.2.

20.4 When is an intersection of closed sets bounded?

20.4.1 Proposition Let Ei ⊂ Rm, i = 1, . . . , n, be nonempty. If ∩n
i=1 AEi =

{0}, then ∩n
i=1 Ei is bounded.

Proof : By Lemma 20.2.2(l), ∩n
i=1 Ei is bounded if and only if A (∩n

i=1 Ei) = {0}.
But by Lemma 20.2.2(j), A (∩n

i=1 Ei) ⊂ ∩n
i=1 AEi, and the proposition follows.
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