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Topic 19: Extreme sets

19.1 Extreme points of convex sets

Refer to Section 2.6 for the definition of extreme sets and extreme points. The
following lemma is the basic result concerning the existence of extreme points.

19.1.1 Lemma In a locally convex Hausdorff space, every compact extreme sub-
set of a set C contains an extreme point of C.

Proof : Let C be a subset of some locally convex Hausdorff space and let F be a
compact extreme subset of C. Consider the collection of sets

F = {G ⊂ F : G is a compact extreme subset of C}.

Since F ∈ F, we have F ̸= ∅, and F is partially ordered by set inclusion. The
compactness of F (as expressed in terms of the finite intersection property) guar-
antees that every chain in F has a nonempty intersection. Clearly, the intersection
of extreme subsets of C is an extreme subset of C if it is nonempty. Thus, Zorn’s
Lemma applies, and yields a minimal compact extreme subset of C included in
F , call it G. We claim that G is a singleton. To see this, assume by way of
contradiction that there exist a, b ∈ G with a ̸= b. Then there is a continuous
linear functional f on X such that f(a) > f(b). Let M be the maximum value
of f on G. Arguing as in the proof of Lemma 2.6.6, we see that the compact set
G0 = {c ∈ G : f(c) = M} is an extreme subset of G (and hence of C) and b /∈ G0,
contrary to the minimality of G. Hence G must be a singleton. Its unique element
is an extreme point of C lying in F .

Since every nonempty compact subset C is itself an extreme subset of C, we
have the following immediate consequence of Lemma 19.1.1.

19.1.2 Corollary Every nonempty compact subset of a locally convex Hausdorff
space has an extreme point.

19.1.3 Theorem Every nonempty compact subset of a locally convex Hausdorff
space is included in the closed convex hull of its extreme points.

This refers to not
yet proven result.Proof : Let C be a nonempty compact subset of a locally convex Hausdorff space

X, and let B denote the closed convex hull of its extreme points. We claim that
C ⊂ B. Suppose by way of contradiction that there is some a ∈ C with a /∈ B.
By Corollary 19.1.2 the set B is nonempty. So by the Separation Corollary 8.3.2
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there exists a continuous linear functional f on X with f(a) > f(b) for all b ∈ B.
Let A be the set of maximizers of f over C. Clearly, A is a nonempty compact
extreme subset of C, and A ⊂ C \ B. By Lemma 19.1.1, A contains an extreme
point of C. But then, A ∩ B ̸= ∅, a contradiction. Hence C ⊂ B, as claimed.

The celebrated Krein–Milman Theorem [1] is now a consequence of the pre-
ceding result.

19.1.4 The Krein–Milman Theorem In a locally convex Hausdorff space
X each nonempty convex compact subset is the closed convex hull of its extreme
points.

If X is finite dimensional, then every nonempty convex compact subset is the
convex hull of its extreme points.

Proof : Only the second part needs proof. The proof will be done by induction
on the dimension n of X. For n = 1 a nonempty convex compact subset of R is
either a point or a closed interval, in which case the conclusion is obvious. For the
induction step, assume that the result is true for all nonempty convex compact
subsets of finite dimensional vector spaces of dimension less than or equal to n.
This implies that the result is also true for all nonempty convex compact subsets
of affine subspaces of dimension less than or equal to n. Now assume that C is a
nonempty convex compact subset of an (n + 1)-dimensional vector space X and
let E be the collection of all extreme points of C. By the “Krein–Milman” part,
we have coE = C.

If the affine subspace generated by C is of dimension less that n + 1, then
the conclusion follows from our induction hypothesis. So we can assume that the
affine subspace generated by C is X itself. This means that the interior of C
is nonempty. In particular, coE must have a nonempty interior. Otherwise, if
coE has an empty interior, then coE has dimension less than n + 1, contrary to
coE = C, as desired.

Now let x belong to C. If x ∈ int C, then x ∈ int C = int (coE) = int (coE) ⊂
coE. On the other hand, if x ∈ ∂C, then there exists a nonzero f ∈ X∗ supporting
C at x, say f(x) ≤ f(a) for all a ∈ C. If we let F = {a ∈ C : f(a) = f(x)} =
C ∩ {f = f(x)}, then F is a compact face of C that lies in the n-dimensional flat
{f = f(x)}. By the induction hypothesis x is a convex combination of extreme
points of F . Now notice that every extreme point of F is an extreme point of C,
and from this we get x ∈ coE. Thus, C ⊂ coE, so C = coE.

Pay careful attention to the statement of the Krein–Milman Theorem. It
does not state that the closed convex hull of a compact set is compact. Indeed,
that is not necessarily true in infinite-dimensional spaces, see Example 19.1.7.
Rather it says that if a convex set is compact, then it is the closed convex hull
of its extreme points. Furthermore, the hypothesis of local convexity cannot be
dispensed with. Roberts [2] gives an example of a compact convex subset of the
completely metrizable tvs L 1

2
[0, 1] that has no extreme points.
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We know that continuous functions always achieve their maxima and minima
over nonempty compact sets. In a topological vector space we can say more. A
continuous convex function on a nonempty compact convex set will always have
at least one maximizer that is an extreme point of the set. This result is known
as the Bauer Maximum Principle. Note that this result does not claim that all
maximizers are extreme points.

19.1.5 Bauer Maximum Principle If C is a compact convex subset of a
locally convex Hausdorff space, then every upper semicontinuous convex function
on C has a maximizer that is an extreme point.

Proof : Let f be an upper semicontinuous convex function on the nonempty, com-
pact, and convex set. Now the set F of maximizers of f is nonempty and compact.
By Lemma 2.6.6 it is an extreme set. But then Lemma 19.1.1 implies that F con-
tains an extreme point of C.

The following corollary gives two immediate consequences of the Bauer Max-
imum Principle.

19.1.6 Corollary If C is a nonempty compact convex subset of a locally convex
Hausdorff space, then:

1. Every lower semicontinuous concave function on C has a minimizer that is
an extreme point of C.

2. Every continuous linear functional has a maximizer and a minimizer that
are extreme points of C.

The convex hull of a compact subset of an infinite dimensional topological
vector space need not be a compact set.

19.1.7 Example (Noncompact convex hull) Consider ℓ2, the space of all
square summable sequences. For each n let un =

(
0, . . . , 0︸ ︷︷ ︸

n−1

, 1
n
, 0, 0, . . .

)
. Observe

that ∥un∥2 = 1
n
, so un → 0. Consequently,

A =
{
u1, u2, u3, . . .

}
∪

{
0

}
is a norm compact subset of ℓ2. Since 0 ∈ A, it is easy to see that

co A =
{ k∑

i=1
αiui : αi ≥ 0 for each i and

k∑
i=1

αi ⩽ 1
}

.

In particular, each vector of co A has only finitely many nonzero components. We
claim that co A is not norm compact. To see this, set

xn =
(

1
2 , 1

2 · 1
22 , 1

3 · 1
23 , . . . , 1

n
· 1

2n , 0, 0, . . .
)

=
n∑

i=1

1
2i ui,
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so xn ∈ co A. Now xn
∥·∥2−−→ x =

(
1
2 , 1

2
1
22 , 1

3 · 1
23 , . . . , 1

n
· 1

2n , 1
n+1 · 1

2n+1 , . . .
)

in ℓ2. But
x /∈ co A, so co A is not even closed, let alone compact.

In this example, the convex hull of a compact set failed to be closed. The
question remains as to whether the closure of the convex hull is compact. In
general, the answer is no. To see this, let X be the space of sequences that are
eventually zero, equipped with the ℓ2-norm. Let A be as above, and note that co A
(where the closure is taken in X, not ℓ2) is not compact either. To see this, observe
that the sequence {xn} defined above has no convergent subsequence (in X). □

However there are three important cases when the closed convex hull of a
compact set is compact. The first is when the compact set is a finite union of
compact convex sets. This is just Lemma 2.1.6. The second is when the space
is completely metrizable and locally convex. This includes the case of all Banach
spaces with their norm topologies. Failure of completeness is where the last part
of Example 19.1.7 goes awry. The third case is a compact set in the weak topology
on a Banach space; this is the Krein–Šmulian Theorem.
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