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Topic 18: Differentiability

18.1 Differentiable functions

In this section I want to introduce progressively stronger notions of derivatives
and differentiability for functions between real vector spaces. The real line is
considered to be a one-dimensional vector space. Recall that a derivative is some
kind of limit of line segments joining points on the graph of a function. The
simplest way to take such a limit is along a line segment containing x. We start
by recalling that the notation

lim
x→x0

f(x) = y

means that for every neighborhood U of y, there is some neighborhood V of x0
such that if x 6= x0 and x ∈ V , then f(x) ∈ U . The reason we restrict attention
to x 6= x0 is so that when x − x0 is a number or belongs to a normed vector space,
we may divide by |x − x0| or ‖x − x0‖.

18.1.1 Definition (One-sided directional derivative) Let A be a subset of
the vector space X, let Y be a topological vector space, and let f : A → Y .

We say that f has the one-sided directional derivative f ′(x; v) at x in
the direction v, if f ′(x; v) is a vector in Y satisfying

f ′(x; v) = lim
λ↓0

f(x + λv) − f(x)
λ

.

In order for this definition to make sense, we implicitly require that there is
some ε > 0 such that 0 ⩽ λ ⩽ ε implies that x+λv belongs to A, so that f(x+λv)
is defined.

For the case Y = R, we also permit f to assume one of the extended values
±∞, and also permit f ′(x; v) to assume one of the values ±∞.

Note that in the definition of f ′(x, v), the neighborhoods are taken in Y and
in R, so a topology is needed on Y , but none is necessary on X. Also note that
x + λv need not belong to A for λ < 0. Considering λ = 0 implies x ∈ A. The
next lemma shows that the set of v for which a one-sided directional derivative
exists is a cone, and that f ′(x; v) is positively homogeneous in v on this cone.

18.1.2 Lemma The one-sided directional derivative is positively homogeneous
of degree one. That is, if f ′(x; v) exists, then

f ′(x; αv) = αf ′(x; v) for α ⩾ 0.
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Proof : This follows from f(x+λαv)−f(x)
λ

= α f(x+βv)−f(x)
β

, where β = λα, and letting
λ, β ↓ 0.
18.1.3 Definition If f ′(x; v) = −f ′(x; −v), then we denote the common value
by Dvf(x), that is,

Dvf(x) = lim
λ→0

f(x + λv) − f(x)
λ

,

and we say that f has directional derivative Dvf(x) at x in the direction v.

It follows from Lemma 18.1.2 that if Dv(x) exists, then Dαv(x) = αDv(x) for
all α. In Rn, the ith partial derivative of f at x, if it exists, is the directional
derivative in the direction ei, the ith unit coordinate vector.

Note that this definition still uses no topology on X. This generality may
seem like a good thing, but it has the side effect that since it does not depend
on the topology of X, it cannot guarantee the continuity of f at x in the normed
case. That is, f may have directional derivatives in all nonzero directions at x,
yet not be continuous at x. Moreover, we may not be able to express directional
derivatives as a linear combination of partial derivatives.

18.1.4 Example (Directional derivatives w/o continuity or linearity)
Let f : R2 → R via

f(x, y) =


xy

x2 + y
y 6= −x2

0 y = −x2.

Observe that f has directional derivatives at (0, 0) in every direction v = (x, y),
as

f(λx, λy) − f(0, 0)
λ

=

(
λ2xy

λ2x2 + λy

)
λ

= xy

λx2 + y
.

If y 6= 0, then the limit of this expression is x as λ → 0, and if y = 0, the limit
is 0. Thus the directional derivative exists for every direction (x, y) 6= (0, 0), but
it is not continuous at the x-axis.

But f is not continuous at (0, 0). For instance, for ε > 0,

f(ε, −ε2 − ε4) = −ε(ε2 + ε4)
ε2 − ε2 − ε4 = 1

ε
+ ε → ∞ as ε → 0.

Note too that the mapping v 7→ Dvf(0) is not linear. □

18.1.5 Definition (The Gâteaux derivative) Let X and Y be normed vector
spaces. If Dvf(x) exists for all v ∈ X and the mapping T : v 7→ Dvf(x) from X to
Y is a continuous linear mapping, then T is called the Gâteaux derivative or
Gâteaux differential of f at x,1 and we say that f is Gâteaux differentiable
at x.

1 This terminology disagrees with Luenberger [14, p. 171], who does not require linearity. It
is however, the terminology used by Aubin [3, Definition 1, p. 111] , Aubin and Ekeland [4,
p. 33], and Ekeland and Temam [6, Definition 5.2, p. 23].
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This notion uses the topology on X to define continuity of the linear mapping,
but Gâteaux differentiability of f is still not strong enough to imply continuity
of f , even in two dimensions. The next example may be found, for instance, in
Aubin and Ekeland [4, p. 18].

18.1.6 Example (Gâteaux differentiability does not imply continuity)
Define f : R2 → R by

f(x, y) =


y

x
(x2 + y2) x 6= 0

0 x = 0.

Then for x 6= 0,

f(λx, λy) − f(0, 0)
λ

=

(
λy

λx
λ2(x2 + y2)

)
λ

= λy

x
(x2 + y2) → 0.

Thus Dvf(0) = 0 for any v, so f has a Gâteaux derivative at the origin, namely
the zero linear map.

But f is not continuous at the origin. For consider v(ε) = (ε4, ε). The v(ε) → 0
as ε → 0, but

f
(
v(ε)

)
= ε

ε4 (ε8 + ε2) = ε5 + 1/ε.

Thus f
(
v(ε)

)
→ ∞ as ε ↓ 0, and f

(
v(ε)

)
→ −∞ as ε ↑ 0, so limε→0 f

(
v(ε)

)
does

not exist. □
A stronger notion of derivative has proven useful. Gâteaux differentiability

requires that chords have a limiting slope along straight lines approaching x.
The stronger requirement is that chords have a limiting slope along arbitrary
approaches to x. The definition quite naturally applies to functions between any
normed vector spaces, not just Euclidean spaces, so we shall work as abstractly
as possible. Dieudonné [5] claims that this makes everything clearer, but I know
some who may disagree.

18.1.7 Definition (The differential or Fréchet derivative) Let X and Y
be normed real vector spaces. Let U be an open set in X and let f : U → Y .
The Gâteaux derivative is called the differential at x (also known as a Fréchet
derivative, a total derivative, or simply a derivative) if it satisfies

lim
v→0

‖f(x + v) − f(x) − Dvf(x)‖
‖v‖

= 0. (D)

The differential is usually denoted Df(x), and it is a function from X into Y .
Its value at a point v in X is denoted Df(x)(v) rather than Dvf(x). The double
parentheses are only slightly awkward, and you will get used to them after a while.

When f has a differential at x, we say that f is differentiable at x, or
occasionally for emphasis that f is Fréchet differentiable at x.
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Actually my definition is a bit nonstandard. I started out with directional
derivatives and said that if the mapping was linear and satisfied (D), then it
was the differential. That is, I defined the differential in terms of directional
derivatives. The usual approach is to say that f has a differential at x if there is
some continuous linear mapping T that satisfies

lim
v→0

‖f(x + v) − f(x) − T (v)‖
‖v‖

= 0. (D′)

It is then customary to prove the following lemma.

18.1.8 Lemma If T satisfies (D′), then T (v) = f ′(x; v). Consequently, T is
unique, so

Df(x)(v) = Dvf(x) = f ′(x; v) = lim
λ↓0

f(x + λv) − f(x)
λ

.

Proof : Fix v 6= 0 and replace v by λv in (D′), and conclude

lim
λ↓0

‖f(x + λv) − f(x) − T (λv)‖
λ‖v‖

= lim
λ↓0

1
‖v‖

∥∥∥∥∥f(x + λv) − f(x)
λ

− T (v)
∥∥∥∥∥ = 0.

That is, T (v) = limλ↓0
f(x+λv)−f(x)

λ
= f ′(x; v).

The continuity (equivalently boundedness) of Df(x)(·) implies the continuity
of f .

18.1.9 Lemma (Differentiability implies Lipschitz continuity) If f is
differentiable at x, then f is continuous at x. Indeed, f is Lipschitz continuous
at x. That is, there is M ⩾ 0 and δ > 0 such that if ‖v‖ < δ, then

∆vf(x) < M ‖v‖.

Proof : Setting ε = 1 in the definition of differentiability, there is some δ > 0 so
that ‖v‖ < δ implies ‖∆vf(x) − Df(x)(v)‖ < ‖v‖, so by the triangle inequality,

‖∆vf(x)‖ < ‖v‖ + ‖Df(x)(v)‖ ⩽
(
‖Df(x)‖ + 1

)
‖v‖,

where of course ‖Df(x)‖ is the operator norm of the linear transformation Df(x).
Thus f is continuous at x.

Rewriting the definition

There are other useful ways to state this definition that I may use from time to
time. Start by defining the first difference function ∆vf of f at x by v, where
∆vf : X → Y , by2

∆vf(x) = f(x + v) − f(x).
2 Loomis and Sternberg would write this as ∆fx(v).
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We can rewrite the definition of differentiability in terms of the first difference as
follows: f is (Fréchet) differentiable at x if

( ∀ε > 0 ) ( ∃δ > 0 ) ( ∀v ) [ 0 < ‖v‖ < δ =⇒ ‖∆vf(x) − Df(x)(v)‖ < ε‖v‖ ].

Another interpretation of the definition is this. Fix x and define the difference
quotient function dλ by

dλ(v) = f(x + λv) − f(x)
λ

.

If f is differentiable at X, then dλ converges uniformly on norm-bounded sets to
the linear function Df(x) as λ → 0.

Further notes on the definition

When X = Y = R, the differential we just defined is closely related to the
derivative as usually defined for functions of one variable. The differential is
the linear function Df(x) : v 7→ f ′(x)v, where f ′(x) is the numerical derivative
defined earlier. Despite this difference, some authors (including Dieudonné [5],
Luenberger [14], Marsden [15], and Spivak [19]) call the differential a derivative,
but with modest care no serious confusion results. Loomis and Sternberg [13,
pp. 158–159] argue that the term differential ought to be reserved for the linear
transformation and derivative for its skeleton or matrix representation. But these
guys are rather extreme in their views on notation and terminology—for instance,
on page 157 they refer to the “barbarism of the classical notation for partial
derivatives.”

Also note that my definition of differentiability does not require that f be
continuous anywhere but at x. In this, I believe I am following Loomis and
Sternberg [13, p. 142]. Be aware that some authors, such as Dieudonné [5, p. 149]
only define differentiability for functions continuous on an open set. As a result
the function f : R2 → R defined by

f(x, y) =

x2 + y2 x = y

0 x 6= y

is differentiable at (x, y) = (0, 0) under my definition, but not under Dieudonné’s
definition. By the way, Dieudonné does not require that the differential be a
continuous linear transformation, he proves it using the continuity of f . Since we
do not assume that f is continuous, we must make continuity of Df(x)(·) part of
the definition (as do Loomis and Sternberg).

More variations on the definition

In Definition 18.1.7, I required that f be defined on an open set U in a normed
space. Some authors, notably Graves [8], do not impose this restriction. Graves’s
definition runs like this.
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Let X and Y be normed real vector spaces. Let A be a subset of X and let
f : A → Y . The differential at x is a linear transformation T : X → Y such that
******************** This differential is also denoted Df(x). Note that if A is
small enough, the differential may not be uniquely defined.

18.2 Differentiability of convex functions on Rm

The one-dimensional case has implications for the many dimensional case. The
next results may be found in Fenchel [7, Theorems 33–34, pp. 86–87].

18.2.1 Theorem Let f be a concave function on the open convex set C in Rm.
For each direction v, f ′(x; v) is a lower semicontinuous function of x, and {x :
f ′(x; v)+f ′(x; −v) < 0} has Lebesgue measure zero. Thus f ′(x; v)+f ′(x; −v) = 0
almost everywhere, so f has a directional derivative in the direction v almost
everywhere. Moreover, the directional derivative Df(·; v) is continuous on the set
on the set on which it exists.

Proof : Since f is concave, it is continuous by Theorem 6.3.4. Fix v and choose λn ↓
0. Then gn defined by gn(x) = f(x+λnv)−f(x)

λn
is continuous and by Lemma 15.1.2,

gn(x) ↑ f ′(x; v) for each x. Thus Proposition 13.4.5 implies that f ′(x; v) is lower
semicontinuous in x for any v.

Now f ′(x; v) + f ′(x; −v) ⩽ 0 by concavity, so let

A = {x : f ′(x; v) + f ′(x; −v) < 0}.

Note that since f ′(·; v) and f ′(·; −v) are lower semicontinuous, then A is a Borel
subset of Rm. If x ∈ Ac, that is, if f ′(x; v) + f ′(x; −v) = 0, then f ′(x; v) =
−f ′(x; −v), so f has a directional derivative Dv(x) in the direction v. And since
f ′(·; −v) is lower semicontinuous, the function −f(·; −v) is upper semicontinuous,
f ′(·; v) is actually continuous on Ac.

Thus we want to show that A = {x : f ′(x; v) + f ′(x; −v) < 0} has Lebesgue
measure zero.

If v = 0, then f ′(x; 0) = −f ′(x; −0) = 0, so assume v 6= 0. Consider a line
Ly = {y + λv : λ ∈ R} parallel to v. By Theorem 6.1.4, Ly ∩ A = {x ∈ Ly :
f ′(x; v) + f ′(x; −v) < 0} is countable, and hence of one-dimensional Lebesgue
measure zero. Let M be the subspace orthogonal to v, so M × L = Rm, where
L = L0 is the one-dimensional subspace spanned by v. Every x ∈ Rm can be
uniquely written as x = (xM , xv), where xM ∈ M and xv ∈ L. Then by Fubini’s
theorem,∫

1A(x) dλn(x) =
∫

M

∫
L

1A(xM , xv) dλ(xv) dλn−1(xM) =
∫

M
0 dλn−1(xM) = 0.
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18.2.2 Lemma Let f be a concave function on the open convex set C ⊂ Rm. If
all n partial derivatives of f exist at x, then f has a Gâteaux derivative at x. That
is, all the directional derivatives exist and the mapping v 7→ Dvf(x) is linear.

Proof : The mapping v 7→ f ′(x; v) is itself concave, and since f has an ith partial
derivative, there is δi > 0 so that v 7→ f ′(x; v) is linear on the segment Li =
(−δie

i, δie
i). Indeed λei 7→ ∂f(x)

∂xi
λ. So by Lemma 18.2.5 below, the mapping

v 7→ f ′(x; v) is linear on co⋃m
i=1 Li. This makes it the Gâteaux derivative of f

at x.

The next result may be found in Fenchel [7, Property 32, p. 86], or Hiriart-
Urruty–Lemaréchal [10, Proposition 4.2.1, p. 114].

18.2.3 Lemma Let f be a concave function on the open convex set C ⊂ Rm. If
f has a Gâteaux derivative at x, then it is a Fréchet derivative.

Proof : Let v 7→ f ′(x; v) be the Gâteaux derivative of f . We need to show that
for every ε > 0 there is some δ > 0 such that

( ∀0 < λ < δ )
(

∀v‖v‖=1
)

[ ‖f(x + λv) − f(x) − λf ′(x; v)‖ ⩽ ελ ].

Fix ε > 0. By definition, f ′(x; v) = limλ↓0
(
f(x + λv) − f(x)

)
/λ, so for each v,

there is a δv > 0 such that for 0 < λ ⩽ δv,∣∣∣∣∣f(x + λv) − f(x)
λ

− f ′(x; v)
∣∣∣∣∣ < ε,

or multiplying by λ,
|f(x + λv) − f(x) − λf ′(x; v)| < ελ,

By Lemma 15.1.4 and the homogeneity of f ′(x; ·), for λ > 0 we have
f(x) + λf ′(x; v) − f(x + λv) ⩾ 0.

Combining these two inequalities, for 0 < λ ⩽ δv, we have
0 ⩽ λf ′(x; v) − f(x + λv) + f(x) < ελ. (⋆)

Once again consider the 2n vectors u1, . . . , u2n with coordinates ±1, and let
δ = minj δuj . Then (⋆) holds with v = uj for any 0 < λ < δ.

Let U = co{u1, . . . , u2n}, which is a convex neighborhood of zero that includes
all the vectors v with ‖v‖ = 1. Fixing λ, the function

hλ(v) = λf ′(x; v) − f(x + λv) + f(x)

is convex in v, and any v in U can be written as a convex combination v =∑2n

j=1 αju
j, so for any 0 < λ ⩽ δ,

0 ⩽ λf ′(x; v) − f(x + λv) + f(x) = hλ(v) ⩽
2n∑

j=1
αjhλ(uj) ⩽ max

j
hλ(uj) < ελ.

Since this is true for every vector v of norm one, we are finished.
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18.2.4 Theorem Let f be a concave function on the open convex set C ⊂ Rm.
Then f is differentiable almost everywhere on C.
Proof : By Theorem 18.2.1 for each i, the ith partial derivative exists for almost
every x. Therefore all n partial derivatives exist for almost every x. The result
now follows from Lemma 18.2.2 and 18.2.3.

This lemma is used in the proof of Lemma 18.2.2, which is required for the
proof pf Theorem 18.2.4.

18.2.5 Lemma Let g be concave on C and let x ∈ ri C. Let v1, . . . , vm be linearly
independent and assume that g is affine on each of the segments Li = {x + λvi :
|λ| ⩽ δi} ⊂ C, i = 1, . . . , m. Then g is affine on A = co⋃m

i=1 Li.
Proof : By hypothesis, for each i = 1, . . . , m, there is an αi satisfying

g(x + λvi) = g(x) + αiλ on Li.

Define ℓ on the span of v1, . . . , vm by ℓ(λ1v
1 + · · · + λmvm) = α1λ1 + · · · + αmλm.

Then ℓ is linear, so the function h on A defined by h(y) = g(x)+ ℓ(y −x) is affine.
Moreover h agrees with g on each segment Li. In particular g(x) − h(x) = 0.

Now any point y in A can be written as a convex combination of points x+λiv
i

belonging to Li. Since g is concave, for a convex combination ∑i αi(x + λiv
i) we

have
g
(∑

i

αi(x + λiv
i)
)
⩾
∑

i

αig(x + λiv
i) =

∑
i

αih(x + λiv
i) = h

(∑
i

αi(x + λiv
i)
)
,

where the final equality follows from the affinity of h. Therefore g − h ⩾ 0 on A.
But g −h is concave, x belongs to ri A, and (g −h)(x) = 0. Therefore g −h = 0 on
A. (To see this, let y belong to A. Since x in ri A, for some z ∈ A and 0 < λ < 1, we
may write x = λy+(1−λ)z, so 0 = (g−h)(x) ⩾ λ(g−h)(y)+(1−λ)(g−h)(z) ⩾ 0,
which can only happen if (g − h)(y) = (g − h)(z) = 0.)

Thus g is the affine function h on A.
18.2.6 Remark This result depends on the fact that x belongs to ri C, and can
fail otherwise. For instance, let C = R2

+ and f(x, y) = xy. Then f is linear
(indeed zero) on the nonnegative x and y axes, which intersect at the origin, but
f is not linear on the convex hull of the axes. Of course, the origin is not in the
relative interior of R2

+.

The next fact may be found in Fenchel [7, Theorem 35, p. 87ff], or Katzner [12,
Theorems B.5-1 and B.5-2].

18.2.7 Fact If f : C ⊂ Rm → R is twice differentiable, then the Hessian Hf is
everywhere negative semidefinite if and only if f is concave. If Hf is everywhere
negative definite, then f is strictly concave.

************ There are many ways to see this. One way is to look at the
second difference ∆2

v,wf = f(x + w + v) − f(x + w) −
(
f(x + v) − f(x)

)
. By

************
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18.3 Differentiability and the single subgradient

The next result may be found in Rockafellar [16, Theorem 25.1, p. 242].

18.3.1 Theorem Let f be a convex function on Rm. Then f is differentiable
at x if and only if the subdifferential ∂f(x) is a singleton, in which case the lone
subgradient is in fact the differential of f at x.

Let f be a concave function on Rm. Then f is differentiable at the point
x ∈ int dom f if and only if the superdifferential ∂f(x) is a singleton, in which
case ∂f(x) = {f ′(x)}.

Proof : I’ll prove the concave case. (=⇒) Suppose f is differentiable at the interior
point x. Then for any v, f ′(x; v) = f ′(x) · v. Moreover there is an ε > 0 such that
for any v, x + εv ∈ dom f . Now the superdifferential ∂f(x) is nonempty, since
f ′(x) ∈ ∂f(x), so by Lemma 15.1.6, if p ∈ ∂f(x), then

p · εv ⩾ f ′(x; εv) = f ′(x) · εv.

But this also holds for −v, so

p · v = f ′(x) · v.

Since this holds for all v, we have p = f ′(x).
(⇐=) Suppose ∂f(x) = {p}. Since x is interior there is an α > 0 such that

x + αB ⊂ dom f , where B is the unit ball in Rm. Define the concave function
g : αB → R by

g(v) = f(x + v) − f(x) − p · v.

Note that f is differentiable at x if and only if g is differentiable at 0, in which
case g′(0) = f ′(x) − p.

Now the supergradient inequality asserts that f(x)+p ·v ⩾ f(x+v), so g ⩽ 0.
But g(0) = 0, that is, 0 maximizes g over αB, so by Lemma 14.1.8, 0 ∈ ∂g(0).

In fact, ∂g(0) = {0}. For if q ∈ ∂g(0), we have

g(0) + q · v ⩾ g(v)
0 + q · v ⩾ f(x + v) − f(x) − p · v

f(x) + (p + q) · v ⩾f(x + v),

which implies p + q ∈ ∂f(x), so q = 0.
By Lemma 15.1.7, the closure of g′(x; ·) is the cost function of ∂g(0) = {0}, so

cl g′(x; ·) = 0. But this implies that g′(x; ·) is itself closed, and so identically zero. Why is it closed?
See Rockafellar
23.4.But zero is a linear function, so by Lemma 18.2.3, g is differentiable at zero.
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18.3.1 Hotelling’s and Shephard’s Lemmas

The following twin results in economics are attributed to Shephard [18] and
Hotelling. They are simple consequences of general results in convex analysis.

18.3.2 Shephard’s Lemma If x is the unique minimizer of p over a set
A ⊂ Rm, then the cost function cA is differentiable at p and c′

A(p) = x.

18.3.3 Hotelling’s Lemma If x is the unique maximizer of p over a set
A ⊂ Rm, then the profit function πA is differentiable at p and π′

A(p) = x.

Proof of Shephard’s Lemma: Theorem 15.2.1 asserts that the subdifferential of a
cost function at the price vector p is the set of cost-minimizing vectors. Theo-
rem 18.3.1 asserts that if the cost minimizer is unique, then the cost function is
differentiable and its gradient is the cost minimizer.

18.4 Convex functions on finite dimensional spaces

In this section we gather several important properties of convex functions on
finite dimensional spaces. For a more detailed account see the definitive volume
by R. T. Rockafellar [16].

If f is differentiable at every point in U , the mapping x 7→ Df(x) from U
into L(X, Y ) is itself a function from an open subset of a normed space to a
normed space. If this mapping is differentiable at x, its differential, which be-
longs to L

(
X, L(X, Y )

)
, is called the second differential of f at x, denoted

D2f(x). (Thus for each v ∈ X, D2f(x)(v) is an operator in L(X, Y ). Its value
at w ∈ X is D2f(x)(v)(w). For the case X = Rm and Y = R, we can identify
L
(
Rm, L(Rm, R)

)
with Rn2 and D2f(x) with the Hessian matrix

[
∂2f(x)
∂xi∂xj

]
of

f at x via D2f(x)(v)(w) = ∑n
i=1

∑n
j=1

∂2f(x)
∂xi∂xj

viwj.)
We already know from Proposition 14.1.5 that the subdifferential is nonempty

at interior points and that when it is a singleton, it consists of the Fréchet deriva-
tive (Theorem 18.3.1).3

Check the
crossref. The next result shows that the derivative a convex function defined on an open

subset of a finite dimensional space exists except possibly on a set of Lebesgue
measure zero.

18.4.1 Theorem If C is an open convex subset of Rm and f : C → R is a
convex function, then:

a. the set A of points where f is differentiable is a dense Gδ subset of C,

b. its complement has Lebesgue measure zero, and
3 In infinite dimensional spaces, it is in general the Gâteaux derivative.
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c. the function x 7→ Df(x) from A to L(Rm, R) is continuous.

A proof of this can be found in R. T. Rockafellar [16, Theorem 25.5 and
Corollary 25.5.1, p. 246] or W. Fenchel [7, Theorems 33 and 34, pp. 86–87]. The
proof that a convex function is differentiable almost everywhere has two parts.
The first part uses Lemma 6.1.4 (3) and Fubini’s Theorem to show that a convex Need a reference

to Fubini’s
Theorem.function has partial derivatives almost everywhere, and the second part shows that

if all the partial derivative of a convex function (on a finite dimensional space)
exist at a point, then it is in fact differentiable at that point.

18.4.2 Theorem Let f : C → R be a twice differentiable real function on an
open convex subset of Rm. Then f is convex if and only its Hessian matrix is
positive semidefinite4 everywhere in C.

For a proof of the above result, see C. D. Aliprantis [2, Problem 1.1.2, p. 3] or
J.-B. Hiriart-Urruty and C. Lemaréchal [9, Theorem 4.3.1, p. 190]. We can also
say something about the almost everywhere existence of the second differential.
Let us say that a correspondence φ : Rn ↠ Rm is differentiable at x if there is
a linear mapping T : Rn → Rm (that is, an m × n matrix) satisfying

yv = y + T (v) + o(‖v‖), for ally ∈ φ(x), yv ∈ φ(x + v).

If φ is differentiable at x, then it is singleton-valued at x, and the linear mapping
T is unique and is called the derivative of φ at x.

The following theorem is due to A. D. Alexandroff [1]. The formulation stated
here is based on R. Howard [11, Theorems 6.1 and 7.1] and J.-B. Hiriart-Urruty
and C. Lemaréchal [9, Theorem 4.3.4, p. 192]. See also the enlightening discussion
in Sections I.5.1–2 (pp. 30–33) and IV.4.3 (pp. 190–193) of [9].

18.4.3 Theorem (Alexandroff’s Theorem) If f : Rn → R is a proper con-
vex function, and dom f has nonempty interior, then there exists a subset A of
the interior of dom f such that:

1. The set int (dom f) \ A has Lebesgue measure zero.

2. Both f and ∂f are differentiable at every point of A.

3. The derivative T of ∂f at each point of A is symmetric, positive definite,
and satisfies the “second order Taylor expansion formula”

f(x + v) = f(x) + Df(x)(v) + 1
2T (x)(v) · v + o

(
‖v‖2

)
.

4 Recall that an n × n symmetric matrix M is positive semidefinite if xtMx ≥ 0 holds for
each x ∈ Rm. Equivalently, M is positive semidefinite if its eigenvalues are real and nonnegative.
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