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Topic 17: Monotone mappings

17.1 The subdifferential correspondence
Move to a section
the uhc of the
subdifferential
map

17.1.1 Lemma The set of continuous subgradients of a convex function at a
point is a (possibly empty) closed convex set.

Proof : This is immediate since it is the set of solutions to a system of weak linear
inequalities, one for each y.

17.2 Monotone and cyclically monotone mappings

Recall that a real function g : X ⊂ R → R is increasing if x ⩾ y implies
g(x) ⩾ g(y). Another way to say this is

[
g(x) − g(y)

]
(x − y) ⩾ 0 for all x, y.

Or equivalently, g is nondecreasing if

g(x)(y − x) + g(y)(x − y) ⩽ 0 for all x, y.

More generally, a correspondence φ : X ⊂ Rm ↠ Rm is monotone (increasing)
if

(px − py) · (x − y) ⩾ 0 for all x, y ∈ X, and all px ∈ φ(x), py ∈ φ(y).
We could also write this as

px · (y − x) + py · (x − y) ⩽ 0.

A mapping φ is monotone (decreasing) if the reverse inequality always holds.
There is a natural generalization of these conditions. A cycle is a finite se-

quence x0, x1, . . . , xn, xn+1 with xn+1 = x0. A mapping g : U ⊂ Rm → Rm is called
cyclically monotone (increasing) if for every cycle x0, x1, . . . , xn, xn+1 = x0 in
U , we have

g(x0) · (x1 − x0) + g(x1) · (x2 − x1) + · · · + g(xn) · (x0 − xn) ⩽ 0.

If the same sum is always ⩾ 0, we shall say that g is cyclically monotone
(decreasing). Monotonicity is just cyclical monotonicity with n = 1.

More generally, a correspondence φ : U ⊂ Rm ↠ Rm is called cyclically
monotone (increasing)1 if for every cycle (x0, p0), (x1, p1), . . . , (xn+1, pn+1) =
(x0, p0) in the graph of φ, that is, with pi ∈ φ(xi) for all i, we have

p0 · (x1 − x0) + p1 · (x2 − x1) + · · · + pn · (x0 − xn) ⩽ 0.

1 Most authors define monotone and cyclically monotone correspondences to be increasing,
and do not make a definition for decreasing monotonicity. This is because mathematicians
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We mention that if m = 1 (Rm = R) then a function g is cyclically monotone
if and only if it is monotone. For m ⩾ 2, there are monotone functions that are
not cyclically monotone, see Rockafellar [5, p. 240].

17.3 Cyclic monotonicity characterizes subdifferentials

17.3.1 Theorem (Cyclic monotonicity of the subdifferential) Let f be
convex and subdifferentiable on a convex set C ⊂ Rm. Then the subdifferential
correspondence x 7↠ ∂f(x) is cyclically monotone (increasing). That is, for any
cycle (x0, p0), (x1, p1), . . . , (xn+1, pn+1) = (x0, p0) in the graph of ∂f , we have

n∑
k=0

pk · (xk+1 − xk) ⩽ 0.

Proof : By the subgradient inequality, for each k,

f(xk+1) ⩾ f(xk) + pk · (xk+1 − xk)

or
pk · (xk+1 − xk) ⩽ f(xk+1) − f(xk)

Summing both sides gives
n∑

k=0
pk · (xk+1 − xk) ⩽

n∑
k=0

[
f(xk+1) − f(xk)

]
= 0,

where the last equality follows from the fact that xn+1 = x0.

17.3.2 Corollary (Cyclic monotonicity of the derivative) Let U ⊂ Rm

be a nonempty open convex set, and let f be convex and differentiable on U .
Then the gradient mapping x 7→ f ′(x) is cyclically monotone (increasing). That
is, for any cycle x0, x1, . . . , xn, xn+1 in U with xn+1 = x0, we have

n∑
k=0

f ′(xk) · (xk+1 − xk) ⩽ 0.

Note that the gradient of a concave function is cyclically monotone (decreas-
ing).

Remarkably, cyclic monotonicity characterizes the subdifferential mapping.
This result is due to Rockafellar, and may be found in his book [5, Theorem 24.8,
p. 238].

find convex functions (such as norms) to be natural, and as we shall see below there is an
important relationship between convex functions and (cyclically) monotone increasing mappings.
Economists however find concave functions to be naturally occurring (as in production functions)
so it seems natural to introduce a term for (cyclically) monotone decreasing mappings. Just
keep in mind that for every statement about convex functions, there is a corresponding one for
concave functions derived by replacing f by −f .
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17.3.3 Theorem (Rockafellar) Let C ⊂ Rm be a nonempty convex set and
let φ : C ↠ Rm be a correspondence with nonempty values. Then φ is cycli-
cally monotone (increasing) if and only if there is a lower semicontinuous convex
function f : C → R satisfying

φ(x) ⊂ ∂f(x) for every x ∈ C.

The proof uses a construction that may seem a bit unusual at first, but is
actually rather natural. Consider the problem of recovering a continuously differ-
entiable function f from its derivative f ′. Since for any constant c, f and f + c
have the same derivative, the best we can hope to do is recover f up to some con-
stant. One way to do this is to fix f at some point x0 and use the Fundamental
Theorem of Calculus to write f(y) =

∫ y
x0

f ′(x) dx. Now the integral
∫ y

x0
f ′(x) dx

can be approximated by using points x1, . . . , xn to partition the interval from x0
to y and computing the sum

S = f ′(x0)(x1 − x0) + f ′(x1)(x2 − x1) + · · · + f ′(xn)(y − xn).

Since f ′ is integrable, as the mesh of this partition goes to zero, the sums converge
to f(y) − f(x0). The proof below will use a similar idea, but we will work in Rm,
and we won’t require the x1, . . . , xn to partition the segment between x0 and y.
Nevertheless, the subgradient inequality will assure us that the sums we use will
always underestimate f(y) − f(x0), so we can take a supremum rather than a
more general limit.

Proof of Theorem 17.3.3: ( ⇐= ) If φ(x) ⊂ ∂f(x) for a convex f , Theorem 17.3.1
shows that φ is cyclically monotone (increasing).

( =⇒ ) For the converse, assume φ is cyclically monotone (increasing) and fix
some point x0 in C and fix p0 ∈ φ(x0).

Given any finite sequence (x1, p1), . . . , (xn, pn) in Rm × Rm, define the affine
function Sx1,...,xn

p1,...,pn
by

Sx1,...,xn
p1,...,pn

(y) = p0 · (x1 − x0) + · · · + pn · (y − xn).

We will use these sums S to approximate f(y) − f(x0). The construction of such
functions Sx1,...,xn

p1,...,pn
is illustrated in Figures 17.3.1 and 17.3.2, unfortunately for the

case of a concave function rather than a convex function.
So define the function f : C → R to be the pointwise supremum of the func-

tions Sx1,...,xn
p1,...,pn

as (x1, p1), . . . , (xn, pn) ranges over all finite sequences in the graph
of φ. That is,

f(y) = sup
{
Sx1,...,xn

p1,...,pn
(y) : ( ∀i ) [ xi ∈ C & pi ∈ φ(xi) ]

}
.

We now show that f has the desired properties.
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Sx1,x2,x3
p1,p2,p3

f

x0 x1 x2 x3

} p2(x3 − x2) p1(x2 − x1)


p0(x1 − x0)

p0

p1
p2 p3

Figure 17.3.1. The function Sx1,x2,x3
p1,p2,p3

(y) = p0 · (x1 − x0) + p1 · (x2 − x1) +
p2 · (x3 − x2) + p3 · (y − x3), where each pi is taken from ∂f(xi).

Sx1,x2,x3
p1,p2,p3

f

x0 x1 x3 x2

p0

p1
p3 p2

Figure 17.3.2. Another version of Sx1,x2,x3
p1,p2,p3

(y) = p0 · (x1 − x0) + p1 · (x2 −
x1) + p2 · (x3 − x2) + p3 · (y − x3), where the xi have been reordered.
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• f is convex and lower semicontinuous.
Since f is the pointwise supremum of a collection of continuous affine func-
tions, it is convex by part 4 of Exercise 1.3.3, and lower semicontinuous by
Proposition 13.4.5.

• f is proper. Indeed f(y) < ∞ for all y ∈ C.
To see this, pick any y and fix some py in φ(y). Let (x1, p1), . . . , (xn, pn) be
a finite sequence in the graph of φ. Consider the affine function

py · (x0 − y) + p0 · (x1 − x0) + · · · + pn · (y − xn)︸ ︷︷ ︸
S x1,...,xn

p1,...,pn
(y)

.

But y, x0, x1, . . . , xn, y constitutes a cycle, so by cyclic monotonicity,

py · (x0 − y) + Sx1,...,xn
p1,...,pn

(y) ⩽ 0.

Rearranging gives
Sx1,...,xn

p1,...,pn
(y) ⩽ py · (y − x0).

Note that the right-hand side is independent of (x1, p1), . . . , (xn, pn), so tak-
ing the supremum on the left-hand side gives

f(y) ⩽ py · (y − x0) < ∞.

• For every x ∈ C, φ(x) ⊂ ∂f(x). That is, for any x, y in C and any px ∈ φ(x)
the subgradient inequality

f(y) ⩾ f(x) + px · (y − x)

is satisfied.
To see this, let ε > 0 be given. Then by the definition of f , since f(x) is
finite, there is a finite sequence (x1, p1), . . . , (xn, pn) in the graph of φ with

f(x) − ε < Sx1,...,xn
p1,...,pn

(x) ⩽ f(x). (1)

Extend this sequence by appending (x, px). Again by the definition of f as
the supremum of these S functions, for all y,

S x1,...,xn,x
p1,...,pn,px

(y) ⩽ f(y). (2)

But

S x1,...,xn,x
p1,...,pn,px

(y) = p0 · (x1 − x0) + · · · + pn · (x − xn)︸ ︷︷ ︸ +px · (y − x)

= Sx1,...,xn
p1,...,pn

(x) + px · (y − x).
(3)
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Adding px · (y − x) to both sides of the first inequality in (1) and combining
with (3) and (2) gives
f(x) − ε + px · (y − x) < Sx1,...,xn

p1,...,pn
(x) + px · (y − x) = S x1,...,xn,x

p1,...,pn,px
(y) ⩽ f(y).

Since ε > 0 is arbitrary, we conclude that f(y) ⩾ f(x) + px · (y − x), so
indeed φ(x) ⊂ ∂f(x).

17.4 Monotonicity vs. cyclic monotonicity

We mention that if m = 1 (Rm = R) then a function g is cyclically monotone if
and only if it is monotone. For m ⩾ 2, there are monotone functions that are not
cyclically monotone.

17.4.1 Example (Monotonicity vs. cyclic monotonicity) This example is
based on a remark of Rockafellar [5, p. 240]. Define the function g : R2 → R2 by

g(x, y) =

−1 2
0 −1


x

y

 = (2y − x, −y).

Then g is monotone (decreasing):
g(x0, y0) · (x1 − x0, y1 − y0) + g(x1, y1) · (x0 − x1, y0 − y1)

= (2y0 − x0, −y0) · (x1 − x0, y1 − y0) + (2y1 − x1, −y1) · (x0 − x1, y0 − y1)
= (2y0 − x0, −y0) · (x1 − x0, y1 − y0) − (2y1 − x1, −y1) · (x1 − x0, y1 − y0)
= (2y0 − x0 − 2y1 + x1, y1 − y0) · (x1 − x0, y1 − y0)
= (x1 − x0)2 − 2(y1 − y0)(x1 − x0) + (y1 − y0)2

=
(
(x1 − x0) − (y1 − y0)

)2

⩾ 0.

But g is not cyclically monotone (decreasing): Consider the cycle (0, −2), (2, −2),
(3, 0), (0, −2). Then

g(0, −2) ·
(
(2, −2) − (0, −2)

)
+ g(2, −2) ·

(
(3, 0) − (2, −2)

)
+ g(3, 0) ·

(
(0, −2) − (3, 0)

)
=(−4, 2) · (2, 0) + (−6, 2) · (1, 2) + (−3, 0) · (−3, −2)
= − 8 − 2 + 9
= − 1.

Can anyone prove
this??? In fact, Rockafellar [5, p. 240] asserts the following. Let g : Rn → Rn be linear,

that is, g(x) = Ax, where A is an n×n matrix. If A is negative quasi-semidefinite
but not symmetric, then g is monotone decreasing, but not cyclically monotone
decreasing. □

v. 2019.12.24::12.34 src: Monotonicity KC Border: for Ec 181, 2019–2020



Ec 181 AY 2019–2020
KC Border Monotone mappings 17–7

17.5 Monotonicity and second derivatives

From Corollary 17.3.2 we know that the gradient of a convex function f : C → R,
where C is an open convex set in Rn, is monotone (increasing). That is, it satisfies

f ′(x0) · (x1 − x0) + f ′(x1) · (x0 − x1) ⩽ 0,

which can be rearranged as(
f ′(x1) − f ′(x0)

)
· (x1 − x0) ⩾ 0.

This is enough to show that the second differential (if it exists) is positive semidef-
inite.

17.5.1 Theorem Let C be an open convex subset of Rm, and let f be a twice
differentiable function on C. If the derivative f ′ of f is monotone (increasing),
then the Hessian of f is everywhere positive semidefinite

Proof : Consider a point x in C and choose v so that x ± v belong to C. Then by
monotonicity with x0 = x and x1 = x + λv,(

f ′(x + λv) − f ′(x)
)

· (λv) ⩾ 0.

Dividing by the positive quantity λ2 implies

v ·

(
f ′(x + λv) − f ′(x)

)
λ

⩾ 0. (4)

Define the function g : (−1, 1) → R by

g(λ) = v · f ′(x + λv) =
m∑

i=1
Dif(x + λv)vi.

In particular, if f is twice differentiable, then by the Chain Rule

g′(λ) =
m∑

i=1

m∑
j=1

Dijf(x + λv)vivj = f ′′(x + λv)(v, v). (5)

On the other hand,

g′(0) = lim
λ→0

v · g(λ) − g(0)
λ

= lim
λ→0

v ·

(
f ′(x + λv) − f ′(x)

)
λ

⩾ 0, (6)

where, the last inequality is (4). Evaluating (5) at λ = 0 and substituting into (6)
shows that the Hessian matrix f ′′(x) is positive semidefinite.
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17.5.2 Theorem (Second order characterization of convexity) Let C be
an open convex subset of Rm, and let f be a twice differentiable function on C.

Then f is convex if and only if the Hessian of f is everywhere positive semidef-
inite. And f is concave if and only if the Hessian of f is everywhere negative
semidefinite.

Proof : I’ll prove the assertion for the positive definite case. If f is convex, then
by Corollary 17.3.2, its derivative is monotone (increasing), so by Theorem 17.5.1,
its Hessian is positive semidefinite.

For the converse, assume that the Hessian of f is everywhere positive semidef-
inite. Let x, y belong to C, and let 0 ⩽ λ ⩽ 1. We wish to show that f

(
(1−λ)x+

λy
)
⩽ (1 − λ)f(x) + λf(y). Setting v = y − x, this is equivalent to

f(x + λv) − f(x) ⩽ λ
(
f(x + v) − f(x)

)
.

By the Chain Rule g(t) = f(x + tv) satisfies

g′(t) = f ′(x + tv) · v

g′′(t) =
n∑

i=1

n∑
j=1

Dijf(x + tv)vivj ⩾ 0.

This implies that g′′ ⩾ 0, so g′ is nondecreasing. So by the Second Fundamental
Theorem of Calculus,

f(x + λv) − f(x) = g(λ) − g(0) =
∫ λ

0
g′(t) dt

⩽
∫ λ

0
g′(1) dt

= λ
∫ 1

0
g′(1) dt

= λ
(
g(1) − g(0)

)
= λ

(
f(x + v) − f(x)

)
.

17.5.3 Remark At this point I was a bit confused. If you are not confused, you may not
wish to read this.

We have just shown that if a twice differentiable function has a monotone gradient, then it
has positive semidefinite Hessian, so it is convex, and therefore its gradient is actually cyclically
monotone. Thus every monotone gradient is cyclically monotone. Now Theorem 17.3.3 says that
every cyclically monotone vector field is a selection from the subdifferential of a convex function.
I am embarrassed to admit it, but I thought for a while therefore that the argument above
allowed me to conclude that every monotone vector field is a selection from the subdifferential
of a convex function, which would be a stronger result (except that it is not true).

What the argument above shows is this: Every monotone vector field that happens also to
be a gradient of a twice differentiable function is indeed cyclically monotone. But, there are
differentiable vector fields that are not gradients of twice differentiable functions. (A vector field
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is just a function from Rm into Rm. If it is the gradient of a real function f , then f is called
the potential of the field.) Recall that second differentials are symmetric. So if x 7→ g(x) is aCite symmetry of

second
differential. gradient of a twice differentiable function f , then

Djgi(x) = DiDjf(x) = DjDif(x) = Digj(x).

Now consider the vector field of Example 17.4.1, namely g : R2 → R2 defined by

g(x, y) = (2y − x, −y).

This vector field is continuously differentiable, but

D1g2 = 0, D2g1 = 2,

so g cannot be the gradient of any twice differentiable function. However, as we saw in Exam-
ple 17.4.1, g is monotone (decreasing), but not cyclically monotone (decreasing).

By the way, this is analogous to the “integrability problem” in demand theory. The Weak
Axiom of Revealed Preference can be used to show that the Slutsky matrix is quasi-negative
semidefinite (negative semidefinite without necessarily being symmetric), see, e.g., Samuelson [6,
pp. 109–111] or Kihlstrom, Mas-Colell, and Sonnenschein [3], but it takes the Strong Axiom to
show symmetry: Gale [1], Houthakker [2], Uzawa [7].

Now let’s return to support functions.

17.5.4 Lemma Suppose x(p) minimizes p · x over the nonempty set A. Suppose
further that it is the unique minimizer of p · x over co A. If ∂2µC(p)

∂p2
i

exists (or
equivalently ∂x(p)

∂pi
exists), then

∂xi(p)
∂pi

⩽ 0.

Do we need twice
differentiability or
just the existence
of the second
partial????

Proof : This follows from Corollary 15.2.2 and the discussion above.

This, by the way, summarizes almost everything interesting we know about
cost minimization.

References

[1] D. Gale. 1960. A note on revealed preference. Economica N.S. 27(108):348–
354. http://www.jstor.org/stable/2550547

[2] H. S. Houthakker. 1950. Revealed preference and the utility function. Eco-
nomica N.S. 17:159–174. http://www.jstor.org/stable/2549382

[3] R. Kihlstrom, A. Mas-Colell, and H. F. Sonnenschein. 1976. The demand
theory of the weak axiom of revealed preference. Econometrica 44(5):971–
978. http://www.jstor.org/stable/1911539

KC Border: for Ec 181, 2019–2020 src: Monotonicity v. 2019.12.24::12.34

http://www.jstor.org/stable/2550547
http://www.jstor.org/stable/2549382
http://www.jstor.org/stable/1911539


Ec 181 AY 2019–2020
KC Border Monotone mappings 17–10

[4] J.-C. Rochet. 1987. A necessary and sufficient condition for rationalizability
in a quasi-linear context. Journal of Mathematical Economics 16(2):191–200.

DOI: 10.1016/0304-4068(87)90007-3

[5] R. T. Rockafellar. 1970. Convex analysis. Number 28 in Princeton Mathe-
matical Series. Princeton: Princeton University Press.

[6] P. A. Samuelson. 1965. Foundations of economic analysis. New York:
Athenaeum. Reprint of the 1947 edition published by Harvard University
Press.

[7] H. Uzawa. 1958. Preference and rational choice in the theory of consumption.
In K. J. Arrow, L. Hurwicz, and H. Uzawa, eds., Studies in Linear and Non-
linear Programming, number 2 in Stanford Mathematical Studies in the Social
Sciences, chapter 9, pages 129–148. Stanford, California: Stanford University
Press.

v. 2019.12.24::12.34 src: Monotonicity KC Border: for Ec 181, 2019–2020

http://dx.doi.org/10.1016/0304-4068(87)90007-3

	Monotone mappings
	The subdifferential correspondence
	Monotone and cyclically monotone mappings
	Cyclic monotonicity characterizes subdifferentials
	Monotonicity vs. cyclic monotonicity
	Monotonicity and second derivatives
	References


