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Topic 15: Subgradients and Directional
Derivatives

15.1 Directional derivatives and the subdifferential

The following definition adopts the notation of Fenchel [1] and Rockafellar [3].
Phelps [2] uses the notation d*(z)(v).

15.1.1 Definition For f: R™ — R’, define the one-sided directional deriva-
tive of f at the point x in the direction v by

o) — iy A0 = )

A0 A ’

allowing the values oo and —oo, provided the limit exists.

In Example 14.1.6, f'(0;1) = —o0, that is, the graph of the function becomes
arbitrarily steep as we approach the boundary. This is the only way superdiffer-
entiability fails. I prove it in Corollary 15.1.5 below.

15.1.2 Lemma Let f be a proper convex function, let x belong to dom f, let v
belong to X, and let 0 < 1t < A. Then the difference quotients satisfy

Fla+ ) = (&) _ fla+20) = ()

u h A
In particular, limy w exists in RF.
Proof: Write
T+ pv = g(:ﬁ%—)\v)%— )\;Mx,

a convex combination, so convexity of f yields
A —
fla+ o) < Sf(x+do) + “E f ()
_ o
= f(0) + 5 (S + W) = f(2)).
Subtract f(x) from both sides and divide by p > 0 to get desired inequality. W

Remarkably, if f is subdifferentiable at x, then this limit is finite. To see this,
rewrite the subgradient inequality

fly) = f(z)+p-(y—x)
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as
flz+ ) — f(z)
\ )
In this case, the difference quotient is bounded below by p - v for any p € df(x),
so the limit is finite.
We now show that f'(x;-) is a positively homogeneous convex (i.e., sublinear)
function.

p-v< where y = x + \v.

15.1.3 Theorem Let f be a proper convex function on R™. The directional
derivative mapping v — f'(z;v) from R™ into RF satisfies the following proper-
ties.

a. The function v — f'(x;v) is a positively homogeneous convex function (that
is, sublinear) and its effective domain is a convex cone.

b. If f is continuous at € dom f, then v — f'(x;v) is continuous and finite-
valued.

Proof: (a.): It is easy to see that the function v — f’(z;v) is homogeneous, as

f(z+ daw) — f(z) f(x + Aaw) — f(z)

) @ 5 ’

and so f'(x;av) = af’(z;v). This also shows that the effective domain is a cone.
For convexity, observe that

fla 4 Mov + (1 - a)w) = f(z) _ f(a@+ ) + (1 - a)(e + M) — f()

A A
o af(x+ ) + (1 —a)f(z+ Iw)) — f(x)
= A
_ oSS g k)= )

and letting A\ | 0 yields f’(a:; (v + (1 — a)w) < adf'(z;v) + (1 — ) f'(x; w).
(b): By Lemma 6.1.3, we have

[f(z+ Av) = f(z)| < Amax{f(z +v) = f(2), f(z —v) = f(2)}
for 0 < A < 1. So let € > 0 be given. If f is continuous at x, there exists § > 0

such that ||v|| < ¢ implies |(f(z £ v) — f(z)| < e. We thus have

o) < TEFAVZTON ot (o 40) — f(o). fz —v) — f(2)} <

(Why?) That is, f'(z;-) is bounded on Bs(0). By homogeneity, f'(x;v) is finite
for all v, so its domain is R™, and by Theorem 6.3.3, it is continuous. |
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Given a point z in a convex set (', the set of directions v into C' at z is
Po(z)={veR": (Fe>0) [z +eveC]}

is a convex cone, but not necessarily a closed cone. (Think of this set for a point
on the boundary of a disk—it is an open half space together with zero.) The set
x 4+ Pc(x), a cone with vertex z, is what Fenchel [1, p. 41] calls the projecting
cone of C' from z.

There is an intimate relation between one-sided directional derivatives and
the superdifferential, cf. Fenchel [1, Property 29, p. 81] or Rockafellar [3, Theo-
rem 23.2, p. 216]. We start with the following extension of Theorem 14.1.9.

15.1.4 Lemma Let f be a concave function on R™ and let f be finite at x. Then
for every y € R™,

f@)+ flasy —2) > fy).
(If f is convex the inequality is reversed.)

Proof: If y ¢ dom f, then f(y) = —o0, so the conclusion follows. If y belongs to
the effective domain, then by concavity

r+ANy—2z)) — flx
e o= D) 210 o oy gy

Letting A | 0, the left hand side converges to f'(x;y — x), which may be +oco. 1

Geometrically, this says that the hypograph of y — f(x)+ f'(z;y—z) includes
the hypograph of f. We can use this to complete the description of subdifferen-
tiability of f. The following result may be partially found in Fenchel [1, Property
31, p. 84] and more explicitly in Rockafellar [3, Theorem 23.3, p. 216] (which are
stated for convex functions).

15.1.5 Corollary Let f be a proper concave function on R™, and let x € dom f.
If f'(x;v) < oo for some v such that x+v € ridom f, then f is superdifferentiable
at x.

Proof: Let v satisfy x + v € ridom f and f’(z;v) < oco. Then, as in the proof
of Proposition 14.1.5 there is (p, —1) supporting the hypograph of f’(z;-) at the
point (U,f’(:L‘;U)). That is,

p-v— fl(z;v) <p-u— f'(zr,u) forall ue dom f'(x;-). (1)

Taking u = 0 implies p - v — f'(x;v) < 0. Taking u = Av for A > 0 large implies
p-v— f'(x;v) 2 0. Thus f'(x;v) = p-v. Then (1) becomes

p(u) > f'(z;u) for all u € dom f'(x;-).
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Adding f(x) to both sides and applying Lemma 15.1.4, we get the supergradient
inequality

f@) +p(u) = f() + f(z,u) > fz+u)
for u € dom f'(x;-) = Paom f(z). For any w not in this set, f(z + Au) = —oo for

A > 0 and the supergradient inequality holds trivially. Thus p is a supergradient
of f at z. |

The next lemma asserts that for concave functions, the directional derivative
mapping at x is the cost function of the superdifferential at x.

15.1.6 Lemma (Support function of the superdifferential)  Let f be a
concave function on R™, and let f(x) be finite. Then

pedf(z) «= (YoeR™) [p(v) > f/(r;0))]
Let f be a convex function on R™, and let f(x) be finite. Then
p € 9f(x) < (VveR™) [p(v) < f(z;v)].

Proof for the concave case:: (=) Let p € df(z). By the supergradient inequal-
ity, for any v € R™,

f(@) +p(Av) = flz + M)
We may subtract the finite value f(z) from the right hand side, even if x + Av ¢
dom f. Thus

p(Av) = fz + Iv) — f(x).

Dividing by A > 0 and letting A | 0 gives

pv) = f'(z;v)

(<) Ifp ¢ Of(x), then there is some v such that the supergradient inequality
is violated, that is,
f(@) +p(v) < flz+wv). (2)
Since f(x4v) = —o0 if z+v ¢ dom f, we conclude = + v € dom f. By concavity,
for 0 < A <1,
Flx+20) > f(z) + A[f(z +v) = f(x)]
or
[z + Av) = f(x)
A

> f(z+v) — f(z),

so by (2)
T+ M) — f(z
FEE T 5 fa b ) = f(a) > plo),
so taking limits gives f'(x;v) > p(v). The conclusion now follows by contraposi-
tion. |

v. 2019.11.18::14.08 src: DirectionalDerivatives KC Border: for Ec 181, 2019-2020



Ec 181 AY 2019-2020
KC BORDER SUBGRADIENTS AND DIRECTIONAL DERIVATIVES 15-5

The next result may be found in Rockafellar [3, Theorem 23.2, p. 216].

15.1.7 Corollary Let f be a concave function on R™, and let f(x) be finite.
Then the closure of the directional derivative at x (as a concave function of the
direction) is the cost function of the superdifferential at x. That is,

cl f'(w;-) = copa ().
Proof: Since h: v f'(z;v) is concave and homogeneous, by Theorem 21.4.1,
clh = cy4, where A = {p : (Vo)) [p(v) = h(v)]}
By Lemma 15.1.6, A = 0f(z). |

15.2 Supergradient of a support function

If the infimum of p is actually achieved at a point in A, we can say more. By
Theorem 9.1.2 we might as well assume that A is closed and convex.

15.2.1 Theorem Let A be a closed convex set. Then x is a supergradient of the
cost function c4 at p if and only if x belongs to A and minimizes p over A. In
other words,

dca(p) ={z € A:p-z=calp)}.

Proof: Recall that the supergradient inequality for this case is

ca(p) +z-(¢—p) = calq) for all q.

(=) I first claim that if z does not belong to A, it is not a supergradient of ¢4
at p. For if z ¢ A, then by Theorem 9.1.2 there is some ¢ for which ¢ -z < ca(q).
Thus for A > 0 large enough, A\q-x < ca(\q) + (p X — cA(p)). Rearranging terms
violates the supergradient inequality applied to Aq. Therefore, by contraposition,
if = is a supergradient of the support function c4 at p, then x belongs to A.

So let x be a supergradient of c4 at p. Setting ¢ = 0 in the supergradient
inequality, we conclude that c4(p) = p - x. But x belongs to A, so x minimizes p
over A, and ca(p) =p- .

In other words, dca(p) C{z € A:p-x =ca(p)}

(«<=) Suppose now that x belongs to A and p-z = c4(p), that is, x minimizes
p over A. By the definition of cy4, for any ¢ € R™, q-x > ca(q). Now add
ca(p) —p-x = 0 to the left-hand side of the inequality to obtain the supergradient
inequality.

Thus {z € A:p-x = ca(p)} C Oca(p), completing the proof. |

15.2.2 Corollary Let A be a closed convex set. Suppose x belongs to A and
strictly minimizes p over A. Then c4 is differentiable at p and

dy(p) = .
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Proof: 'This follows from Theorem 15.2.1 and Theorem 18.3.1. |

15.2.3 Example Let’s look at A = {(x1,23) € Ri+ : x1we > 1}, This is a
closed convex set and its support function is easily calculated: If p ¢ Ri, then
ca(p) = —oo. For p 2 0, it not hard to see that ca(p) = 2,/p1p2, which has no
supergradient when p; = 0 or p, = 0.

(To see this, consider first the case p = 0. The Lagrangean for the minimization
problem is pyx; + pexs + A(1 — z1x9). By the Lagrange Multiplier Theorem, the

first order conditions are p; — Az] = 0 and x5 — Aga = 0. Thus zja5 = B, so

A= /pip2. Thus 2] = /P and 25 = | /2 and ca(p) = prat + poxs = 2,/P1p2.
Now suppose some p; < 0. For instance, suppose ps < 0. Then p- (g, %) — —00
as € — 0, so ca(p) = —00.) O
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