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15.1 Directional derivatives and the subdifferential

The following definition adopts the notation of Fenchel [1] and Rockafellar [3].
Phelps [2] uses the notation d+(x)(v).

15.1.1 Definition For f : Rm → R♯, define the one-sided directional deriva-
tive of f at the point x in the direction v by

f ′(x; v) = lim
λ↓0

f(x + λv) − f(x)
λ

,

allowing the values ∞ and −∞, provided the limit exists.

In Example 14.1.6, f ′(0; 1) = −∞, that is, the graph of the function becomes
arbitrarily steep as we approach the boundary. This is the only way superdiffer-
entiability fails. I prove it in Corollary 15.1.5 below.

15.1.2 Lemma Let f be a proper convex function, let x belong to dom f , let v
belong to X, and let 0 < µ < λ. Then the difference quotients satisfy

f(x + µv) − f(x)
µ

⩽ f(x + λv) − f(x)
λ

.

In particular, limλ↓0
f(x+λv)−f(x)

λ
exists in R♯.

Proof : Write
x + µv = µ

λ
(x + λv) + λ − µ

λ
x,

a convex combination, so convexity of f yields

f(x + µv) ⩽ µ

λ
f(x + λv) + λ − µ

λ
f(x)

= f(x) + µ

λ

(
f(x + λv) − f(x)

)
.

Subtract f(x) from both sides and divide by µ > 0 to get desired inequality.

Remarkably, if f is subdifferentiable at x, then this limit is finite. To see this,
rewrite the subgradient inequality

f(y) ⩾ f(x) + p · (y − x)
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as
p · v ⩽ f(x + λv) − f(x)

λ
, where y = x + λv.

In this case, the difference quotient is bounded below by p · v for any p ∈ ∂f(x),
so the limit is finite.

We now show that f ′(x; ·) is a positively homogeneous convex (i.e., sublinear)
function.

15.1.3 Theorem Let f be a proper convex function on Rm. The directional
derivative mapping v 7→ f ′(x; v) from Rm into R♯ satisfies the following proper-
ties.

a. The function v 7→ f ′(x; v) is a positively homogeneous convex function (that
is, sublinear) and its effective domain is a convex cone.

b. If f is continuous at x ∈ dom f , then v 7→ f ′(x; v) is continuous and finite-
valued.

Proof : (a.): It is easy to see that the function v 7→ f ′(x; v) is homogeneous, as

f(x + λαv) − f(x)
λ

= α
f(x + λαv) − f(x)

αλ
,

and so f ′(x; αv) = αf ′(x; v). This also shows that the effective domain is a cone.
For convexity, observe that

f
(
x + λ(αv + (1 − α)w

)
− f(x)

λ
= f

(
α(x + λv) + (1 − α)(x + λw)

)
− f(x)

λ

⩽ αf(x + λv) + (1 − α)f(x + λw)
)

− f(x)
λ

= α
f(x + λv) − f(x)

λ
+ (1 − α)f(x + λw) − f(x)

λ
,

and letting λ ↓ 0 yields f ′
(
x; (αv + (1 − α)w

)
⩽ αdf ′(x; v) + (1 − α)f ′(x; w).

(b): By Lemma 6.1.3, we have

|f(x + λv) − f(x)| ⩽ λ max{f(x + v) − f(x), f(x − v) − f(x)}

for 0 < λ ⩽ 1. So let ε > 0 be given. If f is continuous at x, there exists δ > 0
such that ‖v‖ < δ implies |(f(x ± v) − f(x)| < ε. We thus have

|f ′(x; v)| ⩽ |f(x + λv) − f(x)|
λ

⩽ max{f(x + v) − f(x), f(x − v) − f(x)} < ε.

(Why?) That is, f ′(x; ·) is bounded on Bδ(0). By homogeneity, f ′(x; v) is finite
for all v, so its domain is Rm, and by Theorem 6.3.3, it is continuous.
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Given a point x in a convex set C, the set of directions v into C at x is

PC(x) = {v ∈ Rm : ( ∃ε > 0 ) [ x + εv ∈ C ]}

is a convex cone, but not necessarily a closed cone. (Think of this set for a point
on the boundary of a disk—it is an open half space together with zero.) The set
x + PC(x), a cone with vertex x, is what Fenchel [1, p. 41] calls the projecting
cone of C from x.

There is an intimate relation between one-sided directional derivatives and
the superdifferential, cf. Fenchel [1, Property 29, p. 81] or Rockafellar [3, Theo-
rem 23.2, p. 216]. We start with the following extension of Theorem 14.1.9.

15.1.4 Lemma Let f be a concave function on Rm and let f be finite at x. Then
for every y ∈ Rm,

f(x) + f ′(x; y − x) ⩾ f(y).

(If f is convex the inequality is reversed.)

Proof : If y /∈ dom f , then f(y) = −∞, so the conclusion follows. If y belongs to
the effective domain, then by concavity

f
(
x + λ(y − x)

)
− f(x)

λ
⩾ f(y) − f(x).

Letting λ ↓ 0, the left hand side converges to f ′(x; y − x), which may be +∞.

Geometrically, this says that the hypograph of y 7→ f(x)+f ′(x; y−x) includes
the hypograph of f . We can use this to complete the description of subdifferen-
tiability of f . The following result may be partially found in Fenchel [1, Property
31, p. 84] and more explicitly in Rockafellar [3, Theorem 23.3, p. 216] (which are
stated for convex functions).

15.1.5 Corollary Let f be a proper concave function on Rm, and let x ∈ dom f .
If f ′(x; v) < ∞ for some v such that x+v ∈ ri dom f , then f is superdifferentiable
at x.

Proof : Let v satisfy x + v ∈ ri dom f and f ′(x; v) < ∞. Then, as in the proof
of Proposition 14.1.5 there is (p, −1) supporting the hypograph of f ′(x; ·) at the
point

(
v, f ′(x; v)

)
. That is,

p · v − f ′(x; v) ⩽ p · u − f ′(x, u) for all u ∈ dom f ′(x; ·). (1)

Taking u = 0 implies p · v − f ′(x; v) ⩽ 0. Taking u = λv for λ > 0 large implies
p · v − f ′(x; v) ⩾ 0. Thus f ′(x; v) = p · v. Then (1) becomes

p(u) ⩾ f ′(x; u) for all u ∈ dom f ′(x; ·).
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Adding f(x) to both sides and applying Lemma 15.1.4, we get the supergradient
inequality

f(x) + p(u) ⩾ f(x) + f ′(x, u) ⩾ f(x + u)
for u ∈ dom f ′(x; ·) = Pdom f (x). For any u not in this set, f(x + λu) = −∞ for
λ > 0 and the supergradient inequality holds trivially. Thus p is a supergradient
of f at x.

The next lemma asserts that for concave functions, the directional derivative
mapping at x is the cost function of the superdifferential at x.

15.1.6 Lemma (Support function of the superdifferential) Let f be a
concave function on Rm, and let f(x) be finite. Then

p ∈ ∂f(x) ⇐⇒ ( ∀v ∈ Rm ) [ p(v) ⩾ f ′(x; v) ].

Let f be a convex function on Rm, and let f(x) be finite. Then

p ∈ ∂f(x) ⇐⇒ ( ∀v ∈ Rm ) [ p(v) ⩽ f ′(x; v) ].

Proof for the concave case:: (=⇒) Let p ∈ ∂f(x). By the supergradient inequal-
ity, for any v ∈ Rm,

f(x) + p(λv) ⩾ f(x + λv)
We may subtract the finite value f(x) from the right hand side, even if x + λv /∈
dom f . Thus

p(λv) ⩾ f(x + λv) − f(x).
Dividing by λ > 0 and letting λ ↓ 0 gives

p(v) ⩾ f ′(x; v)

.
(⇐=) If p /∈ ∂f(x), then there is some v such that the supergradient inequality

is violated, that is,
f(x) + p(v) < f(x + v). (2)

Since f(x + v) = −∞ if x + v /∈ dom f , we conclude x + v ∈ dom f . By concavity,
for 0 < λ ⩽ 1,

f(x + λv) ⩾ f(x) + λ
[
f(x + v) − f(x)

]
or

f(x + λv) − f(x)
λ

⩾ f(x + v) − f(x),

so by (2)
f(x + λv) − f(x)

λ
⩾ f(x + v) − f(x) > p(v),

so taking limits gives f ′(x; v) > p(v). The conclusion now follows by contraposi-
tion.
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The next result may be found in Rockafellar [3, Theorem 23.2, p. 216].

15.1.7 Corollary Let f be a concave function on Rm, and let f(x) be finite.
Then the closure of the directional derivative at x (as a concave function of the
direction) is the cost function of the superdifferential at x. That is,

cl f ′(x; ·) = c∂f(x)(·).

Proof : Since h : v 7→ f ′(x; v) is concave and homogeneous, by Theorem 21.4.1,

cl h = cA, where A =
{
p : ( ∀v) ) [ p(v) ⩾ h(v) ]

}
.

By Lemma 15.1.6, A = ∂f(x).

15.2 Supergradient of a support function

If the infimum of p is actually achieved at a point in A, we can say more. By
Theorem 9.1.2 we might as well assume that A is closed and convex.

15.2.1 Theorem Let A be a closed convex set. Then x is a supergradient of the
cost function cA at p if and only if x belongs to A and minimizes p over A. In
other words,

∂cA(p) = {x ∈ A : p · x = cA(p)}.

Proof : Recall that the supergradient inequality for this case is

cA(p) + x · (q − p) ⩾ cA(q) for all q.

(=⇒) I first claim that if x does not belong to A, it is not a supergradient of cA

at p. For if x /∈ A, then by Theorem 9.1.2 there is some q for which q · x < cA(q).
Thus for λ > 0 large enough, λq · x < cA(λq) +

(
p · x − cA(p)

)
. Rearranging terms

violates the supergradient inequality applied to λq. Therefore, by contraposition,
if x is a supergradient of the support function cA at p, then x belongs to A.

So let x be a supergradient of cA at p. Setting q = 0 in the supergradient
inequality, we conclude that cA(p) ⩾ p · x. But x belongs to A, so x minimizes p
over A, and cA(p) = p · x.

In other words, ∂cA(p) ⊂ {x ∈ A : p · x = cA(p)}
(⇐=) Suppose now that x belongs to A and p · x = cA(p), that is, x minimizes

p over A. By the definition of cA, for any q ∈ Rm, q · x ⩾ cA(q). Now add
cA(p)−p ·x = 0 to the left-hand side of the inequality to obtain the supergradient
inequality.

Thus {x ∈ A : p · x = cA(p)} ⊂ ∂cA(p), completing the proof.

15.2.2 Corollary Let A be a closed convex set. Suppose x belongs to A and
strictly minimizes p over A. Then cA is differentiable at p and

c′
A(p) = x.
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OUT OF ORDER!

Proof : This follows from Theorem 15.2.1 and Theorem 18.3.1.

15.2.3 Example Let’s look at A = {(x1, x2) ∈ R2
++ : x1x2 ⩾ 1}. This is a

closed convex set and its support function is easily calculated: If p /∈ R2
+, then

cA(p) = −∞. For p ≧ 0, it not hard to see that cA(p) = 2√
p1p2, which has no

supergradient when p1 = 0 or p2 = 0.
(To see this, consider first the case p ≧ 0. The Lagrangean for the minimization

problem is p1x1 + p2x2 + λ(1 − x1x2). By the Lagrange Multiplier Theorem, the
first order conditions are p1 − λx∗

1 = 0 and x∗
2 − λq2 = 0. Thus x∗

1x
∗
2 = p1p2

λ2 , so
λ = √

p1p2. Thus x∗
1 =

√
p1
p2

and x∗
2 =

√
p2
p1

and cA(p) = p1x
∗
1 + p2x

∗
2 = 2√

p1p2.
Now suppose some pi < 0. For instance, suppose p2 < 0. Then p ·(ε, 1

ε
) → −∞

as ε → 0, so cA(p) = −∞.) □
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