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Topic 14: Subgradients

14.1 Subgradients

We have seen in Theorem 13.3.3 that a regular convex function f: R™ — R is
the supremum of the affine functions that it dominates. Suppose this supremum
is attained as a maximum for some affine function at the point x. That is, assume
that

g:y—~p-y—»

is an affine function that satisfies

g9 = fand g(z) = f(z). (M)

See Figure 14.1.1 or Figure 14.1.2. There are a number of equivalent statements
that summarize this relation.

Figure 14.1.1. The affine function g: y — p-y— [ satisfies ¢ < f and g(z) =
f(z). Equivalently, the hyperplane H = {(y,«) € XxR: (p,—1)-(y, ) = B}
supports epi f at the point (x, f (ac)), which maximizes (p, —1) over epi f and
the maximum value is .

14.1.1 Proposition Let f: X — R be a proper convex function. The following
statements are equivalent.
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Figure 14.1.2. The affine function g: y — p -y — [ satisfies ¢ < f and
g(x) = f(x). Equivalently, The hyperplane H = {(y,a) € X x R : (p,—1) -
(y,a) = B} supports epi f at the point (a:, f(x)), which maximizes (p, —1)
over epi f and the maximum values is [3.
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1. The affine function g: y — p -y — [3 satisfies (M).

2. f=p-x— f(z)=max,p-y— f(y).

3. The hyperplane H = {(y,«) € X xR : (p, —1)-(y,a) = [} supports epi f at
the point (x, f(x)) as a maximizer and the maximum value is f = p-x— f(x).

Or in other words,
B = 71-epif((pa _1))7
where T ¢ is the profit (support) function of the epigraph of f.

4. p=p-x— f(r) and
(Vy) [f(x)+p-(y—2) < fy)]. (S)

Proof: The proof is trivial, but sufficiently important that I'll write it out. State-
ment (1) can be written as

(Vy) [p-y—B<fly)]&p a—p5=f(2)
This rearranges to become

(Vy) [B=p-y—fy)] &B=p-z—fla),
so eliminating /3 gives

(Vy) [p-z—f(x) =p-y— f(y)] (1)
which is equivalent to statement (2) It can also be rewritten as
(Vy) [ (. =1) - (2, (@) = (0, =) - (v, £ () |
which is equivalent to
(Vy) (Y= f(y) [(0.=1) - (2 f(2) = (0,=1) - (v, )],

which is (3). Return now to (1), and rearrange it to get

(Vy) [f (@) +p-(y—2) < fy)),
which is just statement (4). |

14.1.2 Definition Relation (S) above is called the subgradient inequality for
f at x. If a vector p satisfies the subgradient inequality for f at x, it is called a
subgradient of f at x. The set of subgradients of f at x is called the subd-
ifferential of f at x, and is denoted 0f(x). A function f is subdifferentiable
at x if the subdifferential Of(x) is nonempty.
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There is nothing in the subgradient inequality that requires f to be convex,
so we can refer to the subgradient of any function. But the following result shows
that the concept is most useful for convex functions. Unless I mention otherwise,
from now on I shall only talk about subgradients of convex functions.

14.1.3 Proposition If C' is a nonempty convex subset of R" and f: C' — R has
a subgradient at each point of C, then f is convex.

Moreover, if for each x € C, there is a subgradient p that satisfies the subgra-
dient inequality with strict inequality, that is,

fy) > fx)+p-(y—=z) forally#z,yeC,

then f is strictly convex. Conversely, if f is strictly convex and has a subgradient,
then the subgradient inequality is strict (except when y = x).

Proof: Let x,y € C, z # y, let 0 < A < 1, and let p be a subgradient at
z = (1 — A + A\y. By the subgradient inequality, f(z) > f(z) + p- (z — z) and
)= f(z)+p-(y—2),s0

(1=Nf(@)+M () = 1=V () +ME) +p- (1= N —2)+ My — 2] = [(2).

That is, f is convex.

The proof of strict convexity is the same, replacing > by >.

For the converse, assume that f is strictly convex, and that p is a subgradient
of fat . Let y # x and let z = (z + y)/2. Then by strict convexity and the
subgradient inequality we have

2 (@) +5f(y) > f(2) = f(z) +p- (2 —2).
But z — x = (y — x)/2, so subtracting f(z)/2 from the outer inequality gives
2f W) > 3f(@) +3p- (y—2).
Multiplying by 2 gives the strict subgradient inequality
fy) > fl@)+p-(y—=)
|
We now mention a few properties of the subdifferential of a convex function.

14.1.4 Lemma The subdifferential 0 f(x) of a convex function is a closed convex
(possibly empty) set.
If f is a proper convex function and f is subdifferentiable at x, then x € dom f.
If there exists some point x at which a convex function f is finite and subdif-
ferentiable, then f is proper.
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Proof: The subdifferential 0f(z) is the intersection of closed half-spaces
Of(x) =Mp:p- (v —2) < fly) = fl@)}

and so closed and convex.

Assume that f is proper. Then there exists some y € dom f, so f(y) is finite.
By the subgradient inequality at y, we have f(z) < f(y) —p- (y —x) < o0, s0
x € dom f.

If f is subdifferentiable at x and f(z) is finite, then for every y, we have

fly) = f(x)+p-(y —x) > —o0, so f is proper. ]

We shall not be very interested in subgradients of improper functions, but
by definition the improper constant convex functions oo and —oo are everywhere
subdifferentiable and every p is a subgradient.

14.1.5 Proposition A proper convex function on R™ is subdifferentiable at each
point of the relative interior of its effective domain.

Proof: Let f be a proper convex function, and let x belong to ridom f. Observe
that (:c, f (af)) belongs to the epigraph of f, but not to its relative interior. Since
the epigraph is convex, the Supporting Hyperplane Theorem 8.4.4 asserts that
there is a nonzero (p,\) € R™ x R properly supporting the epigraph at (x, f(:L‘))
as a maximizer. That is,

p-x+Af(x)Zp-y+ I for all y € dom f and all a > f(y). (2)

I claim that A < 0: Choosing y = x in (2) implies Af(z) > A« for a > f(2)
so A < 0. Suppose momentarily that A = 0. Since z belongs to the relative
interior of dom f, for any z in dom f there is some € > 0 such that = £+ e(z — z)
belong to dom f. Then (2) (with y = x & e(x — 2)) implies p - (x — z) = 0. Thus
(p,0) - (z,a) = (p,0) - (as,f(x)) for all (z,a) € epif. But this contradicts the
properness of the support at (x, f (:17)) Therefore A < 0.

Dividing (p, ) by —A > 0 implies that ((—1//\)p, —1) also supports the epi-
graph as a maximizer, so (—1/A)p is a subgradient by Proposition 14.1.1. |

Non-subdifferentiability may occur on the boundary of the domain.

14.1.6 Example (A non-subdifferentiable point) Define f: [0,1] — [0, —1]
by f(z) = —x2. Then f is clearly convex, but f(0) = @, since the subgradient
inequality implies p -z < f(z) — f(0) = —x2, 80 p = (%)% forall 0 < = < 1.
Clearly no real number p fills the bill. 0J

In the infinite-dimensional case, A. Brgndsted and R. T. Rockafellar [3] give an
example of a lower semicontinuous proper convex function defined on the Fréchet
space R" that is nowhere subdifferentiable. Their example is based on the set in

Klee [7].
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14.1.1 Supergradients

There is, of course, a similar concept for concave functions. Let f: R™ — R* be
a concave function. A vector p is a supergradient of f at x if it satisfies the
supergradient inequality

(Vy) [fx)+p-(y—2) > fy)] (s")

The set of supergradients of f at x is called the superdifferential of f at x, and
is also denoted Of(z). If the superdifferential is nonempty at z, we say that f
is superdifferentiable at x. Rockafellar [0, p. 308] uses the term subgradient
to mean both subgradient and supergradient, and subdifferential to mean both
subdifferential and superdifferential, but suggests that the above terminology as
being more appropriate, so I shall use it.! The definitions are potentially incon-
sistent for affine functions, which are both concave and convex, but thanks to the
following result it all works out.

14.1.7 Lemma The affine function f: x — p-x — [ satisfies 0f(z) = {p},
whether f is viewed as concave or convex.

Proof: Clearly p satisfies both the supergradient and subgradient inequalities.
Now suppose ¢ satisfies the supergradient inequality p-z—f+q-(y—2z) > p-y—0
for all y. Pick any v and set y = z + v and conclude ¢-v > p- v, and do the same
for —v. This shows that (p — ¢) - v = 0 for all v, so ¢ = p. Thus p is the unique
solution of the supergradient inequality. Ditto for the subgradient inequality. N

It is clear that if f is either concave or convex, then

O(=f)(x) = =0f (),

where 0 indicates the superdifferential when preceding a concave function and the
subdifferential when preceding a convex function.

14.1.2 Sub/supergradients and extrema

An immediate consequence of the definition is the following result, which we shall
see later can be interpreted as a kind of “first order condition” for a minimum.

14.1.8 Lemma A proper convex function f is minimized at x € dom f if and
only if 0 € 0f(x).
A proper concave function f is maximized at x € dom f if and only if 0 €

of (x).

The proof follows immediately by setting p = 0 in the subgradient inequality.
This result also shows that a proper convex function f is subdifferentiable at any
minimizer, even if it is not an interior point.

1 Borwein and Zhu [2, p. 294] also adopt the terms supergradient and superdifferential, albeit
in a more general framework.
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14.1.3 The gradient is a subgradient

According to Proposition 14.1.1, when p is a subgradient at x, then  maximizes
p-y— f(y). If f is differentiable at z, the first order condition for this maximum
is that p = f/(z), so the gradient of f is a subgradient. In fact, if 0f(z) is a
singleton, then f is differentiable at x and df(z) = {f’(z)}, see Theorem 18.3.1
below.

The following generalizations of Theorems 6.1.6 and 6.1.7 provide a useful way
to characterize the convexity of differentiable functions on R™.

14.1.9 Theorem Suppose f: R™ — R’ is a proper convex function, and is
differentiable at a point x € intdom f. Then the gradient vector f'(z) is a sub-
gradient of f at x.

Proof: If y ¢ dom f, then f(y) = oo, so the subgradient inequality holds. So let
y € dom f. Rewrite the definition of convexity as

Flz+ Ay —2) < fl2)+ A(fly) - f(@).
Rearranging and dividing by A > 0,

r+ANy—2z)) — flx
e Mo=0) 10 gy g,

Letting A | 0, the left hand side converges to f'(x) - (y — ), and we see that f'(x)
satisfies the subgradient inequality. [ |

The converse is true as the following argument shows.

14.1.10 Theorem Let f: R™ — R’ be differentiable on a convex open set U =
dom f. Suppose that for every x and y in dom f, we have f(x)+ f'(x)-(y —z) <
f(y). Then f is convex.

Proof: For each x € U, define the function h, by h.(y) = f(z) + f'(z) - (y — x).
= h,(z). Thus

Each h, is affine and so convex, f > h, for each x € U, and f(x)
f = sup hza
zelU
so by Exercise 1.3.3(5), f is convex. |

The next result is now immediate.

14.1.11 Corollary Suppose f is convex on a convex neighborhood C' C R" of
x*, and differentiable at x*. If f'(z*) =0, then f has a global minimium over C
at z*.
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14.1.4 Euler’s Theorem for subgradients

A real-valued function f defined on a cone C'in a vector space is homogeneous
of degree k if for every x € C and A > 0,

faz) = N f(2).

You may recall Euler’s Theorem for Homogeneous Functions, which states that
for a differentiable function f that is homogeneous of degree k if and only if
kf(x) = f'(x)-x for every z. The following is a version of one half of this theorem
in terms of subgradients. It may be found in Hendrickson and Buehler [1], who
prove it in a particular infinite-dimensional context.

14.1.12 Theorem (Euler’s Theorem for subgradients) Let C' be a convex
cone in R", and let f: C' — R be homogeneous of degree k, and let p be a
subgradient of f at x. (The function f is not necessarily convex.) Then

kf(z)=p- =
Proof: Homogeneity and the subgradient inequality imply that for A > 0, we have
Nef(x) = f(hx) = f(x) +p- (M — ),

SO
N —1)f(@) > (A= 1)p-.
For A # 1 division gives

N —1 A —1
A_lf(x)>p~xfor)\>1 and A_lf(x)<p~xfor)\<1. (3)
By I'Hépital’s Rule,
)\k -1 k—1
lim = lim A =k,
A1 AN—1 =1 1
so (3) implies kf(z) =p- . |

14.2 Jensen’s Inequality

14.2.1 Theorem Let f: R — R’ be a convex function and let X be a random
variable taking values in dom f and satisfying E | X| < co. Then

f(EX)<E f(X).

Proof: The result is immediate if X is degenerate (constant). If X is not degener-
ate, then F X belongs to the interior of the convex hull of the range of X, which
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in turn belongs to int dom f. By Corollary 14.1.5 f is subdifferentiable at E X.
Let p belong to df(FE X). Evaluate the subgradient inequality at E X:

fIEX)+p(X —EX)< f(X) forall values of X,

so take expectations to get

F(EX)+p(E(X - EX)) < E f(X),

—_—— —
=0
which is Jensen’s Inequality. |
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