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Topic 14: Subgradients

14.1 Subgradients

We have seen in Theorem 13.3.3 that a regular convex function f : Rm → R is
the supremum of the affine functions that it dominates. Suppose this supremum
is attained as a maximum for some affine function at the point x. That is, assume
that

g : y 7→ p · y − β

is an affine function that satisfies

g ≦ f and g(x) = f(x). (M)

See Figure 14.1.1 or Figure 14.1.2. There are a number of equivalent statements
that summarize this relation.
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Figure 14.1.1. The affine function g : y 7→ p·y−β satisfies g ≦ f and g(x) =
f(x). Equivalently, the hyperplane H = {(y, α) ∈ X×R : (p, −1)·(y, α) = β}
supports epi f at the point

(
x, f(x)

)
, which maximizes (p, −1) over epi f and

the maximum value is β.

14.1.1 Proposition Let f : X → R be a proper convex function. The following
statements are equivalent.
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epi f g : y 7→ p · y − β
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Figure 14.1.2. The affine function g : y 7→ p · y − β satisfies g ≦ f and
g(x) = f(x). Equivalently, The hyperplane H = {(y, α) ∈ X × R : (p, −1) ·
(y, α) = β} supports epi f at the point

(
x, f(x)

)
, which maximizes (p, −1)

over epi f and the maximum values is β.
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1. The affine function g : y 7→ p · y − β satisfies (M).

2. β = p · x − f(x) = maxy p · y − f(y).

3. The hyperplane H = {(y, α) ∈ X ×R : (p, −1)·(y, α) = β} supports epi f at
the point

(
x, f(x)

)
as a maximizer and the maximum value is β = p·x−f(x).

Or in other words,
β = πepi f

(
(p, −1)

)
,

where πepi f is the profit (support) function of the epigraph of f .

4. β = p · x − f(x) and

( ∀y ) [ f(x) + p · (y − x) ⩽ f(y) ]. (S)

Proof : The proof is trivial, but sufficiently important that I’ll write it out. State-
ment (1) can be written as

( ∀y ) [ p · y − β ⩽ f(y) ] & p · x − β = f(x).

This rearranges to become

( ∀y ) [ β ⩾ p · y − f(y) ] & β = p · x − f(x),

so eliminating β gives

( ∀y ) [ p · x − f(x) ⩾ p · y − f(y) ] (1)

which is equivalent to statement (2). It can also be rewritten as

( ∀y )
[

(p, −1) ·
(
x, f(x)

)
⩾ (p, −1) ·

(
y, f(y)

) ]
which is equivalent to

( ∀y ) ( ∀α ⩾ f(y) )
[

(p, −1) ·
(
x, f(x)

)
⩾ (p, −1) · (y, α)

]
,

which is (3). Return now to (1), and rearrange it to get

( ∀y ) [ f(x) + p · (y − x) ⩽ f(y) ],

which is just statement (4).

14.1.2 Definition Relation (S) above is called the subgradient inequality for
f at x. If a vector p satisfies the subgradient inequality for f at x, it is called a
subgradient of f at x. The set of subgradients of f at x is called the subd-
ifferential of f at x, and is denoted ∂f(x). A function f is subdifferentiable
at x if the subdifferential ∂f(x) is nonempty.
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There is nothing in the subgradient inequality that requires f to be convex,
so we can refer to the subgradient of any function. But the following result shows
that the concept is most useful for convex functions. Unless I mention otherwise,
from now on I shall only talk about subgradients of convex functions.

14.1.3 Proposition If C is a nonempty convex subset of Rn and f : C → R has
a subgradient at each point of C, then f is convex.

Moreover, if for each x ∈ C, there is a subgradient p that satisfies the subgra-
dient inequality with strict inequality, that is,

f(y) > f(x) + p · (y − x) for all y 6= x, y ∈ C,

then f is strictly convex. Conversely, if f is strictly convex and has a subgradient,
then the subgradient inequality is strict (except when y = x).

Proof : Let x, y ∈ C, x 6= y, let 0 < λ < 1, and let p be a subgradient at
z = (1 − λ)x + λy. By the subgradient inequality, f(x) ⩾ f(z) + p · (x − z) and
f(y) ⩾ f(z) + p · (y − z), so

(1 − λ)f(x) + λf(y) ⩾ (1 − λ)f(z) + λf(z) + p ·
[
(1 − λ)(x − z) + λ(y − z

]
= f(z).

That is, f is convex.
The proof of strict convexity is the same, replacing ⩾ by >.
For the converse, assume that f is strictly convex, and that p is a subgradient

of f at x. Let y 6= x and let z = (x + y)/2. Then by strict convexity and the
subgradient inequality we have

1
2f(x) + 1

2f(y) > f(z) ⩾ f(x) + p · (z − x).

But z − x = (y − x)/2, so subtracting f(x)/2 from the outer inequality gives

1
2f(y) > 1

2f(x) + 1
2p · (y − x).

Multiplying by 2 gives the strict subgradient inequalityDraw some
pictures!

f(y) > f(x) + p · (y − x).

We now mention a few properties of the subdifferential of a convex function.

14.1.4 Lemma The subdifferential ∂f(x) of a convex function is a closed convex
(possibly empty) set.

If f is a proper convex function and f is subdifferentiable at x, then x ∈ dom f .
If there exists some point x at which a convex function f is finite and subdif-

ferentiable, then f is proper.
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Proof : The subdifferential ∂f(x) is the intersection of closed half-spaces

∂f(x) =
⋂
y
{p : p · (y − x) ⩽ f(y) − f(x)}

and so closed and convex.
Assume that f is proper. Then there exists some y ∈ dom f , so f(y) is finite.

By the subgradient inequality at y, we have f(x) ⩽ f(y) − p · (y − x) < ∞, so
x ∈ dom f .

If f is subdifferentiable at x and f(x) is finite, then for every y, we have
f(y) ⩾ f(x) + p · (y − x) > −∞, so f is proper.

We shall not be very interested in subgradients of improper functions, but
by definition the improper constant convex functions ∞ and −∞ are everywhere
subdifferentiable and every p is a subgradient.

14.1.5 Proposition A proper convex function on Rm is subdifferentiable at each
point of the relative interior of its effective domain.

Proof : Let f be a proper convex function, and let x belong to ri dom f . Observe
that

(
x, f(x)

)
belongs to the epigraph of f , but not to its relative interior. Since

the epigraph is convex, the Supporting Hyperplane Theorem 8.4.4 asserts that
there is a nonzero (p, λ) ∈ Rm × R properly supporting the epigraph at

(
x, f(x)

)
as a maximizer. That is,

p · x + λf(x) ⩾ p · y + λα for all y ∈ dom f and all α ⩾ f(y). (2)

I claim that λ < 0: Choosing y = x in (2) implies λf(x) ⩾ λα for α ⩾ f(x)
so λ ⩽ 0. Suppose momentarily that λ = 0. Since x belongs to the relative
interior of dom f , for any z in dom f there is some ε > 0 such that x ± ε(x − z)
belong to dom f . Then (2) (with y = x ± ε(x − z)) implies p · (x − z) = 0. Thus
(p, 0) · (z, α) = (p, 0) ·

(
x, f(x)

)
for all (z, α) ∈ epi f . But this contradicts the

properness of the support at
(
x, f(x)

)
. Therefore λ < 0.

Dividing (p, λ) by −λ > 0 implies that
(
(−1/λ)p, −1

)
also supports the epi-

graph as a maximizer, so (−1/λ)p is a subgradient by Proposition 14.1.1.

Non-subdifferentiability may occur on the boundary of the domain.

14.1.6 Example (A non-subdifferentiable point) Define f : [0, 1] → [0, −1]
by f(x) = −x

1
2 . Then f is clearly convex, but ∂f(0) = ∅, since the subgradient

inequality implies p · x ⩽ f(x) − f(0) = −x
1
2 , so p ⩾ ( 1

x
) 1

2 for all 0 < x ⩽ 1.
Clearly no real number p fills the bill. □

In the infinite-dimensional case, A. Brøndsted and R. T. Rockafellar [3] give an
example of a lower semicontinuous proper convex function defined on the Fréchet
space RN that is nowhere subdifferentiable. Their example is based on the set in
Klee [5].
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14.1.1 Supergradients

There is, of course, a similar concept for concave functions. Let f : Rm → R♯ be
a concave function. A vector p is a supergradient of f at x if it satisfies the
supergradient inequality

( ∀y ) [ f(x) + p · (y − x) ⩾ f(y) ]. (S′)

The set of supergradients of f at x is called the superdifferential of f at x, and
is also denoted ∂f(x). If the superdifferential is nonempty at x, we say that f
is superdifferentiable at x. Rockafellar [6, p. 308] uses the term subgradient
to mean both subgradient and supergradient, and subdifferential to mean both
subdifferential and superdifferential, but suggests that the above terminology as
being more appropriate, so I shall use it.1 The definitions are potentially incon-
sistent for affine functions, which are both concave and convex, but thanks to the
following result it all works out.

14.1.7 Lemma The affine function f : x 7→ p · x − β satisfies ∂f(x) = {p},
whether f is viewed as concave or convex.

Proof : Clearly p satisfies both the supergradient and subgradient inequalities.
Now suppose q satisfies the supergradient inequality p ·x−β +q ·(y −x) ⩾ p ·y −β
for all y. Pick any v and set y = x + v and conclude q · v ⩾ p · v, and do the same
for −v. This shows that (p − q) · v = 0 for all v, so q = p. Thus p is the unique
solution of the supergradient inequality. Ditto for the subgradient inequality.

It is clear that if f is either concave or convex, then

∂(−f)(x) = −∂f(x),

where ∂ indicates the superdifferential when preceding a concave function and the
subdifferential when preceding a convex function.

14.1.2 Sub/supergradients and extrema

An immediate consequence of the definition is the following result, which we shall
see later can be interpreted as a kind of “first order condition” for a minimum.

14.1.8 Lemma A proper convex function f is minimized at x ∈ dom f if and
only if 0 ∈ ∂f(x).

A proper concave function f is maximized at x ∈ dom f if and only if 0 ∈
∂f(x).

The proof follows immediately by setting p = 0 in the subgradient inequality.
This result also shows that a proper convex function f is subdifferentiable at any
minimizer, even if it is not an interior point.

1 Borwein and Zhu [2, p. 294] also adopt the terms supergradient and superdifferential, albeit
in a more general framework.
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14.1.3 The gradient is a subgradient

According to Proposition 14.1.1, when p is a subgradient at x, then x maximizes
p · y − f(y). If f is differentiable at x, the first order condition for this maximum
is that p = f ′(x), so the gradient of f is a subgradient. In fact, if ∂f(x) is a
singleton, then f is differentiable at x and ∂f(x) = {f ′(x)}, see Theorem 18.3.1
below.

The following generalizations of Theorems 6.1.6 and 6.1.7 provide a useful way
to characterize the convexity of differentiable functions on Rm.

14.1.9 Theorem Suppose f : Rm → R♯ is a proper convex function, and is
differentiable at a point x ∈ int dom f . Then the gradient vector f ′(x) is a sub-
gradient of f at x.

Proof : If y /∈ dom f , then f(y) = ∞, so the subgradient inequality holds. So let
y ∈ dom f . Rewrite the definition of convexity as

f
(
x + λ(y − x)

)
⩽ f(x) + λ

(
f(y) − f(x)

)
.

Rearranging and dividing by λ > 0,

f
(
x + λ(y − x)

)
− f(x)

λ
⩽ f(y) − f(x).

Letting λ ↓ 0, the left hand side converges to f ′(x) · (y − x), and we see that f ′(x)
satisfies the subgradient inequality.

The converse is true as the following argument shows.

14.1.10 Theorem Let f : Rm → R♯ be differentiable on a convex open set U =
dom f . Suppose that for every x and y in dom f , we have f(x) + f ′(x) · (y − x) ⩽
f(y). Then f is convex.

Proof : For each x ∈ U , define the function hx by hx(y) = f(x) + f ′(x) · (y − x).
Each hx is affine and so convex, f ⩾ hx for each x ∈ U , and f(x) = hx(x). Thus

f = sup
x∈U

hx,

so by Exercise 1.3.3(5), f is convex.

The next result is now immediate.

14.1.11 Corollary Suppose f is convex on a convex neighborhood C ⊂ Rn of
x∗, and differentiable at x∗. If f ′(x∗) = 0, then f has a global minimium over C
at x∗.
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14.1.4 Euler’s Theorem for subgradients

A real-valued function f defined on a cone C in a vector space is homogeneous
of degree k if for every x ∈ C and λ > 0,

f(λx) = λkf(x).

You may recall Euler’s Theorem for Homogeneous Functions, which states that
for a differentiable function f that is homogeneous of degree k if and only if
kf(x) = f ′(x) ·x for every x. The following is a version of one half of this theorem
in terms of subgradients. It may be found in Hendrickson and Buehler [4], who
prove it in a particular infinite-dimensional context.

14.1.12 Theorem (Euler’s Theorem for subgradients) Let C be a convex
cone in Rn, and let f : C → R be homogeneous of degree k, and let p be a
subgradient of f at x. (The function f is not necessarily convex.) Then

kf(x) = p · x.

Proof : Homogeneity and the subgradient inequality imply that for λ > 0, we have

λkf(x) = f(λx) ⩾ f(x) + p · (λx − x),

so
(λk − 1)f(x) ⩾ (λ − 1)p · x.

For λ 6= 1 division gives

λk − 1
λ − 1

f(x) ⩾ p · x for λ > 1 and λk − 1
λ − 1

f(x) ⩽ p · x for λ < 1. (3)

By l’Hôpital’s Rule,

lim
λ→1

λk − 1
λ − 1

= lim
λ→1

kλk−1

1
= k,

so (3) implies kf(x) = p · x.

14.2 Jensen’s Inequality

14.2.1 Theorem Let f : R → R♯ be a convex function and let X be a random
variable taking values in dom f and satisfying E |X| < ∞. Then

f(E X) ⩽ E f(X).

Proof : The result is immediate if X is degenerate (constant). If X is not degener-
ate, then E X belongs to the interior of the convex hull of the range of X, which
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in turn belongs to int dom f . By Corollary 14.1.5 f is subdifferentiable at E X.
Let p belong to ∂f(E X). Evaluate the subgradient inequality at E X:

f(E X) + p(X − E X) ⩽ f(X) for all values of X,

so take expectations to get

f(E X) + p
(
E(X − E X)︸ ︷︷ ︸

=0

)
⩽ E f(X),

which is Jensen’s Inequality.
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