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Topic 11: Models of economies and equilibria

11.1 Models of economies

In this section, I shall describe a few simple models of the tastes, technology, and
resources of an economy. For generalizations and more details on the interpre-
tation Debreu [4] and Koopmans [6] are still among the best expositions. There
are many aspects of economies that are not covered in these models, and these
models are not suitable for analyzing every aspect of an economy. The models
neglect the nature of contracts between economic agents, the network of who
trades with whom, the internal structure of economic organizations, the power
relationships between economic actors, etc. Nevertheless, they do provide insight
into the rôle of prices in allocating resources, and have proven to fundamental to
our understanding of economies.

11.1.1 Commodities

The first primitive concept is that of a commodity. A commodity is any good
or service that may be produced, consumed, or traded. Commodities may distin-
guished not only by their physical characteristics, but also by their date, location,
or state of the world. For mathematical simplicity, in this course we assume there
is a finite number of commodities.

11.1.2 Consumption goods and factors of production

In this section we shall classify commodities into two categories, consumption
goods or final outputs in one category, and factors of production or inputs
in the other. This will make certain results easier to state and understand, but
the distinction is seldom crucial. I shall try to remember to use yj to denote a
quantity of the jth final output, and vk to denote a quantity of the kth factor. I
shall also typically denote the number of final outputs by n, and the number of
factors by ℓ.

In reality, many goods are intermediate goods, that is they are the final
output of one production process, but an input into another process. For example,
sheets of plywood are outputs of lumber mills, but inputs into the construction
of houses, furniture, and even automobiles (Morgan roadsters) or airplanes. In a
model of household production, much of what is bought by final consumers is
used to produce meals or entertainment in the home.
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11.1.3 Production functions

One approach to modeling production is to assume that each final output is pro-
duced separately according to an industry production function that relates quan-
tities of inputs to quantities of outputs. So if we write yj = fj(v) = fj(v1, . . . , vℓ),
it means that yj units of the jth final output can be produced using a combination
of vk units of the kth factor, k = 1, . . . , ℓ. Implicit in this approach is that there is
no joint production of final outputs. One way to incorporate joint production is to
use an implicit transformation function T : Rn

+ ×Rℓ
+ → R, where T (y, v) ⩾ 0

means that is possible to produce the vector y = (y1, . . . , yn) of output quantities
from the vector v = (v1, . . . , vℓ) of input quantities.

The virtue of the production function model is that if the production function
is differentiable, we get to use the tools of the differential calculus, such as the
Lagrange Multiplier Theorem, the Implicit Function Theorem, and the Envelope
Theorem. If the production functions are assumed to be concave, then we can
make use of the Saddlepoint Theorem.

11.1.4 Technology sets

Another approach treats commodities more symmetrically. There are ℓ commodi-
ties, and n production units or enterprises, indexed by j, each of which may
convert inputs into outputs in accordance with its technology set Yj ⊂ Rℓ. A
vector y ∈ Yj represents a feasible input/output plan, where yk < 0 indicates that
commodity k is used as an input and yk > 0 indicates that it is an output.

The aggregate production set Y is defined to be ∑n
j=1 Yj.1

A pure trade economy is an economy for which the aggregate production
set Y is the singleton {0}.

11.1.5 Tastes

There are m idealized consumers or households. Each consumer i is partially
described by a consumption set Xi ⊂ Rℓ and a utility function ui : Xi → R.
Elements x of Xi are ordered lists of quantities of commodities that are regarded
as feasible “consumption bundles.” For many cases, we assume Xi = Rℓ

+.
Other times we may wish to allow x to have negative components. If xk > 0,

then commodity k is regarded as being “consumed.” If xk < 0, then this represents
a supply of |xk| units of labor service k. There are other ways to model the supply
of labor by the household. One is to treat leisure as part of the resource endowment
and to treat unconsumed leisure as labor supplied. This latter treatment is less
satisfactory when there are different kinds of labor services.

1 This definition of the aggregate production set is not without restriction. It assumes that
the production plans of one producer do not restrict the feasibility of any other’s. That is, it
presupposes that there are no externalities in production.
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The utility of a consumption bundle represents its comparative desirability to
the consumer. The set {y ∈ X : u(y) = u(x)} is the indifference class of x or
the indifference curve through x. The set U(x) = {y ∈ X : u(y) ⩾ u(x)} is the
upper contour set, or weak superlevel set, at x, and P (x) = {y ∈ X : u(y) >
u(x)} is the strict upper contour set, or strict superlevel set, at x.

11.1.1 Definition A utility u : X → R is

• monotonic if
x ≫ y =⇒ u(x) > u(y).

• strictly monotonic if

x > y =⇒ u(x) > u(y).

• nonsatiated is u has no maximum on X.

• locally nonsatiated if

( ∀x ∈ X ) ( ∀ε > 0 ) ( ∃y ∈ X ) [ ∥x − y∥ < ε & u(y) > u(x) ].

The term local nonsatiation, which is the same as local nonmaximization in-
troduced in Topic 7, is traditional in economics, so I’ll use it here. Note that this
is a joint condition on X and u. In particular, if X is nonempty, it must be that
for each point x ∈ X and every ε > 0 there is a point y ̸= x belonging to X with
∥x − y∥ < ε. That is, X may have no isolated points.

Strict monotonicity implies monotonicity, which implies local nonsatiation.
Also, local nonsatiation does not imply monotonicity, but from the point of view
of our theory the added generality is mostly irrelevant. See Exercise 12.9.1.

11.1.6 Resources

The final element in the description of an economy is the aggregate resource
endowment ω, a vector in Rℓ

+.

11.1.7 Allocations
What about the
production
function case?An economy is thus summarized by a list

E =
(
Xi, ui)m

i=1, (Yj)n
j=1, ω

)
.

A pure trade economy E may be described by the abbreviated list

E =
(
(Xi, ui)m

i=1, ω
)
.
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An allocation for the economy E is a list

(x1, . . . , xm, y1, . . . , yn)

satisfying
xi ∈ Xi i = 1, . . . , m

yj ∈ Yj j = 1, . . . , n
m∑

i=1
xi = ω +

n∑
j=1

yj.

An allocation for a pure trade economy may omit the yj’s since they all are zero.
A natural question is whether allocations exist at all. That is, is ∑m

i=1 Xi ∩
(Y + ω) ̸= ∅? One way to guarantee this is to assume 0 ∈ Y and ω ∈ ∑m

i=1 Xi.

11.2 The production possibility set: I

If the technology is described with production functions and separate factor and
final goods, then we make the following definition.

11.2.1 Definition The production possibility set (PPS) is the set of feasible
final outputs,

PPS =

y ∈ Rn : 0 ⩽ yj ⩽ f j(vj), vj ≧ 0, j = 1, . . . , n, and
n∑

j=1
vj ≦ ω

 .

11.2.2 Proposition The PPS is compact.

Proof : Since the f j’s are assumed continuous and monotonic, the PPS is the
continuous image of the compact set(v1, . . . , vn) ∈ Rℓn : vj ≧ 0, j = 1, . . . , n, and

n∑
j=1

vj ≦ ω

 .

Recall (Lemma A.7.15) that continuous images of compact sets are compact.

11.2.3 Proposition If each f j is concave, then the PPS is convex.

Proof : Exercise. Hint: Consider the set Ĥ in the proof of Theorem 10.1.1.

11.2.4 Definition More precisely, we say that output vector y in the PPS is
technically inefficient if there is some y′ in the PPS such that y′ > y. A point
is technically efficient if it is not technically inefficient. The production
possibility frontier (PPF) set of efficient points in the PPS.

Every point on the PPF is a support point. That is, if y belongs to the PPF,
then there is a vector p of nonnegative prices such that y maximizes p over the
PPS. This follows from the separating hyperplane theorem applied to the PPS
and {z : z ≫ y}. In this case the PPF can be parametrized by p.
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11.3 The production possibility set: II

If we describe the technology in terms of production sets Yj, the aggregate pro-
duction set is Y = Y1 + · · · + Yn.

11.3.1 Definition The production possibility set (PPS) is the set of feasible
final outputs,

PPS = ω + Y.

There is a potential difficulty in this version of the model. We saw (cf. Topic 20)
that even if each Yj is a closed set, their sum Y need not be closed. We shall deal
with this complication later.

11.4 Efficiency

An allocation (x̄1, . . . , x̄m, ȳ1, . . . , ȳn) is inefficient, or Pareto dominated, if
there is some other allocation (x1, . . . , xm, y1, . . . , yn) such that

ui(xi) ⩾ ui(x̄i) for alli,

and
u(x

i) > ui(x̄i) for at least onei.

An allocation is efficient (or Pareto efficient or Pareto optimal) if it is not
inefficient.

11.5 Models of equilibrium

11.5.1 Private property

In an economy with the social convention of private property, the aggregate
endowment and all the enterprises are wholly owned by the consumers. To com-
pletely describe such an economy and its property system we need to specify who
owns what.

A private ownership economy is described by a list(
(Xi, ui, ωi)m

i=1, (Yj)n
j=1, (θi

j)
i=1,...,m
j=1,...,n

)
,

where ωi is a list of consumer i’s private resource endowment of each com-
modity and labor service, so

ω =
m∑

i=1
ωi,

and θi
j is the share of firm j owned by consumer i. These shares are nonnegative

and sum to unity:

θi
j ⩾ 0, all i, j and

m∑
i=1

θi
j = 1 all j.
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11.5.2 Walrasian equilibrium

Léon Walras in his Elèments D’Èconomie Politique Pure [9] initiated the math-
ematical study of equilibrium in multiple markets. In his honor, the outcome
of competitive markets in a private ownership economy is usually modeled as a
Walrasian equilibrium, which is an allocation together with a price system
that is characterized by three properties.

1. Each enterprise maximizes profits, taking prices as given.

2. Each consumer maximizes their utility subject to their budget constraint.2

3. All markets clear.

Due to our sign conventions on inputs and outputs, the profit generated by the
input-output plan y at price vector p is p · y. So formally:

11.5.1 Definition A Walrasian equilibrium of a private ownership economy
is a list

(x̄1, . . . , x̄m, ȳ1, . . . , ȳn, p̄),
where

1. (Profit Maximization) For every enterprise j,

ȳj ∈ Yj and p̄ · ȳj ⩾ p̄ · yj for all yj ∈ Y j.

2. (Utility Maximization) For every consumer i,

x̄i ∈ βi =
{

xi ∈ Xi : p̄ · xi ⩽ p̄ · ωi +
n∑

j=1
θi

j p̄ · ȳj
}

and

ui(x̄i) ⩾ ui(xi) for all xi ∈ βi.

Note that if x̄i exhausts the budget, that is, if p̄ · x̄i = p̄ · ωi + ∑n
j=1 θi

j p̄ · ȳj,
then utility maximization is equivalent to

u(xi) > u(x̄i) =⇒ p · xi > p · x̄i.

3. (Market clearing) (x̄1, . . . , x̄m, ȳ1, . . . , ȳn) is an allocation, that is,
m∑

i=1
x̄i =

m∑
i=1

ωi +
n∑

j=1
ȳj.

(In other words, in an allocation, total consumption equals total resources
plus total production.)

2 Some pedants will claim that the use of they or their as an ungendered singular pronoun
is a grammatical error. There is a convincing argument that they are wrong. See, for instance,
Huddleston and Pullum [5, pp. 103–105].
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11.5.3 Walrasian quasi-equilibrium

A closely related concept is that of a Walrasian quasi-equilibrium, in which
the utility maximization property is replaced by an expenditure minimization
property.

2′. (Expenditure minimization) For every consumer i,

u(xi) ⩾ u(x̄i) =⇒ p · xi ⩾ p · x̄i.

11.5.4 Valuation equilibrium and quasi-equilibrium

A valuation equilibrium, introduced by Debreu [2] captures most of the proper-
ties of a Walrasian equilibrium, but does not require a specification of private
ownership property rights.

11.5.2 Definition A valuation equilibrium of an economy is a list

(x̄1, . . . , x̄m, ȳ1, . . . , ȳn, p̄),

where
1. (Profit Maximization) For every enterprise j,

ȳj ∈ Yj and p̄ · ȳj ⩾ p̄ · yj for all yj ∈ Y j.

2. (Utility Maximization)

u(xi) > u(x̄i) =⇒ p · xi > p · x̄i.

3. (Market clearing) (x̄1, . . . , x̄m, ȳ1, . . . , ȳn) is an allocation, that is,
m∑

i=1
x̄i =

m∑
i=1

ωi +
n∑

j=1
ȳj.

A valuation quasi-equilibrium replaces the maximization property with
an expenditure minimization property.

2′. (Expenditure minimization) For every consumer i,

u(xi) ⩾ u(x̄i) =⇒ p · xi ⩾ p · x̄i.

To convert a valuation equilibrium to a Walrasian equilibrium, let

αi = p · x̄i∑m
k=1 p · x̄k

,

the fraction of the total value of consumption accruing to consumer i. Set ω̄i =
αiω, and θ̄i

j = αi for all i = 1, . . . , m and j = 1, . . . , n. Then a valuation equilib-
rium is a Walrasian equilibrium for the private ownership economy with ownership
shares (ω̄i, θ̄i).
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11.6 Properties for utilities

Given a utility function u on a set X, define the strict and weak superlevel
sets

P (x) = {y ∈ X : u(y) > u(x)} and U(x) = {y ∈ X : u(y) ⩾ u(x)}.

We also define the strict and weak sublevel sets

P −1(x) = {y ∈ X : u(y) < u(x)} and U−1(x) = {y ∈ X : u(y) ⩽ u(x)}.

Note that u is upper semicontinuous if for each x, the weak superlevel
set U(x) is closed, or equivalently, the strict sublevel set P −1(x) is open in X.
Similarly, u is lower semicontinuous if for each x, the weak sublevel set U−1(x)
is closed, or equivalently, the strict superlevel set P (x) is open in X. Recall that
u is continuous if and only if it is both upper and lower semicontinuous.

11.6.1 Lemma If u is continuous and locally nonsatiated, then U(x) is the clo-
sure of P (x).

Proof : P (x) ⊂ U(x): Let y belong to P (x). That is, there is a sequence yn in
P (x), that is, u(yn) > u(x), with yn → y. So by continuity, u(y) ⩾ u(x), that is,
y ∈ U(x).

U(x) ⊂ P (x): Let y belong to U(x), that is u(y) ⩾ u(x). By local nonsatiation,
for each n there is a yn satisfying d(yn, y) < 1

n
and u(yn) > u(y) ⩾ u(x), so

yn ∈ P (x). But yn → y, so y ∈ P (x).

11.6.2 Lemma If X is convex, and u is quasiconcave, continuous, and locally
nonsatiated, then P (x) is the interior of U(x).

Proof : This is just Proposition 7.4.2.

11.7 Utility maximization and expenditure minimization

Fix a price vector p ∈ Rℓ and income level w ∈ R. Define the budget set by

β = {x ∈ X : p · x ⩽ w}.

Assume that w is chosen large enough so that β ̸= ∅.
In a Walrasian equilibrium we require that each consumer maximizes their

utility over the budget set, so assume

x∗ maximizes u(x) over β.

A sufficient condition for the existence of a minimizer is that β be compact, and
u be upper semicontinuous.
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In a Walrasian quasiequilibrium we require that each consumer minimizes their
expenditure at price p subject to achieving a utility level u(x̂). That is,

x̂ minimizes expenditure p · x subject to u(x) ⩾ u(x̂).

The next two lemmas give conditions under which x̂ = x∗.

11.7.1 Lemma (LNS and utility max imply expenditure min) Assume
u is locally nonsatiated, and x∗ maximizes u over β, then

1. p · x∗ = w (budget exhaustion),

2. and x∗ minimizes expenditure p · x subject to u(x) ⩾ u(x∗).

Proof : We start by showing that if y ∈ X, then

u(y) ⩾ u(x∗) =⇒ p · y ⩾ w. (⋆)

To see this, suppose by way of contradiction that there is some ∈ X with u(y) ⩾
u(x∗) and p · y < w. By continuity of p · x with respect to x, there is some ε > 0
such that ∥z − y∥ < ε implies p · z < w (so that z ∈ β). By local nonsatiation,
one such z satisfies u(z) > u(y) ⩾ u(x∗), which contradicts the maximality of x∗

in β. This proves (⋆).
Part 1 now follows by taking y = x∗, so (⋆) implies p · x∗ ⩾ w, but x∗ ∈ β

implies p · x∗ ⩽ w, so
w = p · x∗,

which coupled with (⋆) implies Part 2.

11.7.2 Lemma (When expenditure min implies utility max) Assume X
is convex, and u is lower semicontinuous. Assume x̂ minimizes p · x over U(x̂),
and the cheaper-point assumption holds, that is, there exists x̃ ∈ X satisfying
p · x̃ < p · x̂.

Then x̂ maximizes u over β = β(p, p · x̂).

Proof : Suppose by way of contradiction that there is some y ∈ β satisfying u(y) >
u(x̂), that is, y ∈ P (x̂) ⊂ U(x̂). Then p · y ⩾ p · x̂, as x̂ minimizes expenditure
over U(x̂). But y is in the budget β, so we conclude p · y = p · x̂.

For λ satisfying 0 < λ < 1, define x(λ) = (1−λ)y +λx̃. Then p · x̃ < p ·x(λ) <
p · x̂. Since X is convex, x(λ) ∈ β for all 0 < λ ⩽ 1.

But x(λ) → y as λ → 0, and y belongs to the open set P (x̂) (lower semi-
continuity), so for some ε > 0, for every λ < ε we have x(λ) ∈ P (x̂) ⊂ U(x̂).
See Figure 11.7.1. But for such λ we have p · x(λ) < p · x̂, which contradicts the
hypothesis that x̂ minimizes p · x over U(x̂).

Therefore x̂ maximizes u over β = β(p, p · x̂).

To see what may happen if the cheaper-point assumption is violated, consider
the following example.
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x̂

y

x̃
x(λ)

ε

Figure 11.7.1. Expenditure minimization implies preference maximization.

11.7.3 Example (Why the cheaper point is needed) Let X = R2
+. Let

u(x1, x2) = x1 + x2. Let x̂ = (1, 0) and p = (0, 1). Then x̂ minimizes p · x over
U(x̂). But β(p, p · x̂) = β(p, 0), which is just the x1-axis. This budget set is
unbounded and no utility maximizer exists. See Figure 11.7.2.

If you don’t like the fact that I resorted to using a zero price, consider the case
where X = {x ∈ R2

+ : x1 + x2 ⩾ 2}. Let u(x1, x2) = 2x1 + x2, p = (1, 1), and
x̂ = (1, 1). Again x̂ minimizes expenditure over U(x̂), but x̄ = (2, 0) is ≽-greatest
in the budget set β(p, p · x̂) = β(p, 2), which is the southwest boundary of the
consumption set. See Figure 11.7.3. □

x̂

p

U(x̂)

β(p, 0)
Figure 11.7.2. Cheaper-point
violation 1.

X

x̂

p

U(x̂)
β(p, 2)

x̄
Figure 11.7.3. Cheaper-point
violation 2.

11.7.4 Corollary Assume X is convex, and u is lower semicontinuous and mono-
tonic. Let p be given and set w = p · x∗. Assume there is a point x̃ ∈ X satisfying
p · x̃ < w.

Then x∗ maximizes u over β(p, w) if and only if x∗ minimizes p · x over U(x∗).
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