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10.1 An alternative

As an application of the separating hyperplane theorem we present the following
result due to Fan, Glicksberg, and Hoffman [1].

10.1.1 Concave Alternative Theorem Let C be a nonempty convex sub-
set of a vector space, and let f1, . . . , fm : C → R be concave. Letting f =
(f1, . . . , fm) : C → Rm, exactly one of the following is true.

( ∃x̄ ∈ C ) [ f(x̄) ≫ 0 ]. (1)

Or (exclusive),
( ∃p > 0 ) ( ∀x ∈ C ) [ p · f(x) ⩽ 0 ]. (2)

Proof : Clearly both cannot be true. Suppose (1) fails. Let A = {f(x) : x ∈ C}
be the image of C under the function f , and let Â be its decreasing hull,

Â =
{
y ∈ Rm : ( ∃x ∈ C ) [ y ≦ f(x) ]

}
.

Since (1) fails, we see that A and Rm
++ are disjoint. Consequently Â and Rm

++ are
disjoint. Now Rm

++ is clearly convex, and observe that Â is also convex. (The set
A itself need not be convex—see, for instance, Figure 10.3.1.) To see this, suppose
y0, y1 ∈ Â. Then yi ≦ f(xi), i = 0, 1. Therefore, for any λ ∈ (0, 1),

(1 − λ)y0 + λy1 ≦ (1 − λ)f(x0) + λf(x1) ≦ f
(
(1 − λ)x0 + λx1

)
,

since each fj is concave. Therefore (1 − λ)y0 + λy1 ∈ Â.
Thus, by the Separating Hyperplane Theorem 8.5.1, there is a nonzero vector

p ∈ Rm properly separating Â and Rm
++. We may assume

p · Â ⩽ p · Rm
++. (3)

Therefore p > 0 (Exercise 8.2.4). Let ε > 0, so that ε1 ≫ 0, and note that (3)
implies for every y ∈ Â, we have p · y ⩽ εp · 1. Since ε may be taken arbitrarily
small, we conclude that p · y ⩽ 0 for all y in Â. Consequently, p · f(x) ⩽ 0 for all
x in C.
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10.2 Saddlepoints

In this section we discuss the relation between constrained maxima of concave
functions and saddlepoints of the so-called Lagrangean.

10.2.1 Definition Let f : X × Y → R. A point (x∗; y∗) 1 in X × Y is a sad-
dlepoint of f (over X × Y ) if it satisfies

f(x; y∗) ⩽ f(x∗; y∗) ⩽ f(x∗; y) for all x ∈ X, y ∈ Y.

That is, (x∗; y∗) is a saddlepoint of f if x∗ maximizes f(·; y∗) over X and
y∗ minimizes f(x∗; ·) over Y . Saddlepoints of a function have the following nice
interchangeability property.

10.2.2 Lemma (Interchangeability of saddlepoints) Let f : X × Y → R,
and let (x1; y1) and (x2; y2) be saddlepoints of f . Then

f(x1; y1) = f(x2; y1) = f(x1; y2) = f(x2; y2).

Consequently (x1; y2) and (x2; y1) are also saddlepoints.

10.2.3 Exercise Prove Lemma 10.2.2. □

10.3 Lagrangeans

Saddlepoints play an important rôle in the analysis of constrained maximum prob-
lems via Lagrangean functions.

10.3.1 Definition Given f, g1, . . . , gm : X → R, the associated Lagrangean
L : X × P → R is defined by

L(x; p) = f(x) +
m∑

j=1
πjgj(x) = f(x) + p · g(x),

where p = (π1, . . . , πm) and P is a subset of Rm. (Usually P = Rm
+.) The

components of p are called Lagrange multipliers.

The first result is that saddlepoints of Lagrangeans are constrained maxima.
This result is also called the easy half of the Saddlepoint Theorem, and
requires no restrictions on the functions.

1 The use of a semicolon instead of a comma is to visually emphasize the differing roles of x
and y, but mathematically it plays the same role as a comma. On occasion I may forget this
convention and use a comma. Don’t fret about it.
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10.3.2 Theorem (Lagrangean saddlepoints are constrained maxima)
Let X be an arbitrary set, and let f, g1, . . . , gm : X → R. Suppose that (x∗, p∗) is
a saddlepoint of the Lagrangean L(x; p) = f + p · g (over X × Rm

+). That is,

L(x; p∗) ⩽
(4a)

L(x∗; p∗) ⩽
(4b)

L(x∗; p) x ∈ X, p ≧ 0. (4)

Then x∗ maximizes f over X subject to the constraints gj(x) ⩾ 0, j = 1, . . . , m,
and furthermore

π∗
j gj(x∗) = 0, j = 1, . . . , m. (5)

Proof : Inequality (4b) implies p∗ · g(x∗) ⩽ p · g(x∗) for all p ≧ 0. By the Nonneg-
ativity Test 0.1.1, g(x∗) ≧ 0, so x∗ satisfies the constraints. Setting p = 0, we see
that p∗ ·g(x∗) ⩽ 0. This combined with p ≧ 0 and g(x∗) ≧ 0 implies p∗ ·g(x∗) = 0.
Indeed it implies π∗

j gj(x∗) = 0 for j = 1, . . . , m.
Now note that (4a) implies f(x) + p∗ · g(x) ⩽ f(x∗) for all x. Therefore, if x

satisfies the constraints, g(x) ≧ 0, we have f(x) ⩽ f(x∗), so x∗ is a constrained
maximizer.

Condition (5) implies that if the multiplier π∗
j is strictly positive, then the

corresponding constraint is binding, gj(x∗) = 0; and if a constraint is slack,
gj(x∗) > 0, then the corresponding multiplier satisfies π∗

j = 0. These conditions
are sometimes called the complementary slackness conditions.

The converse of Theorem 10.3.2 is not quite true, but almost. To state the
correct result we now introduce the notion of a generalized Lagrangean.

10.3.3 Definition A generalized Lagrangean Lµ : X ×P → R, where µ ⩾ 0,
is defined by

Lµ(x; p) = µf(x) +
m∑

j=1
πjgj(x),

where p = (π1, . . . , πm) and P is an appropriate subset of Rm.

Note that each choice of µ generates a different generalized Lagrangean. How-
ever, for P = Rm

+, as long as µ > 0, a point (x; p) is a saddlepoint of the generalized
Lagrangean if and only if (x; p/µ) is a saddlepoint of the Lagrangean. Thus the
only case to worry about is µ = 0.

The next results state that for concave functions, constrained maxima are
saddlepoints of some generalized Lagrangean.

10.3.4 Theorem (Constrained maxima are not quite saddlepoints) Let
C ⊂ Rn be convex, and let f, g1, . . . , gm : C → R be concave. Suppose x∗ maxi-
mizes f subject to the constraints gj(x) ⩾ 0, j = 1, . . . , m. Then there exist real
numbers µ∗, π∗

1, . . . , π∗
m ⩾ 0, not all zero, such that (x∗; p∗) is a saddlepoint of the

generalized Lagrangean Lµ∗ . That is,

µ∗f(x) +
m∑

j=1
π∗

j gj(x) ⩽
(6a)

µ∗f(x∗) +
m∑

j=1
π∗

j gj(x∗) ⩽
(6b)

µ∗f(x∗) +
m∑

j=1
πjgj(x∗) (6)
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for all x ∈ C and all π1, . . . , πm ⩾ 0. Furthermore

π∗
j gj(x∗) = 0, j = 1, . . . , m. (7)

Proof : Since x∗ is a constrained maximizer there is no x ∈ C satisfying f(x) −
f(x∗) > 0 and g(x) ≧ 0. Therefore the Concave Alternative 10.1.1 implies the
existence of nonnegative µ∗, π∗

1, . . . , π∗
m, not all zero, satisfying

µ∗f(x) +
m∑

j=1
π∗

j gj(x) ⩽ µ∗f(x∗) for every x ∈ C.

Evaluating this at x = x∗ yields ∑m
j=1 π∗

j gj(x∗) ⩽ 0. But each term in this sum
is the product of two nonnegative terms, so (7) holds. This in turn implies (6a).
Given that gj(x∗) ⩾ 0 for all j, (7) also implies (6b).

10.3.5 Corollary (When constrained maxima are saddlepoints) Under
the hypotheses of Theorem 10.3.4 suppose in addition that Slater’s Condition,

( ∃x̄ ∈ C ) [ g(x̄) ≫ 0 ], (S)

is satisfied. Then µ∗ > 0, and may be taken equal to 1. Consequently the pair(
x∗; (π∗

1, . . . , π∗
m)

)
is a saddlepoint of the Lagrangean for x ∈ C, p ≧ 0. That is,

L(x; p∗) ⩽ L(x∗; p∗) ⩽ L(x∗; p), x ∈ C, p ≧ 0, (8)

where L(x; p) = f(x) + p · g(x).

Proof : Suppose µ∗ = 0. Then evaluating (6) at x = x̄ yields p∗ · g(x̄) ⩽ 0, but
g(x̄) > 0 implies π∗

j = 0, j = 1, . . . , m. Thus µ = 0 and πj = 0, j = 1, . . . , m, a
contradiction. Therefore µ∗ > 0, and by dividing the Lagrangean by µ∗, we may
take µ∗ = 1. The remainder is then just Theorem 10.3.4.

Combining these results gives us the following.

10.3.6 The Saddlepoint Theorem Let f, g1, . . . , gm : C → R be concave,
where C ⊂ Rn is convex. Assume in addition that Slater’s Condition,

( ∃x̄ ∈ C ) [ g(x̄) ≫ 0 ] (S)

is satisfied.
The following are equivalent.

1. The point x∗ maximizes f over C subject to the constraints gj(x) ⩾ 0,
j = 1, . . . , m.

v. 2019.12.23::02.49 src: SaddlePoint KC Border: for Ec 181, 2019–2020



Ec 181 AY 2019–2020
KC Border Constrained optima and Lagrangean saddlepoints 10–5

2. Then there exist real numbers π∗
1, . . . , π∗

m ⩾ 0 such that (x∗; p∗) is a saddle-
point of the Lagrangean L. That is,

f(x) +
m∑

j=1
π∗

j gj(x) ⩽ f(x∗) +
m∑

j=1
π∗

j gj(x∗) ⩽ f(x∗) +
m∑

j=1
πjgj(x∗) (9)

for all x ∈ C and all π1, . . . , πm ⩾ 0. Furthermore

π∗
j gj(x∗) = 0, j = 1, . . . , m.

10.3.7 Remark Sometimes it hard to see the forest for the trees. The most
important consequence of the Saddlepoint Theorem is that for the concave case
satisfying Slater’s condition,

the constrained maximizer x∗ of f is an
unconstrained maximizer of the Lagrangean
L(·; p∗).

The rôle of a Lagrange multiplier is to act as a conversion factor between the
g-values and the f -values that transform the constrained maximization problem
to an unconstrained maximization problem.

10.3.8 Example Concavity is crucial for these results. Even in the classical
case of an interior constrained maximizer of a smooth function, even when the
Lagrange Multiplier Theorem applies, the constrained maximizer may not be an
unconstrained maximizer of the Lagrangean. Sydsaeter [4] points out the following
simple example. Let f(x, y) = xy and g(x, y) = 1 − (x + y), so the Lagrangean is

L(x, y; π) = xy + π(1 − x − y).

Note that g is linear and so concave, but f is quasiconcave, but not concave, since
it exhibits “increasing returns.” The point

(x∗, y∗) = (1, 1)

maximizes f subject to the constraints g(x, y) ⩾ 0, x ⩾ 0, y ⩾ 0. The point
(x̄, ȳ) = (0, 0) verifies Slater’s condition. The multiplier

π∗ = 2

satisfies the conclusion of the classical Lagrange multiplier theorem, namely the
first order conditions

∂L(x∗, y∗; π∗)
∂x

= 2x∗y∗ − π∗ = 0 and ∂L(x∗, y∗; π∗)
∂y

= 2x∗y∗ − π∗ = 0.

But (x∗, y∗) does not maximize

L(x, y; 2) = xy + 2 − 2x − 2y.

Indeed there is no unconstrained maximizer of the Lagrangean for any π ⩾ 0. □
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Karlin [2, vol. 1, Theorem 7.1.1, p. 201] proposed the following alternative to
Slater’s Condition:

( ∀p > 0 ) ( ∃x̄(p) ∈ C )
[

p · g
(
x̄(p)

)
> 0

]
,

which we may as well call Karlin’s condition.

10.3.9 Theorem Let C ⊂ Rn be convex, and let g1, . . . , gm : C → R be concave.
Then g satisfies Slater’s Condition if and only it satisfies Karlin’s Condition.

Proof : Clearly Slater’s Condition implies Karlin’s. Now suppose g violates Slater’s
Condition. Then by the Concave Alternative Theorem 10.1.1, it must also violate
Karlin’s.

The next example shows what can go wrong when Slater’s Condition fails.

10.3.10 Example In this example, due to Slater [3], C = R, f(x) = x, and
g(x) = −(1 − x)2, so both f and g are concave. Note that Slater’s Condition
fails because g ⩽ 0. The constraint set {g ⩾ 0} is the singleton {1}. Therefore f
attains a constrained maximum at x∗ = 1. There is however no saddlepoint over
R × R+ of the Lagrangean

L(x; π) = x − π(1 − x)2 = −π + (1 + 2π)x − πx2.

To see that L has no saddlepoint, consider an arbitrary (x̄, π̄) ∈ R×R+. Since
L(x; 0) = x, if π̄ = 0, then no value for x̄ maximizes L( · ; π̄).

On the other hand if π̄ > 0, the first order condition for a maximizer at x̄ is
∂L(x̄,π̄)

∂x
= 0, or 1+2π̄ −2π̄x̄ = 0, which implies x̄ = 1+1/(2π̄) > 1. But for x̄ > 1,

L(x̄; π) is strictly decreasing in π, so no π̄ is a minimizer. □

10.3.1 The role of Slater’s Condition

In this section we present a geometric argument that illuminates the role of Slater’s
Condition in the saddlepoint theorem. The saddlepoint theorem was proved by
invoking the Concave Alternative Theorem 10.1.1, so let us return to the under-
lying argument used in its proof. In the framework of Theorem 10.3.4, define the
function h : C → Rm+1 by

h(x) =
(
g1(x), . . . , gm(x), f(x) − f(x∗)

)
and set

A = {h(x) ∈ Rm+1 : x ∈ C} and Â =
{
y ∈ Rm+1 : ( ∃x ∈ C ) [ y ≦ h(x) ]

}
.

Then Â is a convex set bounded in part by A. Figure 10.3.1 depicts the sets A
and Â for Slater’s example 10.3.10, where f(x) − f(x∗) is plotted on the vertical
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Figure 10.3.1. The sets A and Â for Slater’s example.

axis and g(x) is plotted on the horizontal axis. Now if x∗ maximizes f over
the convex set C subject to the constraints gj(x) ⩾ 0, j = 1, . . . , m, then h(x∗)
has the largest vertical coordinate among all the points in H whose horizontal
coordinates are nonnegative.

The semipositive m + 1-vector p̂∗ = (π∗
1, . . . , π∗

m, µ∗) from Theorem 10.3.4 is
obtained by separating the convex set Â and Rm+1

++ . It has the property that

p̂∗ · h(x) ⩽ p̂∗h(x∗)

for all x ∈ C. That is, the vector p̂∗ defines a hyperplane through h(x∗) that
supports Â at h(x∗). It is clear in the case of Slater’s example that the supporting
hyperplane is a vertical line. The fact that the hyperplane is vertical means that
µ∗ (the multiplier on f) must be zero.

If there is a non-vertical supporting hyperplane through h(x∗), then µ∗ is
nonzero, so we can divide by it and obtain a full saddlepoint of the true La-
grangean. This is where Slater’s condition comes in.

In the one dimensional, one constraint case, Slater’s Condition reduces to the
existence of x̄ satisfying g(x̄) > 0. This rules out having a vertical supporting
line through h(x∗). To see this, note that the vertical component of h(x∗) is
f(x∗) − f(x∗) = 0. If g(x∗) = 0, then the vertical line through h(x∗) is simply the
vertical axis, which cannot support Â, since h(x̄) ∈ A lies to the right of the axis.
See Figure 10.3.2.

In Figure 10.3.2, the shaded area is included in Â. For instance, let C =
(−∞, 0], f(x) = x, and g(x) = x+1. Then the set Â is just {y ∈ R2 : y ≦ (0, 1)}.

Later we shall see that if f and the gj’s are linear, then Slater’s Condition is not
needed to guarantee a non-vertical supporting line. Intuitively, the reason for this
is that for the linear programming problems considered, the set Â is polyhedral,
so even if g(x∗) = 0, there is still a non-vertical line separating Â and Rm+1

++ . The
proof of this fact relies on some results on linear inequalities that will be proven
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g(x)

f(x) − f(x∗)

h(x̄)

h(x∗)

⊂ Â

Figure 10.3.2. Slater’s condition rules out a vertical supporting line.

later. It is subtle because Slater’s condition rules out a vertical supporting line.
In the linear case, there may be a vertical supporting line, but if there is, there
is also a non-vertical supporting line that yields a Lagrangean saddlepoint. As a
case in point, consider C = (−∞, 0], f(x) = x, and g(x) = x. Then the set Â is
just {y ∈ R2 : y ≦ 0}, which is separated from R2

++ by every semipositive vector.

10.4 Lagrangean Saddlepoints and Minimization

Minimizing f is the same as maximizing −f so we can consider a constrained
minimization problem for convex functions as maximization problem for concave
functions. So assume f, g1, . . . , gm are convex functions and we wish to

minimize
x

f(x) subject to

gi(x) ⩽ 0, i = 1, . . . , m.

Note that since we are assuming that each gi is convex rather than concave, and
we are writing the constraints as gi(x) ⩽ 0, the constraint set is still convex.

This problem is the same as the concave maximization problem

maximize
x

−f(x) subject to

−gi(x) ⩾ 0, i = 1, . . . , m.

The Lagrangean for this is

L(x; p) = −f(x) −
m∑

i=1
πigi(x).

So if (x̄, p̄) is a saddlepoint of this Lagrangean, then x̄ solves the constrained
minimization problem. Now (x̄, p̄) is a saddlepoint of this Lagrangean over X×Rm

+
if

−f(x) − p̄ · g(x) ⩽ −f(x̄) − p̄ · g(x̄) ⩽ −f(x̄) − p · g(x̄)
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for all x ∈ X and all p ∈ Rm
+. Multiplying by −1 will flip the inequalities so

f(x) + p̄ · g(x) ⩾ f(x̄) + p̄ · g(x̄) ⩾ f(x̄) + p · g(x̄).

At this point it might be useful to introduce the notion of a reverse saddle-
point, which is not a standard term.

10.4.1 Definition Let f : X × Y → R. A point (x∗; y∗) in X × Y is a reverse
saddlepoint of f (over X × Y ) if it satisfies

f(x; y∗) ⩾ f(x∗; y∗) ⩾ f(x∗; y) for all x ∈ X, y ∈ Y.

So if (x̄, p̄) is a reverse saddlepoint of

L(x; p) = f(x) + p · g(x)

then x̄ solves the constrained minimization problem. A useful consequence of this
approach is that if x̄, p̄ is reverse saddlepoint of L, then x̄ is an unconstrained
minimizer of L(·, p̄).

A note on writing Lagrangeans

Suppose we wish to minimize a convex function, but the constraints are given
as gi(x) ⩾ 0, where each gi is concave. Then I argue it is useful to write the
Lagrangean as

L̃(x, p) = f(x) −
∑

i

πigi(x) = f(x) − p · g(x)

for then the constrained minimizer corresponds to a reverse saddlepoint of this
function over X × Rm

+. Again, a useful consequence of this approach is that if x̄, p̄
is reverse saddlepoint of L̃, then x̄ is an unconstrained minimizer of L̃(·, p̄).

Similarly if we wish to maximize a concave f subject to constraints of the
form gi(x) ⩽ 0 where each gi is convex, then it also makes sense to write the
Lagrangean this way too as a constrained maximizer corresponds to a saddlepoint
of this function over X × Rm

+. That is, the Lagrange multipliers will still turn
out nonnegative. If the constraint functions are affine, they are both concave and
convex, so you have some leeway as to how to write things.

I leave it as an exercise to reformulate the Saddlepoint Theorem in each of
these contexts. We shall use this observation later in Section 28.1 on dual linear
programs.

10.5 Decentralization and Lagrange Multipliers

This section is inspired by Uzawa [6]. Consider the case of a firm that has n
departments, each of which can produces a single product, according to a one-
product concave production function fj of ℓ inputs or factors. This means that
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if department j uses ξk units of input k, k = 1, . . . , ℓ, it can produce

yj = fj(ξ1, . . . , ξℓ)

units of product j.
The firm has already contracted to have a stock σk > 0 of factor k available

for use. (Alternatively, consider a country with n industries that sell their outputs
on world markets and each factor is immobile and fixed in supply.) If the sale
price of the jth output is πj > 0, then the firm (or country) faces the constrained
maximization problem of maximizing the value of output, that is, revenue, subject
to the resource constraint on each factor.

To keep track of all these variables, use an n × ℓ matrix X, and let xj =
(ξj1, . . . , ξjℓ) be its ith row. That is,

ξjk is the quantity of factor k devoted to the production output j.

The firm’s objective is to

maximize
X

n∑
j=1

πjfj(xj) subject to

n∑
j=1

ξjk ⩽ σk, k = 1, . . . , ℓ

ξjk ⩾ 0,
j = 1, . . . , n

k = 1, . . . , ℓ
.

Let w = (ω1, . . . , ωℓ) be vector of Lagrange multipliers for the resource con-
straints. The Lagrangean for this problem can be written as:

L
(
X; w

)
=

n∑
j=1

πjfj(xj) +
ℓ∑

k=1
ωk

(
σk −

n∑
j=1

ξjk

)
. (10)

By assumption, each fj is concave, so the objective function ∑n
j=1 πjfj(xj) is

concave. Moreover, the constraint function gk(X) := σk − ∑n
j=1 ξjk is affine in

X, and so concave. Note that as long as each σk > 0, then Slater’s Condition is
satisfied.

Therefore by the Saddlepoint Theorem 10.3.6, a point x̂ solves the constrained
maximization problem if and only if the there is a vector ŵ such that (x̂; ŵ) is a
saddlepoint of the Lagrangean over

(
Rℓ

+

)n
× Rℓ

+. Now regroup the Lagrangean
as

L(X; w) =
(

π1f1(x1)−
ℓ∑

k=1
ωkξ1k

)
+ · · ·+

(
πnfn(xn)−

ℓ∑
k=1

ωkξnk

)
+

ℓ∑
k=1

ωkσk. (11)
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By the Saddlepoint Theorem the constrained maximizer x̂ is an unconstrained
maximizer of the Lagrangean evaluated at w = ŵ. But note that this implies that
for each j = 1, . . . , n,

x̂j maximizes πjfj(xj) −
ℓ∑

k=1
ω̂kξjk.

In other words, the saddlepoint values of the Lagrange multipliers are factor wages
such that each optimal x̂j unconstrainedly maximizes the profit at the price πj

and the vector of factor wages ŵ. These multipliers, sometimes known as shadow
wages, allow the constrained problem to be decentralized as n independent
profit maximization decisions.

We now verify that the converse is true, namely, if

1. each x̂j unconstrainedly maximizes the profit at price πj and factor wages
ŵ, and

2. the market for inputs clears, that is, if ∑n
j=1 x̂jk ⩽ σk for k = 1, . . . , ℓ, and

each ω̂k

(
σk − ∑ℓ

k=1 x̂jk) = 0,

then X̂ solves the constrained maximization problem.
To see this, write the profit maximization condition as

πifj(xj) −
ℓ∑

k=1
ω̂kξjk ⩽ πifj(x̂j) −

ℓ∑
k=1

ω̂kξ̂jk, for all xj ≧ 0 .

Sum over j = 1, . . . , n and add ∑ℓ
k=1 ω̂kσk to both sides to get

(
π1f1(x1) −

ℓ∑
k=1

ω̂kξ1k

)
+ · · · +

(
πnfn(xn) −

ℓ∑
k=1

ω̂kξnk

)
+

ℓ∑
k=1

ω̂kσk

⩽
(

π1f1(x̂1) −
ℓ∑

k=1
ω̂kξ̂1k

)
+ · · · +

(
πnfn(x̂n) −

ℓ∑
k=1

ω̂kξ̂nk

)
+

ℓ∑
k=1

ω̂kσk

for all X. Comparing this the Lagrangean as written in (11), we see that this is
the first inequality of the saddlepoint condition for the Lagrangean. The market
clearing condition, (2.) above implies that for any vector w = (ω1, . . . , ωℓ) ≧ 0, we
have ∑ℓ

k=1 ωk

(
σk −∑ℓ

k=1 x̂jk) ⩾ 0, so comparing this to the Lagrangean as written
in (10), the second inequality of the saddlepoint condition holds. Thus by the
easy half of the Saddlepoint Theorem, X̂ solves the firm’s revenue maximization
problem

Thus the prices of the outputs determine the wages of the factors as saddlepoint
Lagrange multipliers.

KC Border: for Ec 181, 2019–2020 src: SaddlePoint v. 2019.12.23::02.49



Ec 181 AY 2019–2020
KC Border Constrained optima and Lagrangean saddlepoints 10–12

References

[1] K. Fan, I. Glicksberg, and A. J. Hoffman. 1957. Systems of inequalities in-
volving convex functions. Proceedings of the American Mathematical Society
8:617–622. http://www.jstor.org/stable/2033529

[2] S. Karlin. 1987. Mathematical methods and theory in games, programming,
and economics. New York: Dover. Reprint of the 1959 two-volume edition
published by Addison–Wesley.

[3] M. L. Slater. 1950. Lagrange multipliers revisited: A contribution to non-linear
programming. Discussion Paper Math. 403, Cowles Commission. Reissued as
Cowles Foundation Discussion Paper #80 in 1959.

http://cowles.econ.yale.edu/P/cd/d00b/d0080.pdf

[4] K. Sydsaeter. 1974. Letter to the editor on some frequently occurring errors in
the economic literature concerning problems of maxima and minima. Journal
of Economic Theory 9(4):464–466. DOI: 10.1016/0022-0531(74)90046-5

[5] H. Uzawa. 1958. The Kuhn–Tucker conditions in concave programming. In
K. J. Arrow, L. Hurwicz, and H. Uzawa, eds., Studies in Linear and Non-
linear Programming, number 2 in Stanford Mathematical Studies in the Social
Sciences, chapter 3, pages 32–37. Stanford, California: Stanford University
Press.

[6] . 1958. A note on the Menger–Wieser theory of imputation. Zeitschrift
für Nationalökonomie 18(3):318–334. DOI: 10.1007/BF01317023

v. 2019.12.23::02.49 src: SaddlePoint KC Border: for Ec 181, 2019–2020

http://www.jstor.org/stable/2033529
http://cowles.econ.yale.edu/P/cd/d00b/d0080.pdf
http://dx.doi.org/10.1016/0022-0531(74)90046-5
http://dx.doi.org/10.1007/BF01317023

	Constrained optima and Lagrangean saddlepoints
	An alternative
	Saddlepoints
	Lagrangeans
	Lagrangean Saddlepoints and Minimization
	Decentralization and Lagrange Multipliers
	References


