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Topic 9: Support Functions

9.1 Support functions

The Separating Hyperplane Theorem 8.3.1 is the basis for a number of results
concerning closed convex sets. Given any set A in Rm its closed convex hull co A
is by definition the intersection of all closed convex sets that include A. But
Theorem 8.3.4 sharpens this result to

co A =
⋂

{H : A ⊂ H and H is a closed half space}.

So an already closed convex set is the intersection of all the closed half spaces that
include it.

The support function of a set A is a handy way to summarize all the closed
half spaces that include A. There are two ways to define support functions, and
I will give them names inspired by economics.1

The cost function µA of A is defined by

µA(p) = inf{p · x : x ∈ A}.

The profit function πA of A is defined by

πA(p) = sup{p · x : x ∈ A}.

Clearly
πA(p) = −µA(−p).

We allow for the case that µA(p) = −∞ or πA(p) = ∞. The set of points where
the support function of a nonempty set is finite is a convex cone. Note that µ∅
is the improper concave function +∞. Also note that the infimum or supremum
may not actually be attained even if it is finite. For instance, consider the closed
convex set A = {(x, y) ∈ R2

++ : xy ⩾ 1}, and let p = (0, 1). Then µA(p) = 0 even
though p · (x, y) = y > 0 for all (x, y) ∈ A. If A is compact, then of course µA and
πA are always finite, and the infimum and supremum are achieved as a maximum
and minimum.

It is possible to restate Corollary 8.3.2 as follows.

9.1.1 Corollary Let C be a nonempty closed convex subset of a Hilbert space.
Assume that the point x does not belong to C. Then there exists a nonzero p
such that

p · x < µC(p)
1 Fenchel [3] and Roko and I [1, p. 288] call the profit function the support function, while

Mas-Colell, Whinston, and Green [4] use the cost function.
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and letting p′ = −p, we have

p′ · x > πC(p′).

Theorem 8.3.4 yields the following description of co A in terms of µA and πA.

9.1.2 Theorem For any set A in Rm,

co A =
{

x ∈ Rm : ( ∀p ∈ Rm ) [ p · x ⩾ µA(p) ]
}

,

and
co A =

{
x ∈ Rm : ( ∀p ∈ Rm ) [ p · x ⩽ πA(p) ]

}
,

Moreover, µA = µco A and πA = πco A.

Proof : I shall just prove the results about the cost function µ. Observe that

C :=
{
x ∈ Rm : ( ∀p ∈ Rm ) [ p · x ⩾ µA(p) ]

}
=

⋂
p∈Rm

{p ⩾ µA(p)}

is an intersection of closed half spaces. By definition, if x ∈ A, then p · x ⩾ µA(p),
that is, A ⊂ {p ⩾ µA(p)}. Thus by Theorem 8.3.4, co A ⊂ C.

For the reverse inclusion, suppose x /∈ co A. By Corollary 9.1.1 there is a
nonzero p such that µA(p) > p · x, so x /∈ C.

To see that µA = µco A first note that µA ⩾ µco A since A ⊂ co A. The first
part of the theorem implies µco A ⩾ µA.

9.1.3 Theorem Let A be a nonempty closed convex set in Rm.
Them the profit function πA is a regular (proper and lower semicontinuous)

convex and homogenous function on Rm.
The cost function µA is a regular (proper and upper semicontinuous) concave

and homogeneous function on Rm.

Proof : Homogeneity of the cost and profit functions is obvious.
Each x defines a linear (and therefore both concave and convex) function ℓx

via ℓx : p 7→ p · x. Moreover each ℓx is continuous, and therefore both upper and
lower semicontinuous.

Now µA = infx∈A ℓx, so by Exercise 1.3.3 (4), it is concave and by Proposi-
tion A.8.4 it is upper semicontinuous. Similarly, πA is convex and lower semicon-
tinuous.

Let x belong to A (it is nonempty). Then for any p, πA(p) ⩾ p · x, so πA(p)
is never −∞. And piA(0) = 0, so dom πA is nonempty. Therefore πA is a proper
convex function. Similarly, µA is a proper concave function.

Theorem 9.1.2 asserts that we can recover the A (more precisely its closed
convex hull) from the profit function πA. Theorem 9.1.3 asserts that πA is a
homogeneous regular convex function. Suppose we take an arbitrary homogeneous
regular convex function Rm, is it the support function of some nonempty closed
convex set? Yes. (And there is an analogous result for regular concave functions.)
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9.1.4 Theorem Let f : Rm → R♯ be a homogeneous regular convex function.
Then f is the profit function πCf

of the nonempty closed convex set

Cf =
{
x ∈ Rm : ( ∀p ∈ Rm ) [ p · x ⩽ f(p) ]

}
=

{
x ∈ dom f : ( ∀p ∈ Rm ) [ p · x ⩽ f(p) ]

}
.

Proof : The first thing is to note that if p /∈ dom f , then f(p) = ∞, so p · x < f(p)
for all x, so the two definitions of Cf agree.

Now we show that Cf is closed and convex. Since f is proper, dom f is a
nonempty convex cone, so it contains 0 and by homogeneity f(0) = 0. Now
{x : 0 · x ⩽ 0} = Rm. For each nonzero p ∈ dom f , the set {x : p · x ⩽ f(p)}
is a closed hyperplane. Since Cf is the intersection of these sets, it is closed and
convex.

The proof that Cf is nonempty is subtle, and is a byproduct of the following
argument.

Fix some p̄ ∈ dom f . If x ∈ Cf , then by definition p̄ · x ⩽ f(p̄), so

πCf
(p̄) = sup

x∈Cf

p̄ · x ⩽ f(p̄).

We need to show that the supremum is actually equal to f(p̄). This means that
for every ε > 0, we widh to find some y ∈ Cf so that p̄ · y is within ε of f(p), that
is,

f(p̄) − ε ⩽ p̄ · y ⩽ f(p̄).

Since f is proper and convex, its epigraph is nonempty and convex. Since
f is homogeneous, its epigraph is a cone. And since f is lower semicontinuous,
its epigraph is closed. Now the point

(
p̄, f(p̄) − ε

)
does not belong to epi f ,

which is nonempty, closed, and convex, so by the Strong Separating Hyperplane
Theorem 8.3.1 we can separate it from the epigraph. That is, there exists some
(x, λ) ∈ Rm+1 satisfying

(x, λ) ·
(
p̄, f(p̄) − ε

)
< (x, λ) · (p, β) for all (p, β) ∈ epi f. (1)

Expanding this and evaluating at β = f(p), gives

p̄ · x + λf(p̄) − λε < 0 ⩽ p · x + λf(p) for all p. (2)

Evaluating the right-hand side at p = p̄ implies −λε < 0, so

λ > 0.

Taking just the left-hand inequality gives

p̄ · x < λε − λf(p̄),
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so dividing both sides by −λ < 0 reverses the inequality, and setting y = −(1/λ)x
gives

p̄ · y > f(p̄) − ε.

It remains to show that y belongs to Cf . Since x = −λy, the right-hand side
of (2) says that

0 ⩽ −λp · y + λf(p) for all p,

which, since λ > 0, implies f(p) ⩾ p · y for all p. In other words, y ∈ Cf . This
does two things. It shows that f = πCf

and also that Cf is nonempty.

The technique of separating a point from an epigraph will appear later on in
connection with regular convex functions and subgradients.

9.2 Sublinear functions

9.2.1 Definition A function f from a convex cone C in a real vector space into
R♯ is

positively homogeneous of degree 1 if for every vector x ∈ C and every
real λ > 0,

f(λx) = λf(x).
We usually shorten this by saying simply that f is homogeneous.

subadditive if for all vectors x and y in C,

f(x + y) ⩽ f(x) + f(y).

superadditive if for all vectors x and y in C,

f(x + y) ⩾ f(x) + f(y).

sublinear if it is both homogeneous and subadditive.

9.2.2 Remark

• There are other notions of homogeneity. More generally, f is positively
homogeneous of degree k if for every λ > 0, we have f(λx) = λkf(x). If I
ever mean anything other than of homogeneity of degree one, I will make it
explicit.

• By these definitions we ought to say that f is superlinear if it is both
homogeneous and superadditive, but I’ve never heard the term.

• Note the definition of homogeneity restricts attention to λ > 0, not λ ⩾ 0.
This avoids the question of deciding how to interpret 0 ·∞ for extended real
valued functions. (If λ > 0, then λ · ∞ = ∞.)
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• Note that for a homogeneous function defined at 0, we have f(0) = f(λ0) =
λf(0) for any λ > 0, so f(0) = 0.

• So if f is homogenous on the punctured cone C \ {0}, where C is a true
cone, it can be extended to be homogenous on all of C simply by setting
f(0) = 0.

• Note that f defined by f(0) = 0, and f(x) = ∞ for x 6= 0 is homogeneous.

• If f is a homogeneous function on a cone C, we can extend it to be homo-
geneous on the entire vector space by setting f(x) = ∞ for any nonzero x
not in C.

9.2.3 Exercise A homogeneous function is subadditive if and only it is convex.
It is superadditive if and only if it is concave.

The epigraph of a sublinear function is a convex cone. The hypograph of a
homogeneous concave function is a convex cone. □

9.3 Gauge functions
See Arrow and
Hahn [2] for
applications.9.3.1 Definition The gauge function, or more simply the gauge, pA of a

subset A of a vector space is defined by

pA(x) = inf{α > 0 : x ∈ αA},

where, you may recall, inf ∅ = ∞.

Note that the gauge of A is always nonnegative.

9.3.2 Example

• The most important example of a gauge is a norm. If U is the closed unit
ball in a normed space,

U = {x ∈ X : ‖x‖ ⩽ 1},

then
pU(x) = ‖x‖.

• The gauge of R is always zero. So is the gauge of the integers. Thus two
distinct sets may have the same gauge.

□

We shall see in a moment (Lemma 9.3.6) that gauges are the nonnegative
sublinear functions.

9.3.3 Definition
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• A set A is star-shaped about zero if x ∈ A implies that the line segment
[0, x] is a subset of A.

• A set A is absorbing if it is star-shaped about zero and its gauge pA is
everywhere finite. This means that for every x ∈ X, there is some λx so
that for 0 < λ ⩽ λx, we have λx ∈ A.

• A set A is circled, or balanced, if for each x ∈ A the line segment [−x, x]
lies in A.

9.3.4 Remark

• A balanced set is star-shaped about zero.

• Circled sets have the property that the gauge pA satisfies pA(x) = pA(−x).

• The unit ball in any normed space is convex, absorbing, and circled.

9.3.5 Definition

• A seminorm is a subadditive function p : X → R (not R♯!) on a vector
space satisfying

p(αx) = |α|p(x)

for all α ∈ R and all x ∈ X.

• A seminorm p that satisfies p(x) = 0 if and only if x = 0 is called a norm.

9.3.6 Lemma For a nonnegative extended real function f : X → R♯ on a vector
space, we have the following.

1. f is homogeneous if and only if it is a gauge function, in which case it is the
gauge of the set

Uf = {x ∈ X : f(x) ⩽ 1}.

2. f is sublinear if and only if it is the gauge of Uf and Uf is convex.

3. f is a seminorm if and only if it is the gauge of Uf and Uf is circled, convex,
and absorbing. The set Uf is called the unit ball of the seminorm.

Proof : First observe that for any set A its gauge has the property that

x ∈ αA =⇒ pA(x) ⩽ α.

Next observe that if A is star-shaped about zero, the converse is true, so

x ∈ αA ⇐⇒ pA(x) ⩽ α. (3)
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Now note that if f is nonnegative and homogeneous, then the set

Uf = {x ∈ X : f(x) ⩽ 1}

is star-shaped about zero.
(1) We want to show that if f is nonnegative and homogeneous, then it is

the gauge pUf
of the star-shaped set Uf . From (3) and the definition of Uf we

have
pUf

(x) ⩽ α ⇐⇒ x ∈ αUf ⇐⇒ f(x) ⩽ α,

so f = pUf

(2) We want to show that if f is nonnegative and homogeneous, then f is
subadditive if and only Uf is convex. We already know that f = pUf

.
So first assume that Uf is convex. Let α, β > 0 satisfy x ∈ αUf and y ∈ βUf .

Then x + y ∈ αUf + βC = (α + β)C, so pUf
(x + y) ⩽ α + β. Taking infima yields

pUf
(x + y) ⩽ pUf

(x) + pUf
(y), so pUf

= f is subadditive.
For the converse, assume that f is subadditive. We need to show that Uf is

convex. So let x, y ∈ Uf and let 0 < λ < 1. If f is subadditive, then

f((1 − λ)x + λy) ⩽ f
(
(1 − λ)x

)
+ f(λy) = (1 − λ)f(x) + λf(y) ⩽ 1,

where the first inequality is subadditivity, the equality is homogeneity, and the
last inequality is just x, y ∈ Uf . But this just asserts that (1 − λ)x + λy ∈ Uf as
desired.

(3) The proof is very similar to the above and is left as an exercise.

9.4 Gauge functions and support functions

Profit functions are sublinear (Theorem 9.1.3), and by Lemma 9.3.6 every non-
negative sublinear function is a gauge. Thus every nonnegative profit function is
also a gauge. How doe we guarantee that πA is nonnegative? One simple way is
to require that 0 ∈ A. Then sup x ∈ Ap · x ⩾ p · 0︸︷︷︸

∈A

= 0.

In fact, if A ⊂ Rm is a closed convex set that contains 0, then by Lemma 9.3.6
its profit function πA is the gauge of

{p ∈ Rm : πA(p) ⩽ 1} =
{
p : ( ∀x ∈ A ) [ p · x ⩽ 1 ]

}
.

This suggest the following definition.2

9.4.1 Definition Given a nonempty set A in Rm, define the polar of A, de-
noted A◦ by

A◦ =
{
p ∈ Rm : ( ∀x ∈ A ) [ p · x ⩽ 1 ]

}
.

2 This definition is what Roko and I called the one-sided polar in [1, p. 215].
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9.4.2 Exercise The polar A◦ is a closed convex set that contains 0. □

9.4.3 Exercise (The polar of cone) If C is cone, then C◦ = C∗, where
C∗ =

{
p : ( ∀x ∈ C ) [ p · x ⩽ 0 ]

}
is the dual cone of C. □

9.4.4 Bipolar Theorem For a nonempty set A,

A◦◦ = co(A ∪{0}).

Consequently, if C is a closed convex set that contains 0, then C = C◦◦.

Proof : By definition

A◦◦ =
{
x :

(
∀p ∈ A◦ )

[ p · x ⩽ 1 ]
}

.

Now if x ∈ A and p ∈ A◦ we have p · x ⩽ 1, so A ⊂ A◦◦. Thus by Exercise 9.4.2,
we have

co(A ∪{0}) ⊂ A◦◦.

For the reverse inclusion, we shall prove that y /∈ co(A ∪{0}) =⇒ y /∈ A◦◦.
So assume y /∈ co(A ∪{0}). By the Strong Separating Hyperplane Theorem 8.3.1
there exists a nonzero p and a real α with

p · y > α > p · x (⋆)

for all x ∈ co(A ∪{0}). Taking x = 0 we see that, α > 0, so we can multiply the
inequality (⋆) by 1/α. Setting p′ = (1/α)p, we have p′ ·y > 1 > p′ ·x for all x ∈ A.
So p′ ∈ A◦. But p′ · y > 1, so y /∈ A◦◦. This completes the proof.

9.4.5 Proposition Let C be a closed convex set that contains 0. Then:

1. πC = pC◦ .

2. pC = πC◦ .

Proof : This is not really hard. I just have a hard dealing with suprema. I’m never
sure what’s obvious and what isn’t so I will probably spell this out in too much
detail.Tighten this up.

Worry about
infinite values.

1. By Exercise 9.4.2, C◦ is convex and contains 0. Then for any p, the set
{α : p ∈ αC◦} is an interval with lower bound pC◦(p). So,

β > pC◦(p) =⇒ p ∈ βC◦,

=⇒ ( ∀x ∈ C ) [ p · x ⩽ β ]
=⇒ πC(p) ⩽ β.
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That is, β > pC◦(p) =⇒ β ⩾ πC(p). So

πC(p) ⩽ pC◦(p).

For the reverse inequality,

β > πC(p) =⇒ ( ∀x ∈ C ) [ p · x ⩽ πC(p) < β ]

=⇒ p ∈ βC◦
=⇒ β ⩾ pC◦(p).

Thus
πC(p) ⩾ pC◦(p).

These two inequalities imply that

πC = pC◦ .

2. From part (1) applied to C◦ we see that πC◦ = pC◦◦ = pC , where the last
equality is the Bipolar Theorem.
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