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Topic 8: Separation theorems

8.1 Hyperplanes and half spaces

Recall that a hyperplane in Rm is a level set {p = α} of a nonzero real-valued linear Rewrite.

function p.1 The vector p can be thought of as a real-valued linear function on Rm,
or as a vector normal (orthogonal) to the hyperplane at each point. Multiplying
p and α by the same nonzero scalar does not change the hyperplane. Note that
a hyperplane is an affine subspace. And all hyperplanes corresponding to p are
parallel.

p
{p ⩾ α}

{p < α}

{p = α}{p = 0}
Figure 8.1.1. Parallel hyperplanes {p = 0}, {p = α}, and the half space
{p ⩾ α}.

A weak half space or closed half space is a set of the form {p ⩾ α} or
{p ⩽ α}, while a strict half space or open half space is of the form {p > α}
or {p < α}.

8.2 Separating convex sets with hyperplanes

We say that nonzero p, or the hyperplane {p = α}, separates A and B if either

A ⊂ {p ⩾ α} and B ⊂ {p ⩽ α} , or B ⊂ {p ⩾ α} and A ⊂ {p ⩽ α} .

Let us agree that

p · A ⩾ p · B means p · x ⩾ p · y for all x in A and y in B.

1 In more general vector spaces, a hyperplane is a level set {f = α} of a nonzero real-valued
linear function (or functional, as they are more commonly called). If the linear functional is not
continuous, then the hyperplane is dense. If the function is continuous, then the hyperplane is
closed. See [1, Lemma 5.55, p. 198]. Open and closed half spaces are topologically open and
closed if and only if the functional is continuous.

KC Border: for Ec 181, 2019–2020 src: Separation v. 2019.12.23::02.49



Ec 181 AY 2019–2020
KC Border Separation theorems 8–2

Note that if a set A is a nonempty subset of the hyperplane {p = α}, then the
half-spaces {p ⩽ α} and {p ⩾ α} separate A and itself, so separation by itself is
not very interesting. A better notion is proper separation.

• Say that nonzero p, or the hyperplane {p = α} properly separates A and
B if it separates them and it is not the case that A ∪ B ⊂ {p = α}, that is,
if there exists some x in A and y in B such that p · x ̸= p · y.

There are stronger notions of separation.

• The hyperplane {p = α} strictly separates A and B if A and B are in
disjoint open half spaces, that is,

A ⊂ {p > α} and B ⊂ {p < α}

(or vice versa).

• It strongly separates A and B if A and B are in disjoint closed half spaces.
That is, there is some ε > 0 such that

A ⊂ {p ⩾ α + ε} and B ⊂ {p ⩽ α − ε}

(or vice versa). An equivalent way to state strong separation is that

inf
x∈A

p · x > sup
y∈B

p · y

(or swap A and B).

8.2.1 Example (Kinds of separation) Let

A = {(x, y) ∈ R2 : x > 0, y ⩾ 1/x}, B = {(x, y) ∈ R2 : x < 0, y ⩾ −1/x}

and
C = {(x, y) ∈ R2 : y = 0} (the x-axis).

See Figure 8.2.1. Then p = (1, 0) strictly separates A and B with A ⊂ {p > 0}
and B ⊂ {p < 0}.

There is another notion of separation that is not as useful as the ones above,
but I mention it here to eliminate possible confusion. Let us agree to say that p
strictly algebraically separates A and B if p ·x > p ·y for all x ∈ A and y ∈ B
(or vice versa).2 It should be clear that strict separation implies strict algebraic
separation, but the converse is not true: For q = (0, 1) the hyperplane {q = 0},
which is simply the x-axis properly separates A and C and q strictly algebraically
separates A and C, but no hyperplane strictly separates A and C.

2 This is not standard terminology, but useful to make this one particular point.
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AB

C

A = {(x, y) : x > 0, y ⩾ 1/x}, B = {(x, y) : x < 0, y ⩾ −1/x},
C = {(x, y) : y = 0}.

Figure 8.2.1. A and B can be strictly separated; A and C cannot.

Let

E = {(ξ, η) : η < 0 or [η = 0 and ξ < 0]}
and F = {(ξ, η) : η > 0 or [η = 0 and ξ > 0]}.

See Figure 8.2.4. These are disjoint and convex. Any nonzero vector p that
properly separates E and F is of the form of the form p = (0, p2) where p2 ̸= 0. For
any such p, the points x = (−1, 0) ∈ E and b = (1, 0) ∈ F satisfy p · x = p · y = 0.
In particular, E and F cannot be strictly algebraically separated. □

Figure 8.2.2. Strong separa-
tion.

Figure 8.2.3. These sets can-
not be separated with a crow-
bar.

8.2.2 Example In R2, consider a line L and a point x not on L. Any nonzero
vector orthogonal to the line defines a linear function that strongly separates x
from L. However, almost any perturbation of the function (except scalar multi-
plication) cannot separate them.

However, if a point in Rm is disjoint from a compact convex set, then a whole
open set of vectors defines linear functions that strongly separate them. □
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F

E

Figure 8.2.4. Two sets that can be properly separated but cannot be strictly
algebraically separated are E = {(ξ, η) : η < 0 or [η = 0 and ξ < 0]} and
F = {(ξ, η) : η > 0 or [η = 0 and ξ > 0]}.

8.2.3 Exercise Prove the last assertion of the above example. □

Here are some simple results that are used so commonly that they are worth
noting.

8.2.4 Exercise Prove the following.

Let A and B be disjoint nonempty convex subsets of Rm and
suppose nonzero p in Rm properly separates A and B with

p · A ⩾ p · B.

1. If A is a linear subspace, then p annihilates A. That is,
p · x = 0 for every x in A.

2. If A is a cone, then p · x ⩾ 0 for every x in A.

3. If B is a cone, then p · x ⩽ 0 for every x in B.

4. If A includes a set of the form x + Rm
++, then p > 0.

5. If B includes a set of the form x − Rm
++, then p > 0.

Hint: Look at the proof of the Nonnegativity Test 0.1.1. □
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C

x̄

ȳ

p = x̄ − ȳ

Figure 8.3.1. Minimum distance and separating hyperplanes.

8.3 Strong separating hyperplane theorem

We now come to my personal favorite result on separation of convex sets. I prove
the result for Hilbert spaces of arbitrary dimension, since the proof is not much
different from the proof for Rm, although the theorem is true in general locally con-
vex spaces. Unfortunately, for general locally convex infinite-dimensional spaces,
a different proof is needed.

The proof of the following theorem makes use of some facts that are presented
in the Appendices.

8.3.1 Strong Separating Hyperplane Theorem Let K and C be disjoint
nonempty convex subsets of a Hilbert space. Suppose K is compact and C is
closed. Then there exists a nonzero p that strongly separates K and C.

Proof : The distance function d(x, C) is a continuous function of x (Theorem A.6.1),
so by the Weierstrass Theorem it achieves a minimum on K at some point x̄. By
Corollary A.15.2 on Metric Projectionthere is some point ȳ in C such that

d(x̄, ȳ) = d(x̄, C) = min{d(x̄, y) : y ∈ C}.

Put
p = x̄ − ȳ. (1)

See Figure 8.3.1. Since K and C are disjoint, we must have p ̸= 0, so its norm
satisfies 0 < ∥p∥2 = p · p = p · (x̄ − ȳ), so

p · x̄ > p · ȳ.
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What remains to be shown is that p · x ⩾ p · x̄ for all x ∈ K and p · ȳ ⩾ p · y for
all y ∈ C.

So let y belong to C. Since ȳ minimizes the distance (and hence the square of
the distance) to x̄ over C, for any point

z = ȳ + λ(y − ȳ) (2)

with 0 < λ ⩽ 1 on the line segment between y and ȳ we have

∥x̄ − z∥2 ⩾ ∥x̄ − ȳ∥2 = ∥p∥2. (3)

By (2) we have x̄ − z = x̄ − ȳ − λ(y − ȳ) = p − λ(y − ȳ), so we may rewrite (3) as

0 ⩾ ∥p∥2 −
(
p − λ(y − ȳ)

)
·

(
p − λ(y − ȳ)

)
= ∥p∥2 − p · p + 2λp · (y − ȳ) − λ2(y − ȳ) · (y − ȳ)
= 2λp · (y − ȳ) − λ2(y − ȳ) · (y − ȳ).

Divide by 2λ > 0 to get

0 ⩾ p · (y − ȳ) − λ
2 (y − ȳ) · (y − ȳ).

Letting λ ↓ 0, we conclude p · ȳ ⩾ p · y.
A similar argument for x ∈ K completes the proof.

This proof is a hybrid of several others. The manipulation in the last series of
inequalities appears in von Neumann and Morgenstern [7, Theorem 16.3, pp. 134–
38], and is probably older. The role of the parallelogram identity (used in the
proof of Corollary A.15.2) is well known, see for instance, Hiriart-Urruty and
Lemaréchal [3, pp. 41, 46] or Rudin [6, Theorem 12.3, p. 293]. You can replace
the last step of dividing by λ with the Kuhn–Tucker conditions for a minimum at
λ = 0 to deduce p · ȳ ⩾ p · y. A different proof for Rm appears in Rockafellar [5,
Corollary 11.4.2, p. 99].

Theorem 8.3.1 is true in general locally convex spaces, where p is interpreted as a
continuous linear functional and p · x is replaced by p(x). (But remember, compact
sets can be rare in such spaces.) Roko and I give a proof of the general case in [1,
Theorem 5.79, p. 207], or see Dunford and Schwartz [2, Theorem V.2.10, p. 417].

8.3.2 Corollary Let C be a nonempty closed convex subset of a Hilbert space.
Assume that the point x does not belong to C. Then there exists a nonzero p
that strongly separates x and C.

8.3.3 Corollary (Bipolar theorem) If A is a nonempty subset of Rm, its
double dual cone A∗∗ is the closed convex conical hull of A.
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Proof : Let C be the closed convex conical hull of A. Exercise 3.2.2 implies that
C∗ = A∗, and C ⊂ A∗∗. Pick x /∈ C and let p be a nonzero vector strongly
separating x from C. Since C is a cone, by multiplying by −1 if necessary, we can
rig it so that

p · x > 0 ⩾ p · C.

The second inequality shows that p ∈ C∗, so the first shows that x /∈ C∗∗ = A∗∗.
Thus x /∈ C implies x /∈ A∗∗, so C = A∗∗.

8.3.4 Theorem Let A be a subset of Rm. Then

co A =
∩

{H : A ⊂ H and H is a closed half space}.

In particular, a closed convex set is the intersection of all the closed half spaces
that include it.

Figure 8.3.2. A disk is an intersection of (infinitely many) supporting half
spaces.

Proof : Clearly co A is included in the intersection since every closed half space
is also a closed convex set. It is also clear that the result is true for A = ∅. So
assume A, and hence co A, is nonempty.

It suffices to show that if x /∈ co A, then there is a closed half space that
includes co A but does not contain x. By the Strong Separating Hyperplane
Theorem 8.3.1 there is a nonzero p that strongly separates the closed convex set
co A from the compact convex set {x}. But this just means there is closed half
space {p ⩾ α} includes co A, but doesn’t contain x.

8.4 Supporting hyperplanes

8.4.1 Definition Let C be a nonempty set in a topological vector space and let x
be a point belonging to C. The nonzero real-valued linear function p supports
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C at x (as a minimizer) if

for all y ∈ C, p · y ⩾ p · x.

In this case, we may write p · C ⩾ p · x.
We say that p supports C at x (as a maximizer) if

for all y ∈ C, p · x ⩾ p · y.

In this case, we may write p · x ⩾ p · C.
The hyperplane {y : p · y = p · x} is called a supporting hyperplane for C

at x. We may also say that the half-space {z : p · z ⩾ p · x} supports C at x if p
supports C at x as a minimizer, etc.

The support is proper if p · y ̸= p · x for some y in C.

8.4.2 Lemma If p properly supports the nonempty convex set C at x, then
the relative interior of C does not meet the supporting hyperplane. That is, if
p · C ⩾ p · x, then p · y > p · x for all y ∈ ri C.

Picture?

Proof : Let p properly support C at x, say p · C ⩾ p · x, and let y belong to ri C.
By the definition of proper support, there exists z ∈ C with p · z > p · x. Since
y ∈ ri C and z ∈ C, there is some ε > 0 such that

w = y + ε(y − z) belongs to C.

Then
y = (1 − λ)z + λw, where λ = 1/(1 + ε).

Thus
p · y = (1 − λ)p · z + λp · w > p · x,

since p · w ⩾ p · x (as w ∈ C) and p · z > p · x.

8.4.3 Remark Note that if C is a singleton, then C can never be properly sup-
ported because C will alway lie entirely within the supporting hyperplane. But if
C = {x}, we have C = ri C, so the following theorem still works.

8.4.4 Finite Dimensional Supporting Hyperplane Theorem Let C be a
nonempty convex subset of Rm and let x̄ belong to C. Then there is a hyperplane
properly supporting C at x̄ if and only if x̄ /∈ ri C.

Proof : ( =⇒ ) This is just Lemma 8.4.2.
(⇐=) Without loss of generality, we can translate C by −x̄, and thus assume

x̄ = 0. (See Exercises 4.2.1 and 4.2.3.)
Assume 0 /∈ ri C. (This implies that C is not a singleton, and also that

C ̸= Rm.) Define
A =

∪
λ>0

λ ri C.
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Clearly ri C ⊂ A, A lies in the span of ri C, and 0 /∈ A but 0 ∈ A.
More importantly, A is convex. To see this observe that it is enough to show

that κ
(
A × A × (0, 1)

)
⊂ A. We shall show the stronger inclusion that if α, β > 0,

then αA + βA ⊂ A (cf. Exercise 1.1.7.6). So let x, y ∈ A where x = λx′, y = µy′,
where x′, y′ ∈ ri C and λ, µ > 0. Then

αx + βy = αλx′ + βµy′ = (αλ + βµ)αλx′ + βµy′

αλ + βµ
∈ (αλ + βµ) ri C ⊂ A,

where the containment follows from the convexity of ri C.
Believe it or not, the crux of the proof is showing that there is some point

somewhere that does not belong to the closure of A. That is what the next
paragraph is about.

Since Rm is finite dimensional there exists a finite maximal collection of lin-
early independent vectors v1, . . . , vk that lie in ri C. Since ri C contains at least
one nonzero point, we have k ⩾ 1. Let v = 1

k

∑k
i=1 vi, which belongs to ri C. I

claim that −v /∈ A. See Figure 8.4.1. To see this, assume by way of contra-

0

v1

v2

v

−v

C

A

Figure 8.4.1

diction that −v belongs to A. Thus, there exists a sequence {xn} in A satisfying
xn → −v. Since v1, . . . , vk is a maximal independent set, we must be able to write
xn = ∑k

i=1 λn
i vi. By Lemma A.12.1 on continuity of coordinates, λn

i −−−→
n→∞

−1/k

for each i. In particular, for some n we have λn
i < 0 for each i. For this n let

λ = ∑k
i=1 λn

i < 0, then

0 = 1
1−λ

xn +
k∑

i=1

(−λn
i

1−λ

)
vi ∈ A, as A is convex,

which is a contradiction. Hence −v /∈ A.
Now by Corollary 8.3.2 there exists some nonzero p strongly separating −v

from A. That is, p · (−v) < p · y for all y ∈ A. Moreover, since A is a cone,
p · y ⩾ 0 = p · 0 for all y ∈ A, and p · (−v) < 0 (Exercise 8.2.4). Thus p supports
A ⊃ C at 0. Moreover, p · v > 0, so p properly supports C at 0.

Now I’ll state without proof some general theorems that apply in infinite di-
mensional spaces.
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8.4.5 Infinite Dimensional Supporting Hyperplane Theorem If C is
a convex set with nonempty interior in a topological vector space, and x is a
boundary point of C, then there is a nonzero continuous linear functional properly
supporting C at x.

For a proof see [1, Lemma 7.7, p. 259]. If a convex set has an empty interior,
then it may fail to have supporting closed hyperplanes at boundary points. For
example, in ℓ1, the positive cone P has an empty interior, so every point of P is a
boundary point, but P cannot be supported by a continuous linear functional atWhere do we show

that int ℓ1+ = ∅? any strictly positive sequence, see [1, Example 7.8, p. 259]. However, in Banach
spaces we have the following result, a proof of which is in [1, Theorem 7.43, p. 284].

8.4.6 Bishop–Phelps Theorem Let C be a nonempty closed convex subset
of a Banach space. Then the set of points at which C is supported by a nonzero
continuous linear functional is dense in the boundary of C.

8.5 More separating hyperplane theorems

The next theorem yields only proper separation but requires only that the sets in
question have disjoint relative interiors. In particular it applies whenever the sets
themselves are disjoint. It is a strictly finite-dimensional result.

8.5.1 Finite Dimensional Separating Hyperplane Theorem Two nonempty
convex subsets of Rm can be properly separated by a hyperplane if and only if their
relative interiors are disjoint.

Proof : (⇐=) Let A and B be nonempty convex subsets of Rm with ri A∩ri B = ∅.
Put C = A − B. By Proposition 5.2.9 ri C = ri A − ri B, so 0 /∈ ri C. It suffices
to show that there exists some nonzero p ∈ Rm satisfying p · x ⩾ 0 for all x ∈ C,
and p · y > 0 for some y ∈ C. If 0 /∈ C, this follows from Corollary 8.3.2. If 0 ∈ C,
it follows from Theorem 8.4.4.

( =⇒ ) If p properly separates A and B, then the same argument used in the
proof of Theorem 8.4.4 shows that ri A ∩ ri B = ∅.

Finally, Theorem 8.4.5 can be used to prove the following.

8.5.2 Infinite Dimensional Separating Hyperplane Theorem Two dis-
joint nonempty convex subsets of a topological vector space can be properly sepa-
rated by a closed hyperplane (or continuous linear functional) if one of them has
a nonempty interior.

For the sake of completeness, I mention without proof an additional result,
due to Klee [4], which deals with strict separation in finite dimensional spaces.

8.5.3 Theorem (Strict separation) Two disjoint nonempty closed convex
subsets of a finite dimensional vector space can be strictly separated by a hyper-
plane if neither includes a half-line in its boundary.
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