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Topic 7: Quasiconvex Functions I

7.1 Level sets of functions

Should this be
moved?

For an extended real-valued function f on a set X, the level set
{f = a} is defined to be {x € X : f(x) = o}
Similarly we define the sublevel set
{f<aj={reX:[f(z)<a},
the strict sublevel set
{f<a}={reX:fz)<al

and superlevel sets and strict superlevel sets are defined analogously.

7.2 Quasiconvexity and quasiconcavity

Section 6.2 proved that local extrema of convex and concave functions are global.
These results hold for a larger class of functions and the proofs are nearly identical.

7.2.1 Definition Let C' be a convex set in a vector space, and let f: — R.

e The function f is quasiconvex if for all x,y € C' and 0 < A < 1, we have
£((1 = N+ Ay) < max{f(2), F()}.
e The function is quasiconcave if for all z,y € C' and 0 < A < 1, we have
F((1 =Nz + My) > min{f(x), f(y)}.
7.2.2 Exercise Prove the following.

1. Every convex function is quasiconvex. Every concave function is quasicon-
cave.

2. Prove that the following statements are equivalent.
(a) The function f: C'— R is quasiconvex.

(b) For all & € R, the sublevel set {z € C: f(x) < a} is convex.
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(c) For all @ € R, the strict sublevel set {x € C': f(x) < a} is convex.
(d) For all z € C and every 0 < A < 1,

F) < fl@) = F((1= Nz +\y) < f(2).

3. Repeat the previous exercise for quasiconcave functions, making the appro-
priate changes.

O

Just as there are strictly convex functions there are strictly quasiconvex func-
tions and the weird intermediate case of explicitly quasiconvex functions.

7.2.3 Definition Let C' be a convex subset of a vector space.

e A function f: C — R is strictly quasiconvex if for every x,y € C' with
x #y. and every 0 < A < 1,

Fy) < flx) = F((1= Nz +My) < f(2).

Equivalently, if for every x # y and 0 < X\ < 1
F((1 =Nz + Ay) < max{f(z), f(y)}.

e A function f: C — R is explicitly quasiconvex if it is quasiconvex and
satisfies

(fy) < fl@) and 0 <A< 1) = f((1=Nz+)\y) < f(z). (E)

e A function f: C' — R is strictly quasiconcave if for every x,y € C' with
x #y. and every 0 < A < 1,

fy) = flz) = F(1= Nz +My) > f(@).

Equivalently, if for every x # y and 0 < X\ < 1
F((1 =Nz + Ay) > min{f(2), f(y)}-
e A function f: C' — R is explicitly quasiconcave if it is quasiconcave and

(f(y) > f(z) and 0 < A < 1) — f((l—)\)x—f—/\y) > f(x).

Arrow and Hahn [I, p. 87] use term semi-strict quasiconcavity instead of
explicit quasiconcavity.
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7.2.4 Example Note that strict quasiconvexity implies Condition (E). The con-
verse does not hold. In fact, Condition (E) alone does not guarantee even quasi-
convexity.

For instance, the function f: R™ — R defined by

1 =0,
f(‘r):{o r 0.

is not quasiconvex, since the sublevel set {f < 1} = R™ \ {0} is not convex. But
f does satisfy Condition (E). To see this suppose f(y) < f(z) and 0 < A < 1.
The only way this can happen is if x = 0 and y # 0, in which case we have
f((l — Nz + Ay) =0 < 1= f(z), so Condition (E) is satisfied. O

7.3 Quasi-conXXXity and extrema

Note that the conclusion of Theorem 6.2.2 on local maxima of concave functions
does not hold for quasiconcave functions. For instance,

f(x) = {0 '

has a local maximum at —1, but it is not a global maximum over R. However, if
f is explicitly quasiconcave, then we have the following.

0
0

VoA

Y

7.3.1 Theorem (Local maxima of explicitly quasiconcave functions)
Let f: C — R be an explicitly quasiconcave function (C convex). If x* is a
local maximizer of f, then it is a global maximizer of f over C'.

Proof: Let x belong to C' and suppose f(z) > f(z*). Then by the definition
of explicit quasiconcavity, for any 1 > XA > 0, f ((1 —A)z* + Aa:) > f(z*). Since
(1—-X)z*+ Az — 2" as A — 0 this contradicts the fact that f has a local maximum
at o*. |

7.3.2 Theorem (Local maxima of strictly quasiconcave functions) Let
f: C — R be a strictly quasiconcave function (C' convex). If x* is a local maxi-
mizer of f, then it is the unique global maximizer of f over C.

Proof: Let x belong to C' and suppose x # x* satisfies f(z) > f(«*). Then by the
definition of strict quasiconcavity, for any 1 > X > 0, f ((1 —A)z* + )\x) > f(x*).
Since (1 — A)z* + Az — z* as A — 0 this contradicts the fact that f has a local
maximum at z*. |
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7.4 Explicit quasiconXXXity and nonextremization

7.4.1 Definition A function f on a subset of a topological space is locally non-

maximized if it has no local maxima. That is, for every point x and every

neighborhood V' of x, there is a point y € dom DNV with f(y) > f(x).
Similarly, f is locally nonminimized if it has no local minima.!

Note that if a continuous function is locally nonmaximized, then its domain
cannot be compact, as a continuous function on a compact set always achieves a
maximum. Economists may use the term locally nonsatiated (or even locally
nonsaturated) in place of locally nonmaximized.

The next result holds in any tvs, but I'll prove it for R™. It is useful in the
characterization of economic quasi-equilibria and will be used in Topic 11. There
is, of course, a corresponding result for quasiconvexity.

7.4.2 Proposition Let C' be a convex set in R™. Let f be a lower semicontin-
uous, locally nonmaximized, quasiconcave function on C. Define the superlevel
sets

Px)={yeC: fly)> f(x)} and U(z)={yeC: f(y) = f(2)}

Then for any x € C,
P(z) =riU(x).

Proof: For each x, by local nonmaximization, the set P(z) is nonempty, and by
lower semicontinuity, it is a relatively open subset of C, and hence it belongs to
ri C'. Now obviously

P(z) c U(z), and so P(z) C 1iU(x).

For the reverse inclusion, suppose by way of contradiction that there exists
some y € riU(x), but y ¢ P(z), so that f(y) = f(z). Since y € riU(z), there is
some ¢ > 0 so that the open ball Bs(y) NC C U(z).

By local nonmaximization there is some z € C' with f(Z) > f(y). In fact, by
lower semicontinuity, there is some ¢ > 0, such that the open e-ball B = B.(z)
such that

(Vze B) [f(z) > f(y)].
(Note that y ¢ B.) Now consider an open set of the form

Ay=(1-Ny+ B, where A <O0.

See Figure 7.4.1. The set A, is a ball of radius |A|e centered at w = (1 —\)y+ Az.
Moreover, [lw —y = [A[|[Z =y, so

we Ay = w—yll < Jw— @l +[[@ -yl < [M(e+ ]z -yl).

! These terms are not standard. I made them up, because they seemed useful.
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Figure 7.4.1. The set Ay = (1 — \)y + AB, where A < 0.

So for |A| < 5/(5 + ||z — y||) , we have [Jw — y|| < 0, so Ay C V. So fix such a
A < 0. Now for any point w € A, there is by definition some z € B such that
1 -2

w=(1=Ny+ Az, or yzl_)\w+1_)\z.

I claim that this implies that f(w) = f(y) = f(x). To see why, first note that since
Ax C Bs(y) € U(z) we have f(w) > f(y). Butif f(w) > f(y), since f(z) > f(y),
quasiconcavity implies

fy) = min{ f(w), f(2)} > f(y),

a clear contradiction. This means that f(w) = f(y). But w is an arbitrary element
of the open (in aff C') set Ay, so local nonmaximization is violated on Aj.

This contradiction shows that riU(z) C P(x), completing the proof that
rilU(z) = P(x). |

7.4.3 Corollary Let C' be a convex set in R™. Let f be a lower semicontin-
uous, locally nonmaximized, quasiconcave function on C'. Then f is explicitly
quasiconcave.

Proof: Assume f(y) > f(z). Then y € P(x) =riU(x), so by Lemma 5.1.3, the
segment [y, z) C riU(z) = P(z), so for 1 > A > 0, we have f((l — ANz + )\y) >
f(z). That is, f is explicitly quasiconcave. |

7.4.4 Corollary Let C' be a convex set in R™. Let f be an upper semicon-
tinuous, locally nonminimized, quasiconvex function on C'. Then f is explicitly
quasiconvex.

7.4.5 Example Proposition 7.4.2 may fail without quasiconcavity. Let X = R
and let f(z) = x?. Then f is locally nonmaximized and continuous, but P(0)

R\ {0} # R = int U(0).

oo
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