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Topic 5: Topological properties of convex sets

5.1 Interior and closure of convex sets

Let X be a vector space. Recall (Definition 0.2.4) the affine combination function
function κ : X × X × R → X is defined by

κ(x, y, λ) = (1 − λ)x + λy.

It is continuous for any topological vector space. Moreover for any set A,

A is convex if and only if κ
(
A × A × [0, 1]

)
⊂ A. (⋆)

(Actually we could replace inclusion by equality above, but let’s not.)

5.1.1 Lemma In any topological vector space, both the interior and the closure
of a convex set are convex.

Proof : Let C be a convex subset of a topological vector space X.
Since int C ⊂ C and C is convex, for any 0 ⩽ λ ⩽ 1,

(1 − λ)(int C) + λ(int C) ⊂ C.

But int C is open, so (1 − λ)(int C) + λ(int C) is open. Now the interior of C
includes every open subset of C, so (1 − λ)(int C) + λ(int C) ⊂ int C. Since λ is
arbitrary,

κ
(
(int C) × (int C) × [0, 1]

)
⊂ int C

so (⋆) implies that int C is convex. (Note that this works even if int C is empty.)
To see that C is convex, first observe (A.7.10) that

C × C × [0, 1] = C × C × [0, 1].

Since κ is continuous, we have

κ
(
C × C × [0, 1]

)
= κ

(
C × C × [0, 1]

)
⊂ κ

(
C × C × [0, 1]

)
= C,

where the inclusion follows from the continuity of κ by Lemma A.7.7, and the
final equality follows from κ

(
C × C × [0, 1]

)
= C since C is convex.

So (⋆) implies that C is convex.

5.1.2 Corollary The closed convex hull of A is the closure of the convex hull
of A.
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Proof : Let C be any closed convex set that includes A. Then, since it is convex,
it also includes co A. So the closures satisfy co A ⊂ C = C (A.7.4). But by
Lemma 5.1.1, co A is a closed convex set. This shows that co A is the smallest
closed convex set that includes A, that is, it is equal to co A.

5.1.3 Lemma If C is a convex set in a topological vector space X, and if x ∈ int C
and y ∈ C, then the half-open line segment [x, y) satisfies

[x, y) ⊂ int C.

Proof : This is vacuously true if the interior of C is empty, so assume that the
interior of C is nonempty, and let x belong to the interior of C and y belong to
the closure of C. Fix 0 < λ < 1. We need to show that the point (1 − λ)x + λy =
x + λ(y − x) belongs to the interior of C. (The case λ = 0 is automatic.)

Since x belongs to the interior of C, there is an open neighborhood U of zero
such that x + U ⊂ C. For any point z ∈ C, the set

(1 − λ)(x + U) + λz = {(1 − λ)u + λz : u ∈ U} = (1 − λ)x + λz + (1 − λ)U

of convex combinations of z and points in x + U is an open set that is included
in C. This set is shaded in Figure 5.1.1. (The figure is drawn for the case where
z /∈ x + U , and λ = 2/3. For my convenience U is shown as a disk, but it need
not be circular.) It is clear from the picture that if z is close enough to y, then
(1 − λ)x + λy belongs to the shaded region. We now derive algebraically just how
close z must be to y.

x

x + U

y

y + λ−1
λ

U

z

(1 − λ)x + λy

(1 − λ)x + λz

(1 − λ)x + λz + (1 − λ)U

Figure 5.1.1. For z ∈ C, the open set (1 − λ)x + λz + (1 − λ)U (shaded) is
included in C, and it contains (1 − λ)x + λy whenever z is close enough to y.

Given 0 < λ < 1, consider the open neighborhood y + λ−1
λ

U of y. Since y ∈ C,
there is some point z ∈ C that also belongs this neighborhood, say

z = y + λ − 1
λ

u where u ∈ U.
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Then
λ(y − z) = (1 − λ)u

so

(1 − λ)x + λy = (1 − λ)x + λz + λ(y − z)
= (1 − λ)(x + u) + λz

∈ (1 − λ)(x + U) + λz ⊂ int C.

5.1.4 Corollary Let C be a convex subset of a topological vector space. If C
has a nonempty interior, then:

1. int C is dense in C, so C = int C.

2. int C = int C.

Proof : (1) Let y belong to C. Pick x ∈ int C. Then y belongs to the closure of
[x, y), which is a subset of int C by Lemma 5.1.3. Thus int C is dense in C, that
is, C ⊂ int C. But C ⊃ int C, so we have equality.

(2) Let y belong to int C and let W be a neighborhood of zero

x

y

y + ε(y − x)

y + W

satisfying y + W ⊂ C. Pick some x ∈ int C. Then for 0 < ε small
enough,

x + (1 + ε)(y − x) = y + ε(y − x) belongs to y + W ⊂ C.

But y belongs to the half-open line segment
[
x, y +ε(y −x)

)
, so by

Lemma 5.1.3 y belongs to int C. Therefore int C ⊂ int C. The reverse inclusion
is trivial, so int C = int C.

Note that in an infinite dimensional space, a convex set with an empty interior
may have a closure with a nonempty interior, as the next example shows.

5.1.5 Example Consider the vector space C[0, 1] of all continuous functions on
the unit interval, with the norm given by ‖f‖ = maxx |f(x)|. The vector space
P [0, 1] of polynomials on [0, 1] is a convex subset of C[0, 1] with an empty interior,
but it is dense, so

int P [0, 1] = ∅, but int P [0, 1] = C[0, 1].

□
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5.2 Internal points, affine hulls, and relative interiors

An important difference between convex analysts and the rest of us is the use of
the term “relative interior.”

5.2.1 Definition The relative interior of a convex set C in a topological vector
space, denoted ri C, is defined to be its topological interior relative to its affine
hull aff C.

Similarly, the relative boundary of a convex set is the boundary relative to
the affine hull.

In other words, x ∈ ri C if and only if there is some open neighborhood U of
x such that y ∈ U ∩ aff C implies y ∈ C. Even a one point set has a nonempty
relative interior in this sense, namely itself. The only convex set with an empty
relative interior is the empty set.

You might ask why I haven’t defined the relative closure. The reason is that
the affine hull of a set in Rm is itself closed, so the closure and relative closure
would agree.

5.2.2 Proposition In Rm, the relative interior of a nonempty convex set is
nonempty.

Proof : If C is a singleton {x}, then {x} is its own relative interior, so assume C
has at least two elements. Also, if x ∈ C, then it follows from Exercises 4.2.1
and 4.2.3 that the affine hull aff C of C is equal to x + aff(C − x). Therefore
ri C = x + ri(C − x), so we may assume that C contains 0.

Since C also has a nonzero element, it has a basis (a nonempty maximal
linearly independent subset), b1, . . . , bk. The k-dimensional span M of b1, . . . , bk

is thus the affine hull of C. The coordinate mapping φ : ∑k
i=1 αibi 7→ (α1, . . . , αk)

is a one-to-one linear homeomorphism between M and Rk.
Now any point in M of the form ∑k

i=1 αibi with each αi ⩾ 0 and ∑k
i=1 αi ⩽ 1

belongs to C, as a convex combination 0 and the bi’s. In particular, y = ∑k
i=1

1
2k

bi

belongs to C. In fact, it is an interior point of C relative to M . To see this,
consider the open ball B in Rk centered at (1/2k, . . . , 1/2k) with radius 1/2k.
For any (α1, . . . , αk) in B, we have αi > 0, and ∑k

i=1 αi < 1, so the set φ−1(B) is
an open subset of M included in C and containing y. Thus y belongs to ri C.

In Rm, every linear subspace and so every affine subspace is closed (Corol-
lary 3.1.8). It follows that in Rm, a subset E and its closure E have the same
affine hull. A consequence of this is that in Rm, the affine hulls of ri C, C and C
coincide.

5.2.3 Proposition For a convex subset C of Rm,

ri C = C, and ri(ri C) = ri C.
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Proof : By Proposition 5.2.2, the interior of C relative to its affine hull M is
nonempty. By Corollary 5.1.4, the closure of this interior (in M) is the closure of
C in M . But in Rm every affine set is closed, so the closure relative to M is the
same as the closure relative to Rm. This proves ri C = C.

For the second statement, by definition ri(ri C) is the topological interior of
ri C relative to the affine hull of ri C. But since the affine hull is closed (in Rm),
the affine hull of ri C is the same as the affine hull of C, and so the same as the
affine hull of C. But ri C is open in aff C, so it equals its interior in aff C, namely
ri(ri C).

5.2.4 Corollary The relative boundary of a convex set C is equal to C \ ri C.

This need not be true in an infinite dimensional topological vector space.
There is another characterization of the relative interior that relies on the

useful notion of intrinsic core.

5.2.5 Definition Let A be a subset of the vector space X, and let L be an affine
subspace of X that includes A. A point x is an internal point of A relative
to L if for each point y ∈ L distinct from x, there is an ε > 0 such that the line
segment

(
x − ε(y − x)

)
, x + ε(y − x)

)
is included in A.

When L = X, we simply say that x is an internal point of A.
The set of internal points of A is called the core of A or the algebraic

interior of A, denoted cor A.
The set of internal points of A relative to its affine hull aff A is called the

intrinsic core of A, denoted icr A.
This whole section
needs to be
polished.

Add a picture.5.2.6 Proposition Let C be a convex subset of a topological vector space. Then
every point in ri C is an intrinsic core point of C.

Proof : Let A be the affine hull of C. Then ri C is a relatively open subset of A in
the topological sense. Define the continuous function h : R → A by h(λ) = x +
λ(x−y). Since h(0) = x ∈ ri C. So by continuity, the inverse image B = h−1(ri C)
of the open subset ri C of A is an open set in R that contains 0. That is, there is
some η > 0 such that |ε| < η implies that ε ∈ B, so h(ε) ∈ ri C ⊂ C.

In the finite dimensional case, we have the converse.

5.2.7 Proposition In a finite dimensional topological vector space, the relative
interior and the intrinsic core of a convex set coincide.

Proof : Let C be a convex subset of a finite dimensional vector space. Proposi-
tion 5.2.6 shows that ri C ⊂ icr C.

For the reverse inclusion, let x be an intrinsic core point of C. If C is a
singleton, the conclusion is immediate, so it suffices to consider the case where
x = 0 and C has at least two points. In this case, the affine hull L of C is
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actually an m-dimensional linear subspace. As such it has a basis v1, . . . , vm. By
hypothesis, 0 is an intrinsic core point, so by scaling the basis we may assume
that ±v1, . . . , ±vm all belong to C. Then{ m∑

i=1
αivi :

m∑
i=1

|αi| < 1
}

is an open convex subset of C that contains 0.

There are significant differences between a topologist’s relative interior and
convex analyst’s relative interior.

For instance, it is not true that A ⊂ B implies
ri A ⊂ ri B.

For instance, consider a closed interval B = [a, b] and one of its endpoints, A =
{a}. Then ri B = (a, b) and ri A = {a} itself, so ri A ∩ ri B = ∅.

I’ll leave the proofs of the next two theorems as exercises.

5.2.8 Proposition (Rockafellar [1, Theorem 6.5, p. 47]) Let {Ci}i∈I be aProve these

family of convex subsets of Rm, and assume∩
i∈I

ri Ci 6= ∅.

Then

1. ∩
i∈I

Ci =
∩
i∈I

Ci,

and,

2. for finite I,
ri

∩
i∈I

Ci =
∩
i∈I

ri Ci.

Sample answer:

5.2.9 Proposition (Rockafellar [1, Corollaries 6.6.1, 6.6.2, pp. 48–49])
For convex subsets C, C1, C2 of Rm, and λ ∈ R,

ri(λC) = λ ri C, ri(C1 + C2) = ri C1 + ri C2, and C1 + C2 ⊃ C1 + C2.
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5.3 Topological properties of convex hulls

5.3.1 Proposition The convex hull of an open set is open.

Proof : By Exercise 4.3.4(3) any point x in co A is a convex combination ∑n
i=1 αixi

from A. If A is open, then for each xi there is an open neighborhood Ui of zero
such that xi + Ui ⊂ A. Then ∑n

i=1 αi(xi + Ui) is an open neighborhood of x
included in the convex hull co A.

We have shown in Corollary 2.4.4 that the convex hull of a compact set is
compact. The same cannot be said of closed sets.

5.3.2 Example (The convex hull of a closed set need not be closed)
Consider the closed subset of the plane

A = {(x, y) ∈ R2 : y = 1/|x|, x 6= 0}.

Then
coA = {(x, y) ∈ R2 : y > 0}.

By the way, this answers Exercise 2.2.2. You should also compare it to Exam-
ple 0.2.2. □
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