Ec 181 Convex Analysis and Economic Theory KC Border AY 2019–2020

Topic 5: Topological properties of convex sets

5.1 Interior and closure of convex sets

Let X be a vector space. Recall (Definition 0.2.4) the affine combination function function $\kappa \colon X \times X \times \mathbf{R} \to X$ is defined by

$$\kappa(x, y, \lambda) = (1 - \lambda)x + \lambda y.$$

It is continuous for any topological vector space. Moreover for any set A,

A is convex if and only if
$$\kappa(A \times A \times [0,1]) \subset A$$
. (\star)

(Actually we could replace inclusion by equality above, but let's not.)

5.1.1 Lemma In any topological vector space, both the interior and the closure of a convex set are convex.

Proof: Let C be a convex subset of a topological vector space X. Since int $C \subset C$ and C is convex, for any $0 \le \lambda \le 1$,

$$(1 - \lambda)(\operatorname{int} C) + \lambda(\operatorname{int} C) \subset C.$$

But int C is open, so $(1 - \lambda)(\operatorname{int} C) + \lambda(\operatorname{int} C)$ is open. Now the interior of C includes every open subset of C, so $(1 - \lambda)(\operatorname{int} C) + \lambda(\operatorname{int} C) \subset \operatorname{int} C$. Since λ is arbitrary,

$$\kappa((\operatorname{int} C) \times (\operatorname{int} C) \times [0,1]) \subset \operatorname{int} C$$

so (\star) implies that int C is convex. (Note that this works even if int C is empty.)

To see that \overline{C} is convex, first observe (A.7.10) that

$$\overline{C}\times \overline{C}\times [0,1] = \overline{C\times C\times [0,1]}.$$

Since κ is continuous, we have

$$\kappa\Big(\overline{C}\times\overline{C}\times[0,1]\Big)=\kappa\Big(\overline{C\times C\times[0,1]}\Big)\subset\overline{\kappa\Big(C\times C\times[0,1]\Big)}=\overline{C},$$

where the inclusion follows from the continuity of κ by Lemma A.7.7, and the final equality follows from $\kappa(C \times C \times [0,1]) = C$ since C is convex.

So (\star) implies that \overline{C} is convex.

5.1.2 Corollary The closed convex hull of A is the closure of the convex hull of A.

KC Border: for Ec 181, 2019-2020 src: TopologicalProperties v. 2019.12.23::02.49

Proof: Let C be any closed convex set that includes A. Then, since it is convex, it also includes $\operatorname{co} A$. So the closures satisfy $\operatorname{\overline{co} A} \subset \overline{C} = C$ (A.7.4). But by Lemma 5.1.1, $\operatorname{\overline{co} A}$ is a closed convex set. This shows that $\operatorname{\overline{co} A}$ is the smallest closed convex set that includes A, that is, it is equal to $\operatorname{\overline{co}} A$.

5.1.3 Lemma If C is a convex set in a topological vector space X, and if $x \in \text{int } C$ and $y \in \overline{C}$, then the half-open line segment [x, y) satisfies

$$[x,y) \subset \operatorname{int} C.$$

Proof: This is vacuously true if the interior of C is empty, so assume that the interior of C is nonempty, and let x belong to the interior of C and y belong to the closure of C. Fix $0 < \lambda < 1$. We need to show that the point $(1 - \lambda)x + \lambda y = x + \lambda(y - x)$ belongs to the interior of C. (The case $\lambda = 0$ is automatic.)

Since x belongs to the interior of C, there is an open neighborhood U of zero such that $x + U \subset C$. For any point $z \in C$, the set

$$(1-\lambda)(x+U) + \lambda z = \{(1-\lambda)u + \lambda z : u \in U\} = (1-\lambda)x + \lambda z + (1-\lambda)U$$

of convex combinations of z and points in x+U is an open set that is included in C. This set is shaded in Figure 5.1.1. (The figure is drawn for the case where $z \notin x+U$, and $\lambda=2/3$. For my convenience U is shown as a disk, but it need not be circular.) It is clear from the picture that if z is close enough to y, then $(1-\lambda)x+\lambda y$ belongs to the shaded region. We now derive algebraically just how close z must be to y.

Figure 5.1.1. For $z \in C$, the open set $(1 - \lambda)x + \lambda z + (1 - \lambda)U$ (shaded) is included in C, and it contains $(1 - \lambda)x + \lambda y$ whenever z is close enough to y.

Given $0 < \lambda < 1$, consider the open neighborhood $y + \frac{\lambda - 1}{\lambda}U$ of y. Since $y \in \overline{C}$, there is some point $z \in C$ that also belongs this neighborhood, say

$$z = y + \frac{\lambda - 1}{\lambda}u$$
 where $u \in U$.

KC Border

5 - 3

AY 2019–2020

Then

$$\lambda(y-z) = (1-\lambda)u$$

SO

$$(1 - \lambda)x + \lambda y = (1 - \lambda)x + \lambda z + \lambda(y - z)$$
$$= (1 - \lambda)(x + u) + \lambda z$$
$$\in (1 - \lambda)(x + U) + \lambda z \subset \text{int } C.$$

- **5.1.4 Corollary** Let C be a convex subset of a topological vector space. If C has a nonempty interior, then:
 - 1. int C is dense in \overline{C} , so $\overline{C} = \overline{\text{int } C}$.
 - 2. int $C = \operatorname{int} \overline{C}$.
- *Proof*: (1) Let y belong to \overline{C} . Pick $x \in \operatorname{int} C$. Then y belongs to the closure of [x,y), which is a subset of $\operatorname{int} C$ by Lemma 5.1.3. Thus $\operatorname{int} C$ is dense in \overline{C} , that is, $\overline{C} \subset \operatorname{int} C$. But $\overline{C} \supset \operatorname{int} C$, so we have equality.
- (2) Let y belong to int \overline{C} and let W be a neighborhood of zero satisfying $y+W\subset \overline{C}$. Pick some $x\in \operatorname{int} C$. Then for $0<\varepsilon$ small enough,

$$x + (1 + \varepsilon)(y - x) = y + \varepsilon(y - x)$$
 belongs to $y + W \subset \overline{C}$.

But y belongs to the half-open line segment $[x, y + \varepsilon(y - x))$, so by Lemma 5.1.3 y belongs to int C. Therefore int $\overline{C} \subset \operatorname{int} C$. The reverse inclusion is trivial, so int $C = \operatorname{int} \overline{C}$.

Note that in an infinite dimensional space, a convex set with an empty interior may have a closure with a nonempty interior, as the next example shows.

5.1.5 Example Consider the vector space C[0,1] of all continuous functions on the unit interval, with the norm given by $||f|| = \max_x |f(x)|$. The vector space P[0,1] of polynomials on [0,1] is a convex subset of C[0,1] with an empty interior, but it is dense, so

int
$$P[0,1] = \varnothing$$
, but int $\overline{P[0,1]} = C[0,1]$.

5.2 Internal points, affine hulls, and relative interiors

An important difference between convex analysts and the rest of us is the use of the term "relative interior."

5.2.1 Definition The **relative interior** of a convex set C in a topological vector space, denoted ri C, is defined to be its topological interior relative to its affine hull aff C.

Similarly, the **relative boundary** of a convex set is the boundary relative to the affine hull.

In other words, $x \in \text{ri } C$ if and only if there is some open neighborhood U of x such that $y \in U \cap \text{aff } C$ implies $y \in C$. Even a one point set has a nonempty relative interior in this sense, namely itself. The only convex set with an empty relative interior is the empty set.

You might ask why I haven't defined the relative closure. The reason is that the affine hull of a set in \mathbb{R}^{m} is itself closed, so the closure and relative closure would agree.

5.2.2 Proposition In \mathbb{R}^{m} , the relative interior of a nonempty convex set is nonempty.

Proof: If C is a singleton $\{x\}$, then $\{x\}$ is its own relative interior, so assume C has at least two elements. Also, if $x \in C$, then it follows from Exercises 4.2.1 and 4.2.3 that the affine hull aff C of C is equal to $x + \operatorname{aff}(C - x)$. Therefore ri $C = x + \operatorname{ri}(C - x)$, so we may assume that C contains 0.

Since C also has a nonzero element, it has a basis (a nonempty maximal linearly independent subset), b_1, \ldots, b_k . The k-dimensional span M of b_1, \ldots, b_k is thus the affine hull of C. The coordinate mapping $\varphi \colon \sum_{i=1}^k \alpha_i b_i \mapsto (\alpha_1, \ldots, \alpha_k)$ is a one-to-one linear homeomorphism between M and \mathbf{R}^k .

Now any point in M of the form $\sum_{i=1}^k \alpha_i b_i$ with each $\alpha_i \geqslant 0$ and $\sum_{i=1}^k \alpha_i \leqslant 1$ belongs to C, as a convex combination 0 and the b_i 's. In particular, $y = \sum_{i=1}^k \frac{1}{2k} b_i$ belongs to C. In fact, it is an interior point of C relative to M. To see this, consider the open ball B in \mathbb{R}^k centered at $(1/2k, \ldots, 1/2k)$ with radius 1/2k. For any $(\alpha_1, \ldots, \alpha_k)$ in B, we have $\alpha_i > 0$, and $\sum_{i=1}^k \alpha_i < 1$, so the set $\varphi^{-1}(B)$ is an open subset of M included in C and containing y. Thus y belongs to ri C.

In \mathbb{R}^{m} , every linear subspace and so every affine subspace is closed (Corollary 3.1.8). It follows that in \mathbb{R}^{m} , a subset E and its closure \overline{E} have the same affine hull. A consequence of this is that in \mathbb{R}^{m} , the affine hulls of ri C, C and \overline{C} coincide.

5.2.3 Proposition For a convex subset C of \mathbb{R}^{m} ,

$$\overline{\operatorname{ri} C} = \overline{C}, \quad \text{and} \quad \operatorname{ri}(\operatorname{ri} C) = \operatorname{ri} C.$$

Proof: By Proposition 5.2.2, the interior of C relative to its affine hull M is nonempty. By Corollary 5.1.4, the closure of this interior (in M) is the closure of C in M. But in \mathbb{R}^{m} every affine set is closed, so the closure relative to M is the same as the closure relative to \mathbb{R}^{m} . This proves $\overline{\mathrm{ri}\,C} = \overline{C}$.

For the second statement, by definition ri(ri C) is the topological interior of ri C relative to the affine hull of ri C. But since the affine hull is closed (in \mathbb{R}^{m}), the affine hull of ri C is the same as the affine hull of \overline{C} , and so the same as the affine hull of C. But ri C is open in aff C, so it equals its interior in aff C, namely ri(ri C).

5.2.4 Corollary The relative boundary of a convex set C is equal to $\overline{C} \setminus ri C$.

This need not be true in an infinite dimensional topological vector space.

There is another characterization of the relative interior that relies on the useful notion of intrinsic core.

5.2.5 Definition Let A be a subset of the vector space X, and let L be an affine subspace of X that includes A. A point x is an **internal point of A relative to** L if for each point $y \in L$ distinct from x, there is an $\varepsilon > 0$ such that the line segment $(x - \varepsilon(y - x)), x + \varepsilon(y - x)$ is included in A.

When L = X, we simply say that x is an **internal point** of A.

The set of internal points of A is called the **core** of A or the **algebraic interior** of A, denoted $\cos A$.

The set of internal points of A relative to its affine hull aff A is called the **intrinsic core** of A, denoted icr A.

> This whole section needs to be polished.

5.2.6 Proposition Let C be a convex subset of a topological vector space. Then every point in ri C is an intrinsic core point of C.

Proof: Let A be the affine hull of C. Then ri C is a relatively open subset of A in the topological sense. Define the continuous function $h: \mathbf{R} \to A$ by $h(\lambda) = x +$ $\lambda(x-y)$. Since $h(0)=x\in \mathrm{ri}\,C$. So by continuity, the inverse image $B=h^{-1}(\mathrm{ri}\,C)$ of the open subset ri C of A is an open set in \mathbf{R} that contains 0. That is, there is some $\eta > 0$ such that $|\varepsilon| < \eta$ implies that $\varepsilon \in B$, so $h(\varepsilon) \in \mathrm{ri}\, C \subset C$.

In the finite dimensional case, we have the converse.

5.2.7 Proposition In a finite dimensional topological vector space, the relative interior and the intrinsic core of a convex set coincide.

Proof: Let C be a convex subset of a finite dimensional vector space. Proposition 5.2.6 shows that ri $C \subset \operatorname{icr} C$.

For the reverse inclusion, let x be an intrinsic core point of C. If C is a singleton, the conclusion is immediate, so it suffices to consider the case where x = 0 and C has at least two points. In this case, the affine hull L of C is

KC Border: for Ec 181, 2019-2020 src: TopologicalProperties v. 2019.12.23::02.49

Add a picture.

KC Border

5 - 6

AY 2019-2020

actually an m-dimensional linear subspace. As such it has a basis v_1, \ldots, v_m . By hypothesis, 0 is an intrinsic core point, so by scaling the basis we may assume that $\pm v_1, \ldots, \pm v_m$ all belong to C. Then

$$\left\{ \sum_{i=1}^{m} \alpha_i v_i : \sum_{i=1}^{m} |\alpha_i| < 1 \right\}$$

is an open convex subset of C that contains 0.

There are significant differences between a topologist's relative interior and convex analyst's relative interior.

> For instance, it is *not* true that $A \subset B$ implies $\operatorname{ri} A \subset \operatorname{ri} B$.

For instance, consider a closed interval B = [a, b] and one of its endpoints, A = $\{a\}$. Then ri B=(a,b) and ri $A=\{a\}$ itself, so ri $A\cap$ ri $B=\emptyset$.

I'll leave the proofs of the next two theorems as exercises.

5.2.8 Proposition (Rockafellar [1, Theorem 6.5, p. 47]) Let $\{C_i\}_{i\in I}$ be a family of convex subsets of \mathbf{R}^{m} , and assume

$$\bigcap_{i\in I} \operatorname{ri} C_i \neq \varnothing.$$

Then

Prove these

1.

$$\overline{\bigcap_{i\in I} C_i} = \bigcap_{i\in I} \overline{C_i},$$

and,

2. for finite I,

$$\operatorname{ri} \bigcap_{i \in I} C_i = \bigcap_{i \in I} \operatorname{ri} C_i.$$

Sample answer:

5.2.9 Proposition (Rockafellar [1, Corollaries 6.6.1, 6.6.2, pp. 48–49]) For convex subsets C, C_1 , C_2 of \mathbf{R}^{m} , and $\lambda \in \mathbf{R}$,

$$\operatorname{ri}(\lambda C) = \lambda \operatorname{ri} C$$
, $\operatorname{ri}(C_1 + C_2) = \operatorname{ri} C_1 + \operatorname{ri} C_2$, and $\overline{C_1 + C_2} \supset \overline{C_1} + \overline{C_2}$.

5.3 Topological properties of convex hulls

5.3.1 Proposition The convex hull of an open set is open.

Proof: By Exercise 4.3.4(3) any point x in co A is a convex combination $\sum_{i=1}^{n} \alpha_i x_i$ from A. If A is open, then for each x_i there is an open neighborhood U_i of zero such that $x_i + U_i \subset A$. Then $\sum_{i=1}^{n} \alpha_i (x_i + U_i)$ is an open neighborhood of x included in the convex hull co A.

We have shown in Corollary 2.4.4 that the convex hull of a compact set is compact. The same cannot be said of closed sets.

5.3.2 Example (The convex hull of a closed set need not be closed)
Consider the closed subset of the plane

$$A = \{(x, y) \in \mathbf{R}^2 : y = 1/|x|, \ x \neq 0\}.$$

Then

$$coA = \{(x, y) \in \mathbf{R}^2 : y > 0\}.$$

By the way, this answers Exercise 2.2.2. You should also compare it to Example 0.2.2. $\hfill\Box$

References

[1] R. T. Rockafellar. 1970. Convex analysis. Number 28 in Princeton Mathematical Series. Princeton: Princeton University Press.