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Topic 4: Digression: Hulls

4.1 Some special classes of sets

The notion of a hull is pervasive in mathematics and transcends just the notion
of a convex hull, so it is instructive, if perhaps a bit discursive, to consider convex
sets and convex hulls as part of a more general phenomenon. The following classes
of subsets of a real vector space are all characterized in terms of being closed under
particular operations.

4.1.1 Definition A subset A of a real vector space X is:

• a linear subspace if it is nonempty and closed under linear combinations.
That is, for all α, β ∈ R and x, y ∈ A,

αx + βy ∈ A.

(Thus 0 belongs to every linear subspace, and {0} is itself a linear subspace,
the trivial subspace or degenerate subspace.1 Note that we do not
consider the empty set to be a linear subspace.)

• an affine subspace if it includes the line through any two of its points.
That is, it is closed under linear combinations where the coefficients sum to
unity. More pedantically, A is affine if for all α, β ∈ R and x, y ∈ A

α + β = 1 =⇒ αx + βy ∈ A.

(Note that the empty set is affine.)

• a convex set if it includes the line segment joining any two of its points.
That is, it is closed under nonnegative linear combinations where the coef-
ficients sum to unity. That is, A is convex if for all α, β ∈ R and x, y ∈ A

(α, β ⩾ 0, α + β = 1) =⇒ αx + βy ∈ A.

• a cone if it is nonempty and is closed under multiplication by nonnegative
scalars, that is, if it includes the ray through any of its nonzero points. That
is, A is a cone if for all α ∈ R and x ∈ A

α ⩾ 0 =⇒ αx ∈ A.

1 Mathematicians often use the terms “degenerate” and “trivial” interchangeably. I wonder
how they respond when asked to play Trivial Pursuit.
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(By this definition, 0 belongs to every cone, and {0} is itself a cone, the
trivial cone.1 Some authors allow a cone to exclude 0 by requiring α > 0
in the definition above. Note that the empty set is not a cone.)
A cone A is pointed if −A ∩ A = {0}, that is, if it includes no lines.
N.B. Some authors use the term wedge to refer to what I call a cone. They
reserve the term cone for what I call a pointed cone.

• closed if it contains the limit of any sequence it includes. That is, if for
every sequence (x1, x2, . . . ) ⊂ A such that limn→∞ xn exists,

lim
n→∞

xn ∈ A.

(The empty set is closed. Note that this requires a notion of convergence,
so we must add the requirement that X be a topological vector space.)

• A subset A of X × R is vertically increasing if[
(x, α) ∈ A and β ⩾ α

]
=⇒ (x, β) ∈ A.

For instance, the epigraph of a function is vertically increasing. Vertically
decreasing sets, such as hypographs, are defined as you should expect.

A partially ordered vector space is a pair (X,≧) where ≧ is a partial
order on X (transitive, antisymmetric) that satisfies (i) x ≧ y =⇒ x + z ≧ y + z
for all z, and (ii) x ≧ y =⇒ αx ≧ αy for all α ⩾ 0. A vector x is positive if
x ≧ 0. The set of positive vectors is denoted X+. (Note that this contradicts my
claim on page 0–2 to avoid using the term positive.)

• The subset A ⊂ X of a partially ordered vector space is increasing if A is
closed under addition of nonnegative vectors, that is,

(x ∈ A and y ≧ 0) =⇒ x + y ∈ A.

Equivalently A is increasing if A + X+ ⊂ A, or equivalently if A + X+ = A.
A set is decreasing if the above holds for y ≦ 0. (The empty set is both
increasing and decreasing, as is X itself.)

4.2 Affine subspaces

The affine subspaces of a vector space are the translates of linear subspaces. The
details are worked out in the following exercises.

4.2.1 Exercise (An affine subspace is a translate of a linear subspace)
Let M be a linear subspace of a vector space X, and let x ∈ X. Then A = M + x
is an affine subspace of X. □
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Sample answer: Let a, b ∈ A. We need to show that (1 − α)a + αb ∈ A. Since
a, b ∈ A = M + x, we have a − x ∈ M and b − x ∈ M . Thus (1 − α)(a − x) +
α(b − x) = (1 − α)a + αb − x ∈ M , so (1 − α)a + αb ∈ A.

4.2.2 Exercise If M is a linear subspace of X, define the binary relation ∼
M

on
X by

x ∼
M

y if x − y ∈ M.

Show that ∼
M

is an equivalence relation (transitive, symmetric, and reflexive).
Show that each equivalence class is an affine subspace of X. □

Sample answer: Symmetry: Since y − x = −(x − y), and M is closed under
scalar multiplication, x − y ∈ M =⇒ y − x ∈ M . Reflexivity: For any x ∈ M ,
x − x = 0 ∈ M . Transitivity: Let x ∼

M
y and y ∼

M
z. That is, x − y ∈ M and

y − z ∈ M . Since M is closed under vector addition, we have (x − y) + (y − z) =
y − z ∈ M , so x ∼

M
z.

By definition, the ∼
M

-equivalence class [x] of a point x in X is

[x] = {y : y − x ∈ M} = M + x,

which is an affine set by Exercize 4.2.1.

That is, every linear subspace M defines a family of affine subspaces M + x,
where x ∈ X. For x, y ∈ X, we say the affine subspaces M + x and M + y are
parallel. Next we show that every affine subspace is of this form.

4.2.3 Exercise (Recovering a linear subspace from an affine subspace)
Let A be an affine subspace of X and let a, b ∈ A. Prove the following:

1. The set A − a = {x − a : x ∈ A} is a linear subspace of X.

Sample answer: Let M = A − a. First we show that if x ∈ M , then for
any real number α, we have αx ∈ M . To see this observe that if x ∈ M , then
x+a ∈ A. Since a ∈ A and x+a ∈ A, we must have (1−α)a+α(x + a) ∈ A.
But (1 − α)a + α(x + a) = αx + a ∈ A, so αx ∈ M .
Now we show that if x, y ∈ M , then x + y ∈ M . Since x, y ∈ M , we have
x+a ∈ A and y +a ∈ A. Since A is affine, 1

2(x+a)+ 1
2(y +a) = a+ 1

2(x+y)
belongs to A. Thus 1

2(x + y) ∈ M , so by the first part of the argument with
α = 2 we have x + y ∈ M .
That is, M is closed under scalar multiplication and vector addition, so it
is a linear subspace.

2. A − a = A − b.
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Sample answer: By symmetry it suffices to show that A − a ⊂ A − b. So
let x ∈ A−a. Then x+a ∈ A and b ∈ A, so since A is affine 1

2(x+a)+ 1
2b =

a + 1
2x + 1

2(b − a) ∈ A. Thus 1
2x + 1

2(b − a) ∈ A − a. By the argument above
A − a is a linear subspace, so x + (b − a) ∈ A − a. That is, x + b ∈ A, so
x ∈ A − b.

3. If M and N are linear subspaces such that A = M + x = N + y for some
x, y ∈ A, then M = N . This unique subspace is called the linear subspace
parallel to A.

Sample answer: Since 0 belongs to every linear subspace, we must have
x ∈ M + x = A and y ∈ N + y = A. But then M = A − x = A − y = N .

□

Here are a few more simple consequences of the above.

• An affine subspace is a linear subspace if and only if it contains 0.

• Let M denote the unique linear subspace parallel to A. For x ∈ A and
y ∈ M we have x + y ∈ A.

4.2.1 Affine functions

4.2.4 Definition Let A be an affine subspace of the vector space X. A real
function f : X → R is affine if for every x, y ∈ A and scalar λ,

f
(
(1 − λ)x + λy

)
= (1 − λ)f(x) + λf(y) = f(x) + λ(f(y) − f(x)).

Clearly every linear functional is affine.

4.2.5 Exercise (Affine functions) Let A be an affine subspace of the vector
space X. A real function f on A is affine if and only if it is of the form

f(x) = g(x − a) + γ, (A)

where a belongs to A and g is linear on the linear subspace A − a. Moreover, g is
independent of the choice of a in A, and γ = f(a).

As a special case, when A = X, we may take a = 0, so an affine function f on
X can be written as f(x) = g(x) + γ, where g is linear on X and γ = f(0). □

Sample answer: First note that if f is defined as in (A), then it is affine. The
converse is more involved.

Assume f is affine on A, fix some a ∈ A, and define g on the subspace M =
A − a by

g(x − a) = f(x) − f(a), x ∈ A (1)
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so that
g(y) = f(y + a) − f(a), y ∈ M. (2)

Then f(x) = g(x − a) + γ, where γ = f(a) as desired. It remains to show that g
is linear.

We start by showing that if y ∈ M and α ∈ R, then g(αy) = αg(y):

g(αy) = f(αy + a) − f(a) by (2)
= f

(
(1 − α)a + α(y + a)

)
− f(a) (simple algebra)

= (1 − α)f(a) + αf(y + a) − f(a) since f is affine
= αf(y + a) − αf(a) (simplify)
= αg(y) by (2).

Next we show that g(x + y) = g(x) + g(y) for x, y ∈ M :

g
(

1
2x + 1

2y
)

= f(1
2x + 1

2y + a) − f(a)

= f
(

1
2(x + a) + 1

2(y + a)
)

− f(a)
= 1

2f(x + a) + 1
2f(y + a) − f(a)

= 1
2g(x + a) + 1

2g(y + a).

Now multiply everything by 2 and use the previous result.
Finally we show that g is independent of the choice of a. So let a, b belong to

A and define g(x) = f(x + a) − f(a) and h(x) = f(y + b) − f(b) for x ∈ M =
A − a = A − b. We need to show that g(x) = h(x) for all X ∈ M .

First note that since a, b ∈ A we have a − b ∈ M , and

g(b − a) = f(b) − f(a), and h(a − b) = f(a) − f(b). (3)

Now any z ∈ A can be written in either of the forms z = x + a or z = y + b, where
x, y ∈ M . Then

f(z) = g(z − a) + f(a) = h(z − b) + f(b),

so by (3) and the linearity of h we have

g(z − a) = h(z − b) + f(b) − f(a) = h(z − b) + h(b − a) = h(z − a).

Since each x ∈ M = A−a is of the form x = z −a for x ∈ A, we have g(x) = h(x)
for all x ∈ M .

4.3 Hulls

For each of the concepts in Section 4.1 there is a related hull. In the following
definitions when I say that a set E is the smallest set having property P , I mean
that (i) The set E has property P , and (ii) if F is any set having property P ,
then E ⊂ F . (A word on notation: When I write A ⊂ B or A ⊃ B, I allow for
A = B, otherwise I will write A ⊊ B or A ⊋ B.)
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4.3.1 Definition (The concept of a hull) For a (nonempty) set A in a vector
space X,

• the linear hull, better known as the span of A, denoted span A, is the
smallest linear subspace that includes A.

• the affine hull of A, denoted aff A, is the smallest affine subspace that
includes A.

• the convex hull of A, denoted co A, is the smallest convex set that includes
A.

• the conical hull or positive hull, better known as the cone generated
by A, denoted cone A, is the smallest cone that includes A. See Figure 4.3.1.

0

A

Figure 4.3.1

• the closed hull, known as the closure of A, denoted A or sometimes cl A,
is the smallest closed set that includes A.

• the closed convex hull of A, denoted co A, is the smallest closed convex
set that includes A.

• the convex conical hull or the convex cone generated by A is the
smallest convex cone that includes A.

• the closed convex cone generated by A is the smallest closed convex
cone that includes A.

• the increasing hull of A is the smallest increasing set that includes A. The
decreasing hull is the smallest decreasing set. (This applies only to partially
ordered spaces.)

• the vertically increasing hull of A is the smallest vertically increasing
set that includes A. (The vertically decreasing hull is the smallest vertically
decreasing set.)
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4.3.2 Remark N.B. In order for these notions to make sense, it is required that
there exists a smallest set with the desired property. That is, we need to make
sure we are not looking for something like the smallest number strictly greater
than zero. This will be taken up in the next exercise.

The next two exercises state obvious facts that have trivial proofs, and are
usually just asserted. Indeed, a mathematically experienced reader can subcon-
sciously put the proof together, and will claim the conclusion is obvious. That
may be, but it may not be obvious how many obvious facts need to be strung
together to prove something obviously trivial.2 If you are mathematically expe-
rienced, you will find it tedious and pointless to write out a detailed proof. I
apologize. I have done two of them for you as examples. It is important to make
one such argument in detail, so you will know that it is obvious. By the time
you do all these exercises, all these assertions will be obvious. If nothing else, the
exercises will help you to be more zen.

I know I am belaboring this point, but bear with me. Each of these statements
has two parts, the first part is of the form, “If each set in a nonempty family of
sets of has property P , then the intersection of the family has property P .” Such
a statement need not be true for any arbitrary property. For example, consider
the property of being infinite. The intersection of a nonempty family of infinite
sets need not be an infinite set. (Give an example.) So it is the particular kind
of property that makes these results trivial. All the properties in the exercise
are of the form, “the set is closed under a particular operation.” It is because
the property is of this form and the nature of the operations involved that the
assertions are true. I hope this convinces the more mathematically inclined among
you to at least do these exercises in your head.

4.3.3 Exercise (Mind-numbing exercise 1) Prove the following assertions
about subsets of the linear space X.

1. The intersection of a nonempty family of linear subspaces is a linear sub-
space, and for a nonempty set A,

span A =
∩

{L ⊂ X : L is a linear subspace and L ⊃ A}.

2. The intersection of a nonempty family of affine subspaces is an affine sub-
space (possibly empty), and

aff A =
∩

{L ⊂ X : L is an affine subspace and L ⊃ A}.

3. The intersection of a nonempty family of convex sets is a convex set (possibly
empty), and

co A =
∩

{C : C is convex and C ⊃ A}.
2 This brings to mind the story of the mathematics professor who has just asserted that some

proposition is obvious. A puzzled student asks if it is really obvious. The professor paces and
thinks hard for fifteen minutes, and then announces, “Yes, it’s obvious.”
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4. The intersection of a nonempty family of cones is a cone, and for a nonempty
set A, the

cone generated by A =
∩

{C ⊂ X : C is a cone and C ⊃ A}.

5. The intersection of a nonempty family of closed sets is a closed set, and

A =
∩

{C ⊂ X : C is closed and C ⊃ A}.

6. The intersection of a nonempty family of increasing sets is an increasing set,
and

increasing hull A =
∩

{C ⊂ X : C is increasing and C ⊃ A}.

7. The intersection of a nonempty family of vertically increasing sets is a ver-
tically increasing set, and

vertically increasing hull A =∩
{C ⊂ X : C is vertically increasing and C ⊃ A}.

□

Hint: Let me prove the first assertion. Let L be a nonempty family of linear
subspaces of the vector space X, and let M =

∩
{L ⊂ X : L ∈ L}. Our job is to

prove that M is a linear subspace of X. So let α, β ∈ R and assume x, y ∈ M .
Then x, y ∈ L for each L ∈ L, as M ⊂ L. But each L is a linear subspace, so
αx + βy ∈ L for each L ∈ L. Therefore αx + βy ∈

∩
{L ⊂ X : L ∈ L} = M . This

proves that M is a linear subspace.
Recall that span A is the smallest linear subspace that includes A. What

exactly does this mean? It means that (i) span A is a linear subspace that includes
A, and (ii) if B is any linear subspace that includes A, then B ⊃ span A. (This
makes it smallest with respect to the partial order ⊂ on the subsets of X.) So
let L = {L : L is a linear subspace and L ⊃ A}. Since X is itself a linear space
that includes A, we see that L is nonempty. We have just seen that

∩
{L :

L is a linear subspace and L ⊃ A} =
∩

{L : L ∈ L} is indeed a linear subspace,
and moreover it is clear that it includes A. Now let B be a linear subspace that
includes A. Then B ∈ L, so

∩
{L : L ∈ L} ⊂ B. In other words,

∩
{L : L ∈ L} is

the smallest linear subspace that includes A, and so by definition is span A.

There are other useful ways to characterize these sets.

4.3.4 Exercise (Mind-numbing exercise 2) Prove the following assertions.
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1. If L is a linear subspace and α1, . . . , αn ∈ R and x1, . . . , xn ∈ L, then

α1x1 + · · · + αnxn ∈ L,

and moreover

span A = {α1x1 + · · · + αnxn : n ⩾ 1; α1, . . . , αn ∈ R; x1, . . . , xn ∈ A}.

In other words, span A consists of all linear combinations of points in A.

2. If L is an affine subspace and α1, . . . , αn ∈ R and x1, . . . , xn ∈ L, then

α1 + · · · + αn = 1 =⇒ α1x1 + · · · + αnxn ∈ L,

and moreover

aff A =
{

n∑
i=1

αixi : n ⩾ 1; α1, . . . , αn ∈ R; x1, . . . , xn ∈ A;
n∑

i=1
αi = 1

}
.

In other words, the affine hull aff A of A consists of all affine combinations
of points in A.

3. If C is a convex set and α1, . . . , αn ∈ R and x1, . . . , xn ∈ C, then

(α1, . . . , αn ⩾ 0, and α1 + · · · + αn = 1) =⇒ α1x1 + · · · + αnxn ∈ C,

and moreover

co A =
{

n∑
i=1

αixi : n ⩾ 1; α1, . . . , αn ⩾ 0, x1, . . . , xn ∈ A;
n∑

i=1
αi = 1

}
.

In other words, co A consists of all convex combinations of points in A.
(This was Exercise 2.1.3.)

4. If C is a convex cone and α1, . . . , αn ∈ R and x1, . . . , xn ∈ C, then

α1, . . . , αn ⩾ 0 =⇒ α1x1 + · · · + αnxn ∈ C,

and moreover

convex conical hull A ={
n∑

i=1
αixi : n ⩾ 1; α1, . . . , αn ⩾ 0; x1, . . . , xn ∈ A

}
.

In other words, the convex cone generated by A consists of all nonnegative
linear combinations of points in A.
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5. The increasing hull of A is the set

{x + y : x ∈ A and y ≧ 0} = A + X+.

I need to define
the notation X+.

6. The vertically increasing hull of A is the set

{(x, α + β) : (x, α) ∈ A and β ⩾ 0} = A +
(
{0} × R+

)
. □

Hint: You might ask, what is there to prove here? Well the definitions of linear
subspace, affine subspace, and convex set were stated in terms of a set being
closed under various linear combinations of two elements (n = 2). You need to
show that this implies closure under corresponding linear combinations of any
(finite) n points. Clearly this calls for a proof by induction, which, while trivial,
is instructive to write down. Here is the affine case:

Let L be an affine set and let P(n) denote the proposition:

If x1, . . . , xn ∈ L, and α1 + · · · + αn = 1, then α1x1 + · · · + αnxn ∈ L. P(n)

Clearly P(1) is true, since x ∈ L =⇒ 1x ∈ L.
We now show that for all n ⩾ 1, P(n) =⇒ P(n + 1):
Assume P(n), and let x1, . . . , xn+1 belong to L, and let α1, . . . , αn+1 = 1. I

claim that for some i we must have 1 − αi ̸= 0. (Why? Well suppose 1 − αi = 0
for all i. Then αi = 1 for all i, so α1 + · · ·+αn+1 = n+1 ̸= 1, a contradiction.) By
renumbering if necessary, we may assume γ = 1 − αn+1 ̸= 0. Then ∑n

i=1 αi/γ =
1, so by the induction hypothesis P(n), the point y = ∑n

i=1
αi

γ
xi belongs to L.

Therefore by definition, the affine combination

γy + αn+1xn+1 =
n+1∑
i=1

αixi

belongs to L. This completes the proof by induction.
For the second assertion (following “moreover”), let

B =
{

n∑
i=1

αixi : n ⩾ 1; α1, . . . , αn ∈ R; x1, . . . , xn ∈ A;
n∑

i=1
αi = 1

}
.

You also need to show B is indeed the smallest affine set that includes A. From
the argument just made we know that if L is an affine set that includes A, it must
include B. Therefore it is enough to show that B itself is an affine set. So assume
x, y ∈ B and α + β = 1. Then we may write x = ∑m

i=1 γixi where ∑m
i=1 γi = 1 and

each xi ∈ A, and y = ∑ℓ
j=1 δjyj where ∑ℓ

j=1 δj = 1 and each yj ∈ B. So

αx + βy = α
m∑

i=1
γixi + β

ℓ∑
j=1

δjyj =
m∑

i=1
(αγi)xi +

ℓ∑
j=1

(βδj)yj.

Since ∑m
i=1 αγi + ∑ℓ

j=1 βδj = α + β = 1, it follows that αx + βy belongs to B, so
B is affine.
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