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Topic 2: Convex hulls

2.1 The convex hull of a set

2.1.1 Definition The convex hull of A, denoted co A, is the smallest convex
set that includes A. Smallest means in the sense of inclusion: That is, co A is
a convex set that includes A and if C is any convex set that includes A, then
co A ⊂ C.

Equivalently,

co A = ∩{C : C is convex and A ⊂ C}.

This definition has a subtlety. It assumes that a smallest convex set that
includes A exists. It takes a little work to show that the equivalent definition (in
terms of intersection) is the smallest such set. We shall come back to this subtlety
in Topic 4.

2.1.2 Definition The convex hull of a finite set of points is called a polytope.

By this definition, the empty set is considered to be a polytope.

2.1.3 Exercise The convex hull of A is the set of all convex combinations of
points of A:

co A =
{ n∑

i=1
αixi : n ⩾ 1; α1, . . . , αn ⩾ 0; x1, . . . , xn ∈ A;

n∑
i=1

αi = 1
}

.

□

This is not hard, and is revisited in Topic 4, but try it for yourself. The key is to
show that the set of convex combinations is itself a convex set. In Theorem 2.4.1
we find a bound on how big n needs to be.

2.1.4 Exercise For sets A1, . . . , An in a vector space X,

co
( n∑

i=1
Ai

)
=

n∑
i=1

co Ai.

Note that if any Ai is empty, the result is still true, as both sides will be empty.
□

The next result is akin to the statement that if xn is a linear combination of
x1, . . . , xn−1, then the span of x1, . . . , xn is the just the span of x1, . . . , xn−1.
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2.1.5 Exercise If xn ∈ co{x1, . . . , xn−1}, then co{x1, . . . , xn} = co{x1, . . . , xn−1}.
□

Sample answer: Assume xn = α1x1 + · · · + αn−1xn−1 is a convex combination,
and let y ∈ co{x1, . . . , xn}, say

y =
n∑

i=1
λixi =

n−1∑
i=1

(λi + λnαi)xi.

But observe that ∑n−1
i=1 (λi + λnαi) = 1, so y ∈ co{x1, . . . , xn−1}.

2.1.6 Lemma For nonempty convex sets C1, . . . , Cn we have:

1. The convex hull of the union ⋃n
i=1 Ci satisfies

co
( n⋃

i=1
Ci

)
=

{ n∑
i=1

λixi : λi ⩾ 0, xi ∈ Ci, i = 1, . . . , n;
n∑

i=1
λi = 1

}
.

2. If each Ci is also compact, then co
(⋃n

i=1 Ci

)
is compact.

Proof : (1.) This is just an exercise in rearranging convex combinations. Soon you
will be expected to be able to do this in your sleep.

Let x belong to co
( n⋃

i=1
Ci

)
. From Exercise 2.1.3, x is a convex combination of

elements of
n⋃

i=1
Ci. We can number them as

x =
n∑

i=1

ki∑
j=1

µijxij,

where each µij ⩾ 0, xij belongs to Ci and ∑n
i=1

∑ki
j=1 µij = 1. (This way of writing

x need not be unique, but that doesn’t matter.) Let λi = ∑ki
j=1 µij. If λi > 0,

then
ki∑

j=1

µij

λi

= 1 and zi =
ki∑

j=1

µij

λi

xij belongs to the convex set Ci .

If λi = 0, let zi be any point in Ci. Then observe that

x =
n∑

i=1

ki∑
j=1

µijxij =
n∑

i=1
λizi,

where each zi belongs to Ci, each λi ⩾ 0, and ∑n
i=1 λi = 1.

(2.) Recall (Definition 1.1.5) that the unit simplex

∆n−1 =
{
(λ1, . . . , λn) ∈ Rn

+ :
n∑

i=1
λi = 1

}
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is a closed, bounded, convex set. (Thus it is a compact subset of Rn.) Define the
function

f : ∆n−1 × C1 × · · · × Cn → X

by
f

(
(λ1, . . . , λn), x1, . . . , xn

)
=

n∑
i=1

λixi.

Then f is continuous, and by part (1)

co
( n⋃

i=1
Ci

)
= f(∆n−1 × C1 × · · · × Cn).

Since the continuous image of a compact set is compact (Lemma A.7.15), we are
done.

Since every finite set is compact, we have the following.

2.1.7 Corollary Every polytope in a tvs is compact.

2.2 The closed convex hull of a set

2.2.1 Definition The closed convex hull of A, denoted co A, is the smallest
closed convex set that includes A.

We shall see in Corollary 5.1.2 that the closed convex hull of A is the closure
of the convex hull of A. This is not generally the same as the convex hull of the
closure of A.

2.2.2 Exercise Give an example of a closed set A in the plane whose convex hull
is not closed. This is also an example where (co A) 6= co (A). □

2.3 Digression: Basic nonnegative linear combinations

2.3.1 Definition Let A = {x1, . . . , xn} be a nonempty finite set of vectors in a
vector space. Let y be a linear combination of vectors in A,

y =
n∑

i=1
λixi, and let B = {xi ∈ A : λi 6= 0}.

Then we say that y depends on the set B. We say that y is a basic linear
combination of A if it depends on a linearly independent subset of A.

2.3.2 Remark Recall that the empty set is linearly independent, so for x1 ∈ A,
writing 0 = α1x1 with α1 = 0, which gives 0 as a linear combination of x1 where
{i : α1 > 0} = ∅, so 0 is a basic linear combination of A.
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You should know from linear algebra that every linear combination can be
replaced by a basic linear combination. The trick we want is to do it with non-
negative coefficients. The next result is true for general (not necessarily finite
dimensional) vector spaces, and it should be more widely known.

2.3.3 Lemma (Nonnegative Basic Linear Combinations) A nonnegative
linear combination of a set of vectors can be replaced by a basic nonnegative linear
combination of those vectors.

That is, if x1, . . . , xn are vectors and y = ∑n
i=1 λixi where each λi is non-

negative, then there exist nonnegative β1, . . . , βn such that y = ∑n
i=1 βixi and

{xi : βi > 0} is independent.

Proof : The case y = 0 is handled by Remark 2.3.2. We treat the remaining case
by induction on the number of vectors xi on which the nonzero y depends. So
consider the proposition:

P[n]: A nonzero nonnegative linear combination of not more than
n vectors can be replaced by a nonnegative linear combination that
depends on a linearly independent subset.

The validity of P[1] is easy. If y 6= 0 and y = λ1x1, where λ1 ⩾ 0, then we must
in fact have λ1 > 0 and x1 6= 0. That is, y depends on the linearly independent
subset {x1}.

We now show that P[n − 1] =⇒ P[n]. So assume y = ∑n
i=1 λixi and that

each λi > 0, i = 1, . . . , n. If {x1, . . . , xn} itself is independent, there is nothing to
prove, just set βi = λi for each i. On the other hand, if {x1, . . . , xn} is dependent,
then there exist numbers α1, . . . , αn, not all zero, such that

n∑
i=1

αixi = 0.

We may assume that at least one αi > 0, for if not we simply replace each αi by
−αi.

Now consider the following expression

y =
n∑

i=1
λixi − γ

n∑
i=1

αixi︸ ︷︷ ︸
=0

=
n∑

i=1

(
λi − γαi

)
xi.

When γ = 0, this reduces to our original expression. Whenever γ > 0 and αi ⩽ 0,
then λi − γαi > 0, so the only coefficients that we need to worry about are those
with αi > 0. We will choose γ > 0 just large enough so that at least one of the
coefficients λi − γαi becomes zero and none become negative. Now for αi > 0,

λi − γαi ⩾ 0 ⇐⇒ γ ⩽ λi

αi

.
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Thus by setting
γ̄ = min

{
λi

αi

: αi > 0
}

we are assured that

λi − γ̄αi ⩾ 0 for all i = 1, . . . , n and λi − γ̄αi = 0 for at least one i.

Thus
y =

n∑
i=1

(
λi − γ̄αi

)
xi

expresses y as a linear combination depending on no more than n − 1 of the xi’s.
Thus by the induction hypothesis P[n−1], we can express y as a linear combination
that depends on a linearly independent subset.

2.3.4 Remark The above proof is highly instructive and is typical of the method
we shall use in the study of inequalities. We started with two equalities in n
variables

y =
n∑

i=1
λixi

0 =
n∑

i=1
αixi.

We then took a linear combination of the two equalities, namely

1y + γ0 = 1
n∑

i=1
λixi + γ

n∑
i=1

αixi,

where the coefficients 1 and γ were chosen to eliminate one of the variables, thus
reducing a system of equalities in n variables to a system in no more than n − 1
variables. Keep your eyes open for further examples of this technique. (If you
want to be pedantic, you might remark as Kuhn [9] did, that we did not really
“eliminate” a variable, we just set its coefficient to zero.)

2.4 Carathéodory’s Theorem

The first application of Lemma 2.3.3 is Carathéodory’s [5] theorem on convex
hulls in finite dimensional spaces.

2.4.1 Carathéodory’s Convexity Theorem For an m-dimensional vector
space, every vector in the convex hull of a set can be written as a convex combi-
nation of at most m + 1 vectors from the set.
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Proof : Let A be a subset of an m-dimensional space, and let x belong to the
convex hull of A. Then we can write x as a convex combination x = ∑n

i=1 λixi of
points xi belonging to A. For any vector y in X consider the “augmented” vector
ŷ in X × R defined by ŷj = yj for j = 1, . . . , m and ŷm+1 = 1. Then it follows
that x̂ = ∑n

i=1 λix̂i since ∑n
i=1 λi = 1. Renumbering if necessary, by Lemma 2.3.3,

we can write x̂ = ∑k
i=1 αix̂i, where x̂1, . . . , x̂k are independent and each αi > 0.

Since an independent set in X × R has at most m + 1 members, k ⩽ m + 1. But
this reduces to the two equations x = ∑k

i=1 αix̂i and 1 = ∑k
i=1 αi. In other words,

x is a convex combination of k ⩽ m + 1 vectors of A.

Note that the theorem does not say that each point in co A is a convex com-
bination of the same m + 1 points, nor are these points unique. For example, in
the plane a square is the convex hull of its four vertices, but any given point will
lie in the convex hull of no more than three of the vertices

2.4.2 Remark We shall find the mapping that takes a vector x in X to the vector
x̂ = (x, 1) in X × R quite useful. I wish I had a good name for it. We shall also
occasionally map x to x̌ = (x, −1).

2.4.3 Remark Note that Lemma 2.3.3 already guarantees that if x ∈ co A ⊂ X,
then x can be written as a nonnegative linear combination of at most m points
in A, but this linear combination is not guaranteed not be a convex combination.
That is, the coefficients are not guaranteed not sum to one.

2.4.4 Corollary The convex hull of a compact subset of Rm is compact.

Proof : Let K be compact and define the mapping from Km+1 × ∆m (where as
you may recall, ∆m is the unit simplex in Rm+1) into Rm by(

x0, . . . , xm, (α0, . . . , αm)
)

7→ α0x0 + · · · + αmxm.

By Carathéodory’s Theorem its image is the convex hull of K. The mapping is
continuous and its domain is compact, so its image is compact (Lemma A.7.15).

The convex hull of a compact set need not be compact in infinite dimensional
spaces, see for instance Aliprantis and Border [1, Example 5.34, p. 185].

2.5 Shapley–Folkman Theorem I

A funny thing about the Shapley–Folkman Theorem is that neither Lloyd Shap-
ley nor Jon Folkman published the theorem. Another curiosity is that the term
Shapley–Folkman Theorem refers to two related, but on the surface quite differ-
ent, results. The first mention of the result appears (with attribution) in the
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second appendix of a paper by Ross Starr [10], who was interested approximating
nonconvex sets by convex sets.

Here is the version of the Shapley–Folkman Theorem that is simplest to state.
We know (Exercise 2.1.4) that the convex hull of a sum of sets is the sum of
their convex hulls. The first Shapley–Folkman Theorem strengthens this result
for finite dimensional spaces. It asserts that we can replace the convex hull of
a set in the sum by the set itself for all but at most m of the sets, where m is
the dimension of the space. This dependence on the dimension of the space is
reminiscent of Carathéodory’s Theorem 2.4.1, and the proof is a simple variant,
due to Lin Zhou [11].

2.5.1 Theorem (Shapley–Folkman I) Let A1, . . . , An be nonempty subsets
of Rm, and let

x ∈ co (A1 + · · · + An).
Then we may write x as a sum

x = x1 + · · · + xn,

where for each i,
xi ∈ co Ai,

and
xi ∈ Ai for all but at most m of the sets Ai .

Proof : (Cf. Zhou [11]) Recall from Exercise 2.1.4 that

co (A1 + · · · + An) = (co A1) + · · · + (co An),

so we can write x as a sum

x = y1 + · · · + yn, yi ∈ co Ai, i = 1, . . . , n.

For each i = 1, . . . , n, since yi ∈ co Ai, there are vectors yij ∈ Ai and coefficients
λij > 0, j = 1, . . . , ki such that for each i,

yi = λi1yi1 + · · · + λiki
yiki

where
ki∑

j=1
λij = 1.

Thus we may write x as

x = (λ11y11 + · · · + λ1k1y1k1︸ ︷︷ ︸
y1

) + · · · + (λn1yn1 + · · · + λnknynkn︸ ︷︷ ︸
yn

).

In the proof of Carathéodory’s Theorem, we embedded each yij in Rm+1 by
appending a one in the last coordinate. For this proof, we embed each yij in
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Rm+n by appending the ith coordinate vector in Rn, and we embed x in Rm+n by
appending the unit vector 1 ∈ Rn. Thus we can rewrite the above conditions asx

1

 =

λ11

y11

e1

 + · · · + λ1k1

y1k1

e1


 + · · · +

λn1

yn1

en

 + · · · + λnkn

ynkn

en


 .

The first m coordinates simply reflect that

x = y1 + · · · + yn.

The m + ith coordinate asserts that ∑ki
j=1 λij = 1, so we have yi ∈ co Ai. Recalling

that ki is the number of points taken from Ai, we have ki ⩾ 1 for each i = 1, . . . , n.
Using Lemma 2.3.3, we can write (x, 1), which is a nonzero vector in Rm+n, as

a nonnegative linear combination depending on a linearly independent subset of at
most n+m of the vectors (yij, ei) in Rm+n. In other words, we may without loss of
generality assume that at most n + m of the coefficients λij are nonzero. Since ki

is the number of vectors from Ai used to represent yi, we see that ∑n
i=1 ki ⩽ n+m.

Since ∑n
i=1 ki ⩽ n + m, and each ki is at least unity, it must be that for no

more than m values of i ∈ {1, . . . , n} can we have ki > 1. For the remaining n−m
(or more) values of i, we must in fact have ki = 1, so for these i we have λi1 = 1,
which means yi = yi1 belongs to Ai. This proves the theorem.

2.6 Extreme points, faces, and extreme rays

Many different sets may have the same closed convex hull. In this section we
partially characterize the minimal such set—the set of extreme points. In a sense,
the extreme points of a convex set characterize all the members.

2.6.1 Definition Let C be a convex set. An extreme subset of C is a subset
E of C with the property that if x belongs to E it cannot be written as a proper
convex combination of points of C outside E. That is,

(x ∈ E and x = (1 − λ)y + λz, where 0 < λ < 1 and y, z ∈ C) =⇒ y, z ∈ E.

A point x is an extreme point of C if the singleton {x} is an extreme set.
The set of extreme points of C is denoted E(C).

An extreme point of a polyhedron or polytope1 is called a vertex.
A face of C is an extreme subset F of C that is itself convex.
An extreme ray of a cone is a ray that is an extreme set.

Note that the empty set is an extreme subset of any convex set. Also, x is an
extreme point of C if x belongs to C and x = (1 − λ)y + λz where 0 < λ < 1 and
y, z ∈ C imply y = z = x.

Here are some examples.
1 Later on (Corollaries 26.4.2 and 26.4.4) we shall see that every polytope is a polyhedron,

and every polyhedron is the sum of a polytope and finitely generated cone.
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• The set of extreme points of the empty set is the empty set. The empty set
is a face of every convex set, including itself.

• The extreme points of a closed disk are all the points on its circumference.

• The set E(C) of extreme points of a convex set C is an extreme subset of C.

• The vertexes of a triangle C are its extreme points. The set of vertexes of
C is an extreme subset, but not a face. Each edge of the triangle is a face.

• In Rn, the extreme points of a convex polyhedron are its vertexes. All its
faces and edges are extreme sets.

• The nonnegative axes are the extreme rays of the usual positive cone in Rn.

The following useful property is easy to verify.

2.6.2 Exercise A point x in a convex set C is an extreme point of C if and only
if C \ {x} is a convex set. □

2.6.3 Remark In general, the set of extreme points of a convex set C may be
empty. For example, any open convex set has no extreme points.

2.6.4 Example As an example of a compact convex set for which the set of
extreme points is not closed, consider the subset of R3

A = {(x, y, 0) ∈ R3 : x2 + y2 ⩽ 1} ∪ {(0, −1, 1), (0, −1, −1)}.

The convex hull of A is compact, but the set of extreme points of A is

{(x, y, 0) ∈ R3 : x2 + y2 = 1} ∪ {(0, −1, 1), (0, −1, −1)} \ {(0, −1, 0)},

which is not closed. See Figure 2.6.1. □

A co A Extreme points of co A.

Figure 2.6.1. The set of extreme points of co A is not closed.
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2.6.5 Exercise You should verify the following properties of extreme subsets.

1. If F is an extreme subset of E and E is an extreme subset of C, then F is
an extreme subset of C.

2. The intersection of a collection of extreme subsets of a set C is an extreme
subset of C.

□

Unfortunately, in general, the set of extreme points of a convex set need not�
even be a Borel set; see Bishop and DeLeeuw [4], and Jayne and Rogers [8].

The extreme points of a convex set are of interest primarily because of the
Krein–Milman Theorem and its generalizations. The Krein–Milman Theorem
asserts that a compact convex subset K of a locally convex Hausdorff space is the
closed convex hull of its extreme points. That is, the convex hull of the set of
extreme points is dense in K. This means that if every extreme point of K has
some property P , and if P is preserved by taking limits and convex combinations,
then every point in K also enjoys property P . For instance to show that a compact
convex set K lies in the polar of a set A, it is enough to show that every extreme
point lies in the polar of A. (This will make sense later. I hope.)

2.6.6 Lemma The set of maximizers of a convex function is either an extreme
set or is empty. Likewise, the set of minimizers of a concave function is either an
extreme set or is empty.

Proof : Let f : C → R be a convex function. Suppose f achieves a maximum on
C. Put µ = max{f(x) : x ∈ C} and let M = {x ∈ C : f(x) = µ}. Suppose that
x = (1 − α)z + αy ∈ M , 0 < α < 1, and y, z ∈ C. If y /∈ M , then f(y) < µ, so

µ = f(x) = f
(
(1 − α)y + αz

)
⩽ (1 − α)f(y) + αf(z)

< (1 − α)µ + αµ = µ,

a contradiction. Hence y, z ∈ M , so M is an extreme subset of C.

We shall see in the Krein–Milman Theorem 19.1.4 that the set of extreme
points of a compact convex set determine the set. Proposition 2.6.7 below is a
special case of this. Recall that an extreme point of a polytope is called a vertex.

2.6.7 Proposition Every polytope is the convex hull of the set of its vertexes.

Proof : (Cf. Gale [7, Theorem 2.17, pp. 68–69]) The case of the empty polytope is
trivial, so let F be a nonempty finite set and let K = co F be a polytope. Now
some of the points in F may be redundant, so let

B = {b1, . . . , bn}
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be a minimal (in terms of number of elements) subset of F that generates K.
That is, co B = K and no subset A of F with fewer than n elements satisfies
coA = K. Note that minimality of B and Lemma 2.1.5 imply that

no point in B is a convex combination of the others. (M)

We want to show that the E(K) = B. Let’s start by showing that B ⊂ E(K).
Suppose, say bn ∈ B satisfies

bn = (1 − λ)y + λz,

where 0 < λ < 1 and y, z ∈ K. But then we may write y and z as convex
combinations of B:

y =
n∑

i=1
αibi

z =
n∑

i=1
βibi

so
bn =

n∑
i=1

(
(1 − λ)αi + λβi︸ ︷︷ ︸

=µi

)
bi.

If µn < 1, then bn = ∑n−1
i=1

µi

1−µn
bi, violating (M), so µn = 1. But then αn = βn = 1,

so y = z = bn, proving bn is extreme.
This also proves the E(K) is nonempty.
We now show that E(K) ⊂ B, which is nearly obviously true. So let z be an

extreme point of K. Then z must belong to K = co B, so we can write z as a
convex combination

z =
n∑

i=1
λibi

I claim that at most one λi > 0. For suppose that for more than one i, we
have λi > 0. Say λ1 > 0 and λ2 > 0. Then 1 − λ1 ⩾ λ2 > 0 and

z = λ1b1 + (1 − λ1)
n∑

i=2

λi

1−λ1
bi.

I claim that b1 and ∑n
i=2

λi

1−λ1
bi are distinct points: For if b1 = ∑n

i=2
λi

1−λ1
bi, then

we have expressed b1 as a linear combination of b2, . . . , bn, contradicting (M).
So if z is an extreme point of K, then exactly one coefficient λi is nonzero,

in which case, λi = 1 and z = xi ∈ B. Thus the set of extreme points of K is a
subset of B. (Did I say that was obvious?)
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