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Topic 0: Vector spaces

0.1 Basic notation

Here are some of the fundamental sets and spaces that we shall use throughout
these notes.

• The set of natural numbers, that is, {1, 2, 3, . . .}, is denoted N, the set of
rational numbers is denoted Q, and the set of real numbers is denoted R.

• The set of extended real numbers, that is, R ∪ {∞, −∞}, is denoted R♯.

• The m-dimensional the vector space of ordered lists of m real numbers is
denoted Rm. Similarly, RN denotes the set of all sequences of real numbers.

• The space ℓp of p-summable sequences is defined by

ℓp =
{
(x1, x2, . . .) ∈ RN :

∞∑
k=1

|xk|p < ∞
}
.

• The Euclidean inner product on Rm or ℓ2 is denoted x · y and is given
by

x · y =
m∑

j=1
xjyj

for Rm and ∑∞
j=1 xjyj for ℓ2.

The Euclidean inner product gives rise to the Euclidean norm

∥x∥ =
√

x · x,

which is
(∑m

k=1 x2
k

)1/2
for Rm.

In general, the norm on ℓp (where p ⩾ 1) is given by ∥x∥p =
(∑∞

k=1|xk|p
)1/p

.
The space of bounded sequences,

ℓ∞ =
{
(x1, x2, . . .) ∈ RN : sup

k
xk < ∞

}
,

is given the norm
∥x∥∞ = sup

k
|xk|.
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I adopt the convention of denoting the ith unit coordinate vector by ei,
regardless of the dimension of the underlying space. That is, the ith coordinate of
ei is one and all the others are zero. Similarly, the unit vector, which has all its
components equal to one, is denoted 1, regardless of the dimension of the space.
(This includes infinite-dimensional sequence spaces.)

Throughout these notes I adopt David Gale’s [1] notational convention which
does not distinguish between row and column vectors. This means that if A is an
m×n matrix, and x is a vector, and I write Ax, you infer that x is an n-dimensional
column vector, and if I write yA, you infer that y is an m-dimensional row vector.
Similarly, I could write xy instead of x · y. The notation yAx means that x is an
n-dimensional column vector, y is an m-dimensional row vector, and yAx is the
scalar yA · x = y · Ax.

0.1.1 Rm is an ordered vector space

The usual order relation on the set R of real numbers is denoted ⩾ (x ⩾ y means
that x is greater than or equal to y) or ⩽ (x ⩽ y means that y is greater than
or equal to x). On the vector space Rm, the set of ordered m-tuples of reals, we
have the following partial orders.

x ≧ y ⇐⇒ xi ⩾ yi, i = 1, . . . , m

x > y ⇐⇒ xi ⩾ yi, i = 1, . . . , m, and x ̸= y

x ≫ y ⇐⇒ xi > yi, i = 1, . . . , m.

The notations x ≦ y, etc., are defined in a similar fashion. We say that a vector

• x is nonnegative if x ≧ 0.

• x is semipositive if x > 0.

• x is strictly positive if x ≫ 0.

Finally,

• Rm
+ = {x ∈ Rm : x ≧ 0} is the nonnegative orthant of Rm, and

• Rm
++ = {x ∈ Rm : x ≫ 0} is the strictly positive orthant of Rm.

I shall try to avoid using the adjective “positive” by itself, since to most math-
ematicians it means “nonnegative,” but to many non-mathematicians it means
“strictly positive.”

Let me call your attention to the following fact about nonnegative vectors.
While the result is simple, and almost self-evident, it is used over and over again,
so it is worth giving it a name.
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0.1.1 The Nonnegativity Test For p ∈ Rm, the following statements are
equivalent:

1. p ≧ 0.

2. ( ∀x ≧ 0 ) [ p · x ⩾ 0 ].

3. ( ∃α ∈ R ) ( ∀x ≧ 0 ) [ p · x ⩾ α ].

Similarly, these statements are equivalent:

1′. p ≦ 0.

2′. ( ∀x ≧ 0 ) [ p · x ⩽ 0 ].

3′. ( ∃α ∈ R ) ( ∀x ≧ 0 ) [ p · x ⩽ α ].

Proof : Clearly (1) =⇒ (2) =⇒ (3). To see that (3) =⇒ (1), consider x of the
form x = λei where λ > 0. Then p · x = λpi, so by (3) we have that λpi ⩾ α for
every λ > 0. Dividing by λ > 0 gives pi ⩾ α/λ. Letting λ → ∞ yields pi ⩾ 0.
The equivalence of the primed statements is proven similarly.

0.2 Some geometry of vector spaces

0.2.1 Sum of sets

We can think of vectors as being added “tip-to-tail.” (See Figure 0.2.1.) This lets
us visualize the sum of two sets of vectors.

0.2.1 Definition Let A and B be sets in a vector space X. The sum of A and B
is

A + B = {x + y ∈ X : x ∈ A, y ∈ B}.

(See Figure 0.2.2.) This is sometimes called the Minkowski sum of A and B.

Note that for any set A,
A + ∅ = ∅.

We also write the sum
A + y = {x + y : x ∈ A},

so that
A + B =

⋃
y∈B

A + y.

Note that A + y = A + (y − x) for any x ∈ A.
Also, set addition is commutative and associative:

A + B = B + A, (A + B) + C = A + (B + C).
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0
y

x
x + y

Figure 0.2.1. The sum
of two vectors.

A

B

A + B

Figure 0.2.2. Sum of two sets.

0.2.2 Example Let

EF

Figure 0.2.3.

E = {(x, y) ∈ R2 : y ⩾ 1/x and x > 0}

and

F = {(x, y) ∈ R2 : y ⩾ −1/x and x < 0}.

See Figure 0.2.3. Note that while E and F are
closed, their sum

E + F = {(x, y) ∈ R2 : y > 0}

is not closed. Topic 20 discusses conditions under which the sum of closed sets is
closed.

□

0.2.3 Exercise For the following pairs of sets, sketch the sets and their sums.

1. A = {x ∈ R2 : ∥x∥ ⩽ 1}, B = {x ∈ R2 : ∥x∥ ⩽ 2}

2. A = {(ξ, 1 − ξ) : 0 ⩽ ξ ⩽ 1}, B = {x ∈ R2 : ∥x∥ ⩽ 1/2}.

3. A = {(ξ, 1 − ξ) : 0 ⩽ ξ ⩽ 1}, B = {(ξ, η) : 1/3 ⩽ η/ξ ⩽ 2/3, ξ ⩾ 0}.

4. A = {(ξ, η) : ξ ⩾ 0, η = ξ/3}, B = {(ξ, η) : ξ ⩾ 0, η = 2ξ/3}.

□

0.2.2 Scalar Multiples of sets
Elaborate

αA = {αx : x ∈ A}.
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Warning: In general,
A + · · · + A︸ ︷︷ ︸

n terms

̸= nA

For instance, let A = {0, 1} ⊂ R. Then A + · · · + A︸ ︷︷ ︸
n terms

= {0, 1, . . . , n} and

nA = {0, n}.

0.2.3 Geometry of the dot product

To see that
x · y = ∥x∥ ∥y∥ cos θ,

where θ is the angle between x and y, orthogonally project y on the space spanned
by x. That is, write y = αx + z where z · x = 0. Thus

z · x = (y − αx) · x = y · x − αx · x = 0 =⇒ α = x · y/x · x.

Referring to Figure 0.2.4 we see that

cos θ = α∥x∥/∥y∥ = x · y/∥x∥ ∥y∥.

0 xαx

z

y

θ

Figure 0.2.4. Dot product and angles

For a nonzero p ∈ Rm,

{x ∈ Rm : p · x = 0}

is a linear subspace of dimension m − 1. It is the subspace of all vectors x making
a right angle with p.

A set of the form

{x ∈ Rm : p · x = c}, p ̸= 0

is called a hyperplane. To visualize the hyperplane H = {x : p ·x = c} start with
the vector αp ∈ H, where α = c/p · p. Draw a line perpendicular to p at the point
αp. For any x on this line, consider the right triangle with vertices 0, (αp), x. The
angle x makes with p has cosine equal to ∥αp∥/∥x∥, so p · x = ∥p∥∥x∥∥αp∥/∥x∥ =
αp · p = c. That is, the line lies in the hyperplane H. See Figure 0.2.5.
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p

αp

x

p · x = c

Figure 0.2.5. A hyperplane.

0.2.4 Lines, segments, and rays

In this section, and indeed throughout these notes the expression (1 − λ)x + λy or
something like it occurs so frequently that it is a good idea to have a short-hand
name for it.

0.2.4 Definition Given a vector space X, the affine combination function
κ : X × X × R → X is defined by

κ(x, y, λ) = (1 − λ)x + λy = x + λ(y − x).

When X is a topological vector space (tvs) (see Definition A.11.1 in the appendix),
then κ is continuous.

4
3x − 1

3y = x + 1
3(x − y)

x

1
2x + 1

2y
2
3x + 1

3y

1
3x + 2

3y y
− 1

3x + 4
3y = y + 1

3(y − x)

Figure 0.2.6. Points on the line through x and y.

0.2.5 Definition Given two points x and y in a vector space, the line segment
joining them, denoted [x, y] is given by

[x, y] = {(1 − λ)x + λy : 0 ⩽ λ ⩽ 1} = {x + λ(y − x) : 0 ⩽ λ ⩽ 1}.

v. 2019.12.23::02.49 src: VectorSpaces KC Border: for Ec 181, 2019–2020



Ec 181 AY 2019–2020
KC Border Vector spaces 0–7

We also write

[x, y) = {x + λ(y − x) : 0 ⩽ λ < 1} = [x, y] \ {y},

(x, y] = {x + λ(y − x) : 0 < λ ⩽ 1} = [x, y] \ {x}, and
(x, y) = {x + λ(y − x) : 0 < λ < 1} = [x, y] \ {x, y}.

If x ̸= y, they determine a unique line, namely

{(1 − λ)x + λy : λ ∈ R} = {x + λ(y − x) : λ ∈ R}.

Any nonzero point x determines a ray, denoted ⟨x⟩, by

⟨x⟩ = {λx : λ ⩾ 0}.

A half-line is the sum of a point and a ray, that is, a set of the form

{x + λy : λ ⩾ 0} = x + ⟨y⟩,

where y ̸= 0.

0.3 Linear functions

Recall that a function f between vector spaces is linear if

f(αx + βy) = αf(x) + βf(y).

Linear functions between vector spaces are often referred to as linear transfor-
mations. We treat R as a one-dimensional vector space over R. Linear functions
from a vector space to R are often called linear functionals, especially if the
vector space is infinite dimensional. The set of linear functions from X to Y , de-
noted L(X, Y ) is itself a vector space under the pointwise operations. The space
L(X, R) is called the dual space of X, and is often denoted X∗.

A function f : Rn → Rm is linear if and only if there is some m × n matrix M
such that f(x) = Mx. As such it must be continuous. In particular, f : Rm → R
is linear if and only if there exists some vector p ∈ Rm such that f(x) = p · x.
(Let p be the vector whose ith coordinate is f(ei).) Every linear function on Rm

is continuous. In other words, the dual space Rm∗ of Rm can be identified with
Rm. This is a very special property of Rm and a few infinite-dimensional vector
spaces.

Most remarkable is that for infinite dimensional vector spaces there will be
discontinuous linear functionals. This is most easily seen for normed spaces.

0.3.1 Lemma Let X be a normed vector space, and let U = {x ∈ X : ∥x∥ ⩽ 1}
be its unit ball. If f : C → R is linear, then f is continuous if and only if f is
bounded on U .
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Proof : Since xn → x if and only if ∥xn − x∥ → 0, it suffices consider continuity
at 0. So assume f is continuous at 0. Then (taking ε = 1) there is a δ > 0 such
that if ∥x∥ ⩽ δ, then |f(x)| < 1. So if ∥x∥ ⩽ 1, then ∥δx∥ ⩽ δ, so |f(δx)| < 1,
which implies |f(x)| < 1/δ. That is, |f(x)| is bounded by 1/δ on U . The converse
is similar.

0.3.2 Proposition Every infinite dimensional normed space has a discontinuous
linear functional.

Proof : If X is an infinite dimensional normed space, then it has an infinite
Hamel basis B. We may normalize each basis vector to have norm one. Let
C = {x1, x2, . . . } be a countable subset of the basis B. Define the function ℓ on
the basis B by ℓ(xn) = n for xn ∈ C, and ℓ(v) = 0 for v ∈ B \ C. Every y ∈ X
has a unique representation as

y =
∑
v∈B

ηvv,

where only finitely many ηv are nonzero. Extend ℓ from B to X by

ℓ(y) =
∑
v∈B

ηvℓ(v).

Then ℓ is a linear functional, but it is not bounded on the unit ball (as ℓ(xn) = n).
So by Lemma 0.3.1 it is not continuous.

0.4 Aside: The Summation Principle

The following lemma is trivial, but sufficiently useful that I have decided to give
it a name.

0.4.1 Summation Principle Let A1, . . . , An be nonempty subsets of a vector
space X, and let xi ∈ Ai for i = 1, . . . , n. Let

x = x1 + · · · + xn.

If p : X → R is a linear function, then

x maximizes p over A1 + · · · + An

if and only if
for each i, xi maximizes p over Ai

The proof is a simple application of the definitions, and the fact that summa-
tion preserves inequalities. Note that we can replace maximization by minimiza-
tion in the statement.

0.4.2 Exercise Write out a proof of the Summation Principle. □
Geometrically, maximizing p over a set Y amount to finding the “highest”

hyperplane orthogonal to p that touches Y . See Figure 0.4.1.Draw a better
picture.
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Y
p

y∗

Figure 0.4.1. Maximizing p over Y .
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