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A.1 Extended real numbers

The extended real number system R♯ consists of the real numbers plus two
additional entities ∞ (sometimes known as +∞) and −∞. The ordering of the
real numbers is extended so that for any real number α,

−∞ < α < ∞.

Furthermore we extend the definitions of addition and multiplication as follows.
For any real number α,

α + ∞ = ∞ and α − ∞ = −∞;

∞ · α = ∞, if α > 0 and ∞ · α = −∞, if α < 0;

−∞ · α = −∞, if α > 0 and − ∞ · α = ∞, if α < 0;

∞ · 0 = 0 = −∞ · 0.

The expressions ∞ − ∞ or −∞ + ∞ are undefined, much as division by zero is
undefined.

The set R♯ of extended reals is equipped with a topology (see Section A.7
below) that makes it a compact set, sometimes referred to as the two-point
compactification of the reals R. The collection of intervals of the form (n, ∞],
for n = 1, 2, . . . constitutes a neighborhood base for ∞. That is, ∞ belongs to
the interior of a set A if and only if A includes some interval (n, ∞]. Thus

xn → ∞ if ( ∀α ∈ R ) ( ∃N ∈ N ) ( ∀n ⩾ N ) [ xn > α ].

Likewise, neighborhoods of −∞ include an interval of the form [−∞, −n), n =
1, 2, . . . . This topology is metrizable, see [1, Example 2.75, p. 57].

A.2 Infimum and supremum

A set A of real numbers is bounded above if there exists some real number α,
satisfying α ⩾ x for all x ∈ A. In this case we say that α is an upper bound for
A. If a set has one upper bound it has infinitely many. Indeed, the set of upper
bounds is an interval.

Similar definitions apply for lower bounds.
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A number is the greatest element of A if it belongs to A and is an upper
bound for A. A lower bound for A that belongs to A is the least element of A.
Note that greatest and least elements are unique, for if x and y are both upper
bounds that belong to A, then x ⩾ y and y ⩾ x, so x = y.

The infimum of a set A of real numbers, denoted inf A, is the greatest lower
bound of A in the set of extended real numbers. That is,

( ∀α ∈ A ) [ inf A ⩽ α ],

and for any other extended real β,[
( ∀α ∈ A ) [ β ⩽ α ]

]
=⇒ β ⩽ inf A.

The supremum of A is the least upper bound of A in the extended real numbers.
Note that the definitions (vacuously) imply the following.

inf ∅ = ∞ and sup∅ = −∞.

The empty set is the only set for which the infimum exceeds the supremum.
N.B. When referring to an upper or lower bound for a set of real numbers,

we restrict ourselves to the real numbers. When we discuss suprema and infima
we allow the use of extended real numbers.

The real numbers are constructed to satisfy the following:

A.2.1 Fact (The real numbers are complete.) If a nonempty set of real
numbers is bounded above, then it has a supremum (that must necessarily be a
real number and not ∞). If a nonempty set of real numbers is bounded below,
then it has an infimum (that is a real number and not −∞).

A.3 Sets associated with functions

The graph of a function f : X → R♯ is just
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gr f = {(x, α) ∈ X × R : α = f(x)}.

The epigraph is

epi f = {(x, α) ∈ X × R : α ⩾ f(x)},

and the hypograph1 is

hypo f = {(x, α) ∈ X × R : α ⩽ f(x)}.

1 Some authors use the term subgraph instead of hypograph, but epi- and hypo- are Greek
prefixes, while super- and sub- come from Latin. I will stick with Greek here, since no one says
“supergraph.”
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N.B. The epigraph and hypograph of an extended
real-valued function are subsets of X×R, not X×R♯.
As a result, the epigraph of the constant function that
is identically ∞ is the empty set.

Given a real function f : X → R (or R♯), we may use the statisticians’ con-
vention where

{f = α} means {x ∈ X : f(x) = α},

{f > α} means {x ∈ X : f(x) > α},

etc.

In particular, in an inner product space, since a vector p also defines a function
p : x 7→ p · x, we may write

{p = α} for {x ∈ X : p · x = α},

etc.
A set of the form {f = α} is a level set of f , {f ⩾ α} is a superlevel set or

an upper contour set, and {f > α} is a strict upper contour set of f . A set
of the form {f ⩽ α} is a sublevel set or an lower contour set, and {f > α} is
a strict lower contour set of f .

A.4 Metric spaces

︸ ︷︷ ︸
d(x, y)

︸︷︷︸ d(x, z)
︸︷

︷︸ d(z, y)

x y

z

Figure A.4.1. Triangle in-
equality.

A.4.1 Definition A metric on a nonempty set X is a function d : X × X → R
satisfying the following four properties that are designed to capture our intuitive
notion of distance.

M.1: d(x, y) ⩾ 0 and d(x, x) = 0.

M.2: d(x, y) = 0 =⇒ x = y.

M.3: d(x, y) = d(y, x).

M.4: d(x, y) ≤ d(x, z) + d(z, y).

The pair (X, d) is called a metric space.

A.5 Complete metric spaces

The diameter of a set A in a metric space, denoted diam A, is defined to be

diam A = sup{d(x, y) : x, y ∈ Z}.
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A sequence x1, x2, . . . in the metric space (X, d) is a Cauchy sequence if

lim
n→∞

diam{xn, xn+1, . . . } = 0.

A metric space (X, d) is complete if every Cauchy sequence converges to a point
in X. It is easy to see that any closed subset of a complete metric space is itself
complete.

A.5.1 Fact Each Euclidean space Rm is a complete metric space under the Eu-
clidean metric.

This is because the real numbers were constructed to be complete. But I don’t
want to talk about that here.

The next result is a profoundly useful fact about complete metric spaces. Let
us say that a sequence {An} of sets has vanishing diameter if

lim
n→∞

diam An = 0.

A.5.2 Cantor Intersection Theorem In a complete metric space, if a de-
creasing sequence of nonempty closed subsets has vanishing diameter, then the
intersection of the sequence is a singleton.

Proof : Let {Fn} be a decreasing sequence (that is, F1 ⊃ F2 ⊃ · · · ) of nonempty
closed subsets of the complete metric space (X, d), and assume limn→∞ diam Fn =
0. Then the intersection F = ⋂∞

n=1 Fn cannot have more that one point, for if
a, b ∈ F , then d(a, b) ⩽ diam Fn for each n, so d(a, b) = 0, which implies a = b.

To see that F is nonempty, for each n pick some xn ∈ Fn. So for any n, we
have

{xn, xn+1, . . . } ⊂ Fn, so diam{xn, xn+1, . . . } → 0.

That is, the sequence (xn) is Cauchy. Since X is complete there is some x ∈ X
with xn → x. But xn belongs to Fm for n ⩾ m, and each Fm is closed, so
x = limn→∞ xn belongs to Fm for each m.

A.6 Distance functions

For a nonempty set A in a metric space (X, d), the distance function d(·, A) on
X is defined by

d(x, A) = inf
{
d(x, y) : y ∈ A

}
.

Observe that
A = {x ∈ X : d(x, A) = 0}.

A function f from a metric space (X, d) to another metric space (Z, ρ) is Lip-
schitz continuous (or satisfies a Lipschitz condition) if there is a Lipschitz
constant M such that for all x, y ∈ X,

ρ
(
f(x), f(y)

)
⩽ Md(x, y).
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A function is locally Lipschitz continuous (or locally Lipschitzian if for each
x ∈ X, there is a neighborhood of x on which f is Lipschitz continuous.

A.6.1 Theorem Distance functions are Lipschitz continuous. In particular,

|d(x, A) − d(y, A)| ⩽ d(x, y).

Proof : If x, y ∈ X and z ∈ A, then d(x, A) ⩽ d(x, z) ⩽ d(x, y) + d(y, z). This
implies d(x, A) ⩽ d(x, y) + d(y, A), or d(x, A) − d(y, A) ⩽ d(x, y). By symmetry,
we have d(y, A) − d(x, A) ⩽ d(x, y), so |d(x, A) − d(y, A)| ⩽ d(x, y).

A.7 Topological spaces

You should know that the collection of open subsets of Rm is closed under finite
intersections and arbitrary unions. Use that as the motivation for the following
definition.

A.7.1 Open sets

A.7.1 Definition A topology τ on a nonempty set X is a family of subsets of
X, called open sets satisfying

1. ∅ ∈ τ and X ∈ τ .

2. The family τ is closed under finite intersections. That is, if U1, . . . , Um

belong to τ , then ⋂m
i=1 Ui belongs to τ .

3. The family τ is closed under arbitrary unions. That is, if Uα, α ∈ A, belong
to τ , then ⋃α∈A Uα belongs to τ .

The pair (X, τ) is a topological space.
The topology τ has the Hausdorff property or is a Hausdorff topology

if for every two distinct points x, y in X there are disjoint open sets U , V with
x ∈ U and y ∈ V .

The set A is a neighborhood of x if there is an open set U satisfying x ∈
U ⊂ A. We also say that x is an interior point of A.

The interior of A, denoted int A, is the set of interior points of A.
A set is closed if its complement is open.

A.7.2 Fact It can be shown that the interior of any set A is open (possibly
empty), and is indeed the largest open set included in A.

A.7.3 Lemma A set is open if and only it is a neighborhood of each of it points.

The collection of open sets in Rm is a Hausdorff topology. A property of a
topological space X that can be expressed in terms of its topology is called a
topological property.
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A.7.2 Closed sets

A set F in a topological space is closed if its complement is open. The empty set
and the space X are thus closed. Also finite unions and arbitrary intersections of
closed sets are closed. Every set A is included in a smallest closed set, called the
closure of A, denoted A.

A.7.4 Fact (Properties of closures) For any sets A and B:

• A ⊂ A.

• A is closed if and only if A = A.

• A = A.

• A ⊂ B implies A ⊂ B.

• (A ∪ B) = A ∪ B.

A.7.3 Continuous functions

A.7.5 Definition Let X and Y be topological spaces and let f : X → Y . Then
f is continuous if the inverse image of open sets are open. That is, if U is an
open subset of Y , then f−1(U) is an open subset of X.

The function f is continuous at x if the inverse image of every neighborhood
of f(x) is a neighborhood of x.

This corresponds to the usual ε-δ definition of continuity that you are familiar
with. Clearly a function is continuous if and only it is continuous at each point.
The following lemma is immediate from the definitions.

A.7.6 Lemma A function f : X → Y is continuous if and only if the inverse
image of every closed set is closed.

A.7.7 Lemma If f : X → Y is continuous, then for every A ⊂ X, we have
f(A) ⊂ f(A).

Proof : Since f is continuous and f(A) is closed, f−1
(
f(A)

)
is a closed set that

clearly includes A, and so includes its closure A. That is, A ⊂ f−1
(
f(A)

)
, so

f(A) ⊂ f

(
f−1

(
f(A)

))
= f(A).
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Base for a topology

A.7.8 Definition A family G of open sets is a base (or basis) for the topology
τ if every open set in τ is a union of sets from G. A neighborhood base at x
is a collection N of neighborhoods of x such that for every neighborhood G of x
there is a neighborhood U of x belong to N satisfying x ∈ U ⊂ G.

In a metric space, the collection of open balls {Bε(x) : ε > 0, x ∈ X} is base
for the metric topology, and {B1/n(x) : n > 0} is a neighborhood base at x.

Given a nonempty family A of subsets of X there is a smallest topology τA
on X that includes A, called the topology generated by A. It consists of
arbitrary unions of finite intersections of members of A. If A is closed under finite
intersections, then A is a base for the topology τA.

Product topology

A.7.9 Definition If X and Y are topological spaces, the collection sets of the
form U × V , where U is an open set in X and V is an open set in Y , is closed
under finite intersections, so it is a base for the topology it generates on X × Y ,
called the product topology.

A.7.10 Fact For the product topology, A × B = A × B.

Homeomorphism

A.7.11 Definition Let X and Y be topological spaces. A function f : X → Y is
a homeomorphism if it is a bijection (one-to-one and onto), is continuous, and
its inverse is continuous.

If f is homeomorphism U ↔ f(U) is a one-to-one correspondence between the
topologies of X and Y . Thus X and Y have the same topological properties. They
can in effect be viewed as the same topological space, where f simply renames the
points.

Let K be a subset of a topological space. A family A of sets is a cover of K if

K ⊂
⋃

A∈A
A.

If each set in the cover A is open, then A is an open cover of K. A family B of
sets is a subcover of A if B ⊂ A and K ⊂ ∪A∈BA.

For example, let K be a subset of R, and for each x ∈ K, let εx > 0. Then
the family A = {(x − εx, x + εx) : x ∈ K} of open intervals is a open cover of K.

A.7.12 Definition A set K in a topological space X is compact if for every
family G of open sets satisfying K ⊂ ∪G (an open cover of K), there is a finite
subfamily {G1, . . . , Gk} ⊂ G with K ⊂ ⋃k

i=1 Gi (a finite subcover of K).
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A.7.13 Lemma A closed subset of a compact set is compact.

Proof : Let K be compact and F ⊂ K be closed. Let G be an open cover of F .
Then G ∪ {F c} is an open cover of K. Let {G1, . . . , Gk, F c} be a finite subcover
of K. Then {G1, . . . , Gk} is a finite subcover of F .

A.7.14 Lemma A compact subset of a Hausdorff space is closed.

Proof : Let K be compact, and let x /∈ K. Then by the Hausdorff property, for
each y ∈ K there are disjoint open sets Uy and Vy with y ∈ Uy and x ∈ Vy. By
compactness there are y1, . . . , yk with K ⊂ ⋃k

i=1 Uyi
= U . Then V = ⋂k

i=1 Vyi
is an

open set satisfying x ∈ V ⊂ U c ⊂ Kc. That is, Kc is a neighborhood of x. Since
x is an arbitrary member of Kc, we see that Kc is open (Lemma A.7.3), so K is
closed.

A.7.15 Lemma Let f : X → Y be continuous. If K is a compact subset of X,
then f(K) is a compact subset of Y .

Proof : Let G be an open cover of f(K). Then {f−1(G) : G ∈ G} is an open cover
of K. Let {f−1(G1), . . . , f−1(Gk)} be a finite subcover of K. Then {G1, . . . , Gk}
is a finite subcover of f(K).

Relative topology

A.7.16 Definition (Relative topology) If (X, τ) is a topological space and
A ⊂ X, then (A, τA) is a topological space with its relative topology, where
τA = {G ∩ A : G ∈ τ}.

Not that if τ is a Hausdorff topology, then τA is also a Hausdorff topology.

A.7.17 Lemma If (X, τ) is a topological space and K ⊂ A ⊂ X, then K is a
compact subset of (A, τA) if and only if it is a compact subset of (X, τ).

Proof : Assume K is a compact subset of (X, τ). Let G be a τA-open cover of K
in A. For each G ∈ G there is some UG ∈ τ with G = UG ∩ A. Then {UG : G ∈ G}
is a τ -open cover of K in X, so it has a finite subcover UG1 , . . . , UGk

. But then
G1, . . . , Gk is a finite subcover of K in A.

The converse is similar.

A.7.18 Lemma Let f : X → Y be one-to-one and continuous, where Y is a
Hausdorff space and X is compact. The f : X → f(X) is a homeomorphism,
where f(X) has its relative topology as a subset of Y .
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Proof : We need to show that the function f−1 : f(X) → X is continuous. So let
G be any open subset of X. We must show that (f−1)−1(G) = f(G) is open in
f(X). Now Gc is a closed subset of X, and thus compact. Therefore f(Gc) is
compact, and since Y is Hausdorff, so is f(X), so f(Gc) is a closed subset of Y .
Now f(X) ∩ f(Gc)c = f(G), so f(G) is open in f(X).

There is an equivalent characterization of compact sets that is perhaps more
useful. A family A of sets has the finite intersection property if every finite
subset {A1, . . . , An} of A has a nonempty intersection, ⋂n

i=1 Ai 6= ∅.

A.7.19 Theorem A set K is compact if and only if every family of closed subsets
of K having the finite intersection property has a nonempty intersection.

Proof : Start with this observation: Let A be an arbitrary family of subsets of K,
and define A = {K \ A : A ∈ A}. By de Morgan’s Laws ⋂A∈A A = ∅ if and only
if K = ⋃

B∈A B. That is, A has an empty intersection if and only if A covers K.
( =⇒ ) Assume K is compact and let F be a family of closed subsets of K.

Then F is a family of relatively open sets of K. If F has the finite intersection
property, by the above observation, no finite subset of F can cover K. Since K is
compact, this implies that F itself cannot cover K. But then by the observation
F has nonempty intersection.

( ⇐= ) Assume that every family of closed subsets of K having the finite
intersection property has a nonempty intersection, and let G be an open cover of
K. Then G is a family of closed having an empty intersection. Thus G cannot
have the fintiie intersection property, so there is a finite subfamily G0 of G with
empty intersection. But then G0 is a finite subfamily of G that covers K. Thus K
is compact.

A.7.20 Corollary Let Kn be a decreasing sequence of nonempty compact sets.
That is, K1 ⊃ K2 ⊃ · · · . Then

∞
∩

n=1
Kn 6= ∅.

Proof : Cleary the sequence has the finite intersection property.

A.8 Semicontinuity
Combine this with
Section 13.4 and
move to a
self-contained
location.

A real function f : X → R is upper semicontinuous if for each α ∈ R, the
superlevel set {f ⩾ α} is closed. It is lower semicontinuous if every sublevel
set {f ⩽ α} is closed.

The epigraph of a real-valued function f is defined by

epi f = {(x, α) ∈ X × R : f(x) ⩽ α}

and its hypograph is defined by

hypo f = {(x, α) ∈ X × R : f(x) ⩾ α}
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Note that
(x, α) ∈ epi f ⇐⇒ x ∈ {f ⩽ α} .

Likewise (x, α) ∈ hypo f ⇐⇒ x ∈ {f ⩾ α}.

A.8.1 Proposition The real-valued function f : X → R is lower semicontinu-
ous if and only its epigraph is a closed subset of X × R. Similarly, f is upper
semicontinuous if and only if its hypograph is a closed subset of X × R.

Proof : Assume epi f is closed and let xn be a sequence in the sublevel set {f ⩽ α}
with xn → x. Then (xn, α) is a sequence in epi f converging to (x, α). Since epi f
is closed, (x, α) belongs to epi f , so x ∈ {f ⩽ α}. Thus {f ⩽ α} is closed.

Conversely, assume that each sublevel set is closed, and let (xn, αn) be a
sequence in epi f converging to (x, α). Let ε > 0. Then for large enough n,
αn < α + ε, so for large n, (xn, αn) ∈ {f ⩽ α + ε}, which is closed. Thus (x, α) ∈
[f ⩽ α + ε]. Since this must be true for every ε > 0, we have (x, α) ∈ {f ⩽ α},
so (x, α) ∈ epi f . Thus epi f is closed.

Note that f is upper semicontinuous if and only if −f is lower semicontinuous.
We can also talk about semicontinuity at a point. The real-valued function f

is upper semicontinuous at the point x if

( ∀ε > 0 ) ( ∃δ > 0 ) [ d(y, x) < δ =⇒ f(y) < f(x) + ε ].

Similarly, f is lower semicontinuous at the point x if

( ∀ε > 0 ) ( ∃δ > 0 ) [ d(y, x) < δ =⇒ f(y) > f(x) − ε ].

Equivalently, f is upper semicontinuous at x if

f(x) ⩾ lim sup
y→x

f(y) = inf
ε>0

sup
0<d(y,x)<ε

f(y).

Similarly, f is lower semicontinuous at x if

f(x) ⩽ lim inf
y→x

f(y) = sup
ε>0

inf
0<d(y,x)<ε

f(y).

A.8.2 Proposition A real valued function is continuous at x if and only if is
both upper and lower semicontinuous at x.

A.8.3 Proposition A function is lower semicontinuous if and only if it is lower
semicontinuous at every point. Likewise, a function is upper semicontinuous if
and only if it is upper semicontinuous at every point.
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A.8.4 Proposition Let {fi : i ∈ I} be a family of lower semicontinuous func-
tions. Then g defined by pointwise by

g(x) = sup
i

fi(x)

is lower semicontinuous.
Similarly, if {fi : i ∈ I} is a family of upper semicontinuous functions, then g

defined by pointwise by h(x) = infi fi(x) is upper semicontinuous.

Proof : For the lower semicontinuous case this follows from the fact that epi g =⋂
i

epi fi. For the upper semicontinuous case use hypo h =
⋂
i

hypo fi.

A.9 Weierstrass’s Theorem

A.9.1 Weierstrass’ Theorem Let K be a compact set, and let f : K → R be
continuous. Then f achieves both a maximum and a minimum in K.

Proof : I will prove that f achieves a maximum, the proof for a minimum is similar.
For each α ∈ R, let

Fα = {x ∈ K : f(x) ⩾ α}.

Since f is continuous, each set Fα is a closed subset of K, and if α ∈ range f , then
Fα is nonempty. Observe that the family

F = {Fα : α ∈ range f} has the finite intersection property.

For if α∗ = maxi=1,...,m αi, 2 then
n
∩

i=1
Fαi

= Fα∗ . Thus by Theorem A.7.19 F has
a nonempty intersection. Now if x ∈ ∩F = ∩

α∈range f
Fα, then f(x) ⩾ α for every

α ∈ range f . In other words, x maximizes f over K.

Note that we only used continuity to show that the sets Fα are closed. This
requires only upper semicontinuity of f . Also, the set K itself need not be
compact, as long as there exists some α such that Fα is compact.

A.10 Compactness in metric spaces

A nonempty subset of a metric space is totally bounded if for every ε > 0, it
can be covered by finitely many ε-balls. Total boundedness is not a topological
property—it depends on the particular metric. However compactness, which is a
topological property, is characterized by the conjunction of two metric-dependent
properties.

2 Prove that such an α∗ exists. That is, prove that any finite set of real numbers has a greatest
element.
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A.10.1 Theorem A metric space is compact if and only if it is complete and
totally bounded.

A proof may be found, for instance, in [1, Theorem 3.28, p. 86].
It is easy to see that any bounded subset of real numbers (with the usual

metric) is totally bounded. Consequently, every bounded subset of Rm (with the
Euclidean metric) is totally bounded. Thus we have as a corollary, the following
well-known result, see, e.g., Rudin [5, Theorem 2.41, p. 40].

A.10.2 Heine–Borel–Lebesgue Theorem A subset of Rm is compact if and
only if it is both closed and bounded in the Euclidean metric.

This result is special. In general, a subset of a metric space may be closed and
bounded without being compact. (Consider the coordinate vectors in ℓ∞.)

A.11 Topological vector spaces

A.11.1 Definition A (real) topological vector space (abbreviated tvs) is a
vector space X together with a topology τ where τ has the property that scalar
multiplication and vector addition are continuous functions. That is, the mappings

(x, α) 7→ αx

from X × R to X and
(x, y) 7→ x + y

from X × X to X are continuous. (Where, of course, R has its usual topology,
and R × X and X × X have their product topologies.)

For a detailed discussion of topological vector spaces, see chapter five of the
Hitchhiker’s Guide [1]. But here are some of the results we will need.

A.11.2 Definition A set A in the vector space X is circled if for each x ∈ A
the line segment joining the points x and −x lies in A.

Let X be a topological vector space. The for each α 6= 0 the mapping x 7→ αx
is continuous, and so is its inverse x 7→ (1/α)x. This means that each is a
homeomorphism, so that if W is an open set, then so is αW .

Let f : X ×R → X be scalar multiplication, f(x, α) = αx, so that f(0, 0) = 0.
The continuity of f guarantees that if V is a neighborhood of zero in X, then
f−1[V ] is a neighborhood of (0, 0) in X × R. Thus there is an open neighborhood
W of zero in X and an open neighborhood (−δ, δ) of zero in R such that x ∈ W
and |α| ⩽ δ imply αx ∈ V . Now setting U = ⋃

0<|α|⩽δ αW , we see that U is open
and contains 0 (since each αW is open and contains 0), U ⊂ V , and U is circled.
Therefore we have proven the following.
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A.11.3 Lemma In any tvs, every neighborhood of zero includes an open circled
neighborhood of zero.

(In Rm, a ball of radius ε centered at zero is a circled neighborhood of zero.)
For each vector y the maps x 7→ x + y and x 7→ x − y are continuous and

mutual inverses, and so homeomorphisms. Thus a set G is open if and only its
translation y + G is open. Therefore the topology on X is completely determined
by its neighborhoods of zero and a linear mapping between topological vector spaces
is continuous if and only if it is continuous at zero.

A.12 Continuity of the coordinate map

A.12.1 Lemma Let X be a Hausdorff tvs, and let {x1, . . . , xn} be a linearly
independent subset of X. Let αm be a sequence in Rn. Then

n∑
i=1

αmi xi −−−→
m→∞

n∑
i=1

αixi =⇒ αmi −−−→
m→∞

αi, i = 1, . . . , n.

When X is already some Rm, there is a simple proof of the lemma.

Proof of Lemma for Rm: Let X be the m × n matrix whose jth column is xj. By
the theory of ordinary least squares estimation if x = Xα = ∑n

j=1 αjxj is a linear
combination of {x1, . . . , xn}, then the coordinate mapping T (x) is given by

T (x) = (X ′X)−1X ′x,

which is clearly continuous.

The lemma is rather delicate—it can fail if either X is not Hausdorff or
{x1, . . . , xn} is dependent.

A.12.2 Example Let X = R2 under the semi-metric d
(
(x, y), (x′, y′)

)
= |x−x′|.

(This topology is not Hausdorff.) Then X is a topological vector space. Let
x1 = (1, 0) and x2 = (0, 1) be the unit coordinate vectors. Then 1

m
x1 + 0x2 =

(1/m, 0) → (0, 1) = 0x1 + 1x2, (since d
(
(1/m, 0), (0, 1)

)
= 1/m, but the second

coordinates do not converge (0 6→ 1). □

A.12.3 Example Let X = R2 with the Euclidean topology and let x1 = (1, 0)
and x2 = (−1, 0). Then nx1 + nx2 = (0, 0) → (0, 0) = 0x1 + 0x2, but n 6→ 0. □

A.13 Rm is a Hilbert space

A.13.1 Inner product

A.13.1 Definition A real linear space V has an inner product if for each pair
of vectors x and y there is a real number, traditionally denoted (x, y), satisfying
the following properties.
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IP.1 (x, y) = (y, x).

IP.2 (x, y + z) = (x, y) + (x, z).

IP.3 α(x, y) = (αx, y) = (x, αy).

IP.4 (x, x) > 0 if x 6= 0.

It is unfortunate that the traditional inner product notation is the same as that for
an open line segment. That is one reason I often use the dot product notation

x · y.

A vector space V equipped with an inner product is called an inner product
space.

For a complex vector space, the inner product is complex-valued, and prop-
erty (1) is replaced by (x, y) = (y, x), where the bar denotes complex conjugation,
and (3) is replaced by α(x, y) = (αx, y) = (x, αy).

Vectors x and y are said to be orthogonal if (x, y) = 0.

The next result may be found, for instance, in [3, Theorem 1.8, p. 16].

A.13.2 Cauchy–Schwartz Inequality For any real inner product,

(x, y)2 ⩽ (x, x)(y, y) (1)

with equality if and only if x and y are dependent.

Proof : If either x or y is zero, then we have equality, so assume x, y are both
nonzero. Define the quadratic polynomial Q : R → R by

Q(λ) = (λx + y, λx + y) = (x, x)λ2 + 2(x, y)λ + (y, y).

By Property IP.4, Q(λ) ⩾ 0 for each λ ∈ R. Therefore the discriminant of Q is
nonpositive,3 that is, 4(x, y)2 −4(x, x)(y, y) ⩽ 0, or (x, y)2 ⩽ (x, x)(y, y). Equality
in (1) can occur only if the discriminant is zero, in which case Q has a real root.
That is, there is some λ for which Q(λ) = (λx + y, λx + y) = 0. But this implies
that λx + y = 0, which means the vectors x and y are linearly dependent.

A.13.3 Definition A norm ‖x‖ is a real function on a vector space that satisfies:

N.1 ‖0‖ = 0

N.2 ‖x‖ > 0 if x 6= 0
3 In case you have forgotten how you derived the quadratic formula in Algebra I, rewrite the

polynomial as
f(z) = αz2 + βz + γ = 1

α

(
αz + β

2
)2 − (β2 − 4αγ)/4α,

and note that the only way to guarantee that f(z) ⩾ 0 for all z is to have α > 0 and β2−4αγ ⩽ 0.
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N.3 ‖αx‖ = |α| ‖x‖.

N.4 ‖x + y‖ ⩽ ‖x‖ + ‖y‖ with equality if and only if x = 0 or y = 0 or y = αx,
α > 0.

A.13.4 Definition In a normed space, the unit ball U is the set

U = {x : ‖x‖ ⩽ 1}.

A.13.5 Proposition In a normed space, the unit ball is a convex set.

A.13.6 Proposition If (·, ·) is an inner product, then ‖x‖ = (x, x) 1
2 is a norm.

A.13.7 Proposition If ‖ · ‖ is a norm, then

d(x, y) = ‖x − y‖

is a metric.

The natural metric on R is

d(x, y) = |x − y|.

A.13.8 Definition An inner product space is a Hilbert space if the metric
induced by the inner produce is complete.

(A metric space is complete if every Cauchy sequence has a limit point in the
space.) Every finite dimensional Euclidean space is a Hilbert space. So is ℓ2, the
space of all sequences x = (x1, x2, . . . ) such that ∑∞

n=1 x2
n < ∞.

A.14 Parallelogram Law

A.14.1 Parallelogram Law In an inner product space (such as Rm), for any
vectors x and y we have

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2.

Proof : Note that

(x + y) · (x + y) = x · x + 2x · y + y · y

and
(x − y) · (x − y) = x · x − 2x · y + y · y.

Add these two equations and restate in terms of norms.
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This is called the Parallelogram Law because it asserts

0
y

x
x + y

that the sum of the squares of the lengths of the diagonals
of a parallelogram is equal to the sum of the squares of the
lengths of the sides. Consider the parallelogram with vertices
0, x, y, and x + y. Its diagonals are the segments [0, x + y]
and [x, y], and their lengths are ‖x + y‖ and ‖x − y‖. It has
two sides of length ‖x‖ and two of length ‖y‖.

As an aside, a norm on a vector space is induced by an inner product if and only if
it satisfies the parallelogram law; see for instance [2, Problem 32.10, p. 303].

A.15 Metric projection in a Hilbert space

A.15.1 Theorem Let C be a closed convex subset of a Hilbert space H. Then
there is a unique point in C of least norm.

Proof: It is simpler to work with the square of the norm, so let

C

0

x yz

1
2x 1

2y
µ

µ + 1
n

Cn

µ = inf
{
‖x‖2 : x ∈ C

}
.

For each n, define

Cn = C ∩
{

x ∈ H : ‖x‖2 ⩽ µ + 1
n

}
.

By the definition of µ each Cn is nonempty, and
each is closed and convex as the intersection of
two closed convex sets, and finally note that
C1 ⊃ C2 ⊃ · · · . Moreover, for any point x ∈
Cn, we have µ ⩽ ‖x‖2 ⩽ µ + 1

n
. Let us now proceed to bound the diameter of Cn:

Let x and y belong to Cn, and set z = 1
2x + 1

2y. Apply the Parallelogram Law to
the points 1

2x and 1
2y:

‖ 1
2x + 1

2y︸ ︷︷ ︸
z

‖2 + ‖1
2x − 1

2y‖2 = 2‖1
2x‖2 + 2‖1

2y‖2

or
1
4‖x − y‖2 = 1

2‖x‖2 + 1
2‖y‖2 − ‖z‖2. (2)

Since Cn is convex, z ∈ Cn, too, so ‖x‖2, ‖y‖2, ‖z‖2 all lie in the interval
[
µ, µ+ 1

n

]
,

so the right-hand side of (2) lies in the interval
[
0, 1

n

]
. This implies ‖x−y‖2 ⩽ 4/n.

Therefore,
diam Cn ⩽ 2√

n
−−−→
n→∞

0.

So by the Cantor Intersection Theorem,
⋂
n

Cn consists of a single point, call it c.
Then ‖c‖2 = µ and c is the unique norm minimizer in C.
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A.15.2 Corollary Let C be a closed convex subset of a Hilbert space H. Then
for each point x ∈ H there is a unique point y in C closest to x. The point y is
called the metric projection of x on C.

Proof : Apply Theorem A.15.1 to C − x. If y has least norm in C − x, then x + y
is the point in C closest to x, since distances are not affected by translation.
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