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13.1 Duality, the Envelope Theorem, and Demand

The following lengthy table summarizes the properties of the solutions to the
utility maximization and expenditure minimization problems.

Utility Maximization Expenditure Minimization

maximize
x

u(x) subject to m − p · x ⩾ 0 minimize
x

p · x subject to u(x) − υ ⩾ 0

Optimal Solutions
Ordinary (Walrasian) Demand Hicksian Compensated Demand

x∗(p, m) x̂(p, υ)

x∗ is homogeneous of degree zero in
(p, m).

Optimal Value functions
Indirect Utility Expenditure Function

v(p, m) = u
(
x∗(p, m)

)
e(p, υ) = p · x̂(p, υ)

v is quasiconvex in (p, m), homoge-
neous of degree zero in (p, m).

e is concave in p, and homogeneous of
degree 1 in p.

Statement of Equivalence
(Theorem 12.10.1)

x∗(p, m) = x̂
(
p, v(p, m)

)
m = e

(
p, v(p, m)

) x̂(p, υ) = x∗
(
p, e(p, υ)

)
υ = v

(
p, e(p, υ)

)
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Utility Maximization Expenditure Minimization
Lagrangeans

L(x, λ; p, m) = u(x) + λ(m − p · x) L(x, µ; p, υ) = p · x − µ
(
u(x) − υ

)

Partials with respect to parameters

∂L(x, λ; p, m)
∂pj

= −λxj

∂L(x, λ; p, m)
∂m

= λ

∂L(x, µ; p, υ)
∂pj

= xj

∂L(x, µ; p, υ)
∂υ

= µ

Envelope Theorem

∂v(p, m)
∂pj

= −λ∗(p, m)x∗
j(p, m)

∂v(p, m)
m

= λ∗(p, m)

∂e(p, υ)
∂pj

= x̂j(p, υ)

∂e(p, υ)
∂υ

= µ̂(p, υ)

Roy’s Law Hotelling/Shephard’s Lemma

x∗
j(p, m) = −

∂v(p, m)
∂pj

∂v(p, m)
∂m

x̂j(p, υ) = ∂e(p, υ)
∂pj

Differentiating the equivalence m = e
(
p, v(p, m)

)
with respect to m yields

1 =
∂e

(
p, v(p, m)

)
∂υ

∂v(p, m)
∂m

= µ̂
(
p, v(p, m)

)
λ∗(p, m),

or equivalently,

µ̂
(
p, v(p, m)

)
= 1

λ∗(p, m)
and µ̂(p, υ) = 1

λ∗
(
p, e(p, υ)

) .

From the equivalence

x̂(p, υ) = x∗
(
p, e(p, υ)

)
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we have
∂x̂i(p, υ)

∂pj

=
∂x∗

i

(
p, e(p, υ)

)
∂pj

+
∂x∗

i

(
p, e(p, υ)

)
∂m

∂e(p, υ)
∂pj

.

But ∂e(p,υ)
∂pj

= x̂j(p, υ) = x∗
j

(
p, e(p, υ)

)
. Set m = e(p, υ), and write

∂x̂i(p, υ)
∂pj

= ∂x∗
i (p, m)
∂pj

+ x∗
j(p, m)∂x∗

i (p, m)
∂m

which implies the Slutsky equation

∂x∗
i (p, m)
∂pj

= ∂x̂i(p, υ)
∂pj

− x∗
j(p, m)∂x∗

i (p, m)
∂m

,

where υ = v(p, m), which decomposes the effect of a price change into its substi-
tution effect and income effect.

But
∂x̂i(p, υ)

∂pj

= ∂2e(p, υ)
∂pi∂pj

,

so since e is concave in p, its Hessian is negative semidefinite (and symmetric), so
the matrix[

∂x∗
i (p, m)
∂pj

+ x∗
j(p, m)∂x∗

i (p, m)
∂m

]
is negative semidefinite and symmetric.

Consequently the diagonal terms satisfy
∂x̂i(p, υ)

∂pi

= ∂x∗
i (p, m)
∂pi

+ x∗
i (p, m)∂x∗

i (p, m)
∂m

⩽ 0,

and we have the unusual reciprocity relation

∂x∗
i (p, m)
∂pj

+ x∗
j(p, m)∂x∗

i (p, m)
∂m

=
∂x∗

j(p, m)
∂pi

+ x∗
i (p, m)

∂x∗
j(p, m)
∂m

.

13.2 Axioms for a numerical standard of living measure

Assume n “commodities,” some of which may be interpreted as instruments of
saving. A standard of living index

v : Rn
++ × R+ → R

assigns a real number to each budget1 (p, m) ∈ Rn
++ × R+, where p is a vector

of prices and m is money income. The following are natural requirements for a
standard of living measure.

1 I shall use the term budget to refer to both the pair (p, m) and the budget set {x ∈ Rn
+ :

p · x ⩽ m}. You should not get confused.
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Monotonicity in m. m′ > m =⇒ v(p, m′) > v(p, m).
Note that the strict monotonicity suggests a kind of nonsatiation.

Monotonicity in p. (m > 0 & p′ ≫ p) =⇒ v(p′, m) < v(p, m).2 3

By requiring p′ ≫ p we are allowing for the possibility that some commodities are
irrelevant.

Homogeneity. v(p, m) is homogeneous of degree zero in (p, m).

Another property that a standard of living measure ought to incorporate what
I shall call the Lancaster Principle. Kelvin Lancaster [4, p. 65] argued that

An individual’s welfare has unambiguously increased from situa-
tion I to situation II if his choice is expanded as a result of the change,
that is, if, in situation II he can have—
1. what he chose in situation I, and
2. at least one choice not available to him in situation I.

I argue that this principle implies the standard of living measure v has the fol-
lowing property. (Compare this to the proof of Proposition 12.11.1.)

Quasiconvexity in p. For any p0, p1 ∈ Rn
++, m ⩾ 0, λ satisfying 0 < λ < 1,

v
(
(1 − λ)p0 + λp1, m

)
⩽ max

{
v(p0, m), v(p1, m)

}
.

To see why this captures the Lancaster Principle, let pλ = (1 − λ)p0 + λp1, where
0 < λ < 1, and let xλ be purchased in budget (pλ, m). It must be the case
that either p0 · xλ ⩽ m or p1 · xλ ⩽ m or both. (Otherwise we would have
p0 · xλ > m and p1 · xλ > m, so the convex combination of these two yields
pλ · xλ > m, which contradicts the fact that xλ is affordable at (pλ, m).) Now,
unless we have one of the trivial cases p0 = pλ = p1 or m = 0, one of the budgets

2 Use this notation for vector orders:

x ≧ y if xi ⩾ yi for all i; x ≫ y if xi > yi for all i;

and define

Rn
+ = {x : x ≧ 0}; Rn

++ = {x : x ≫ 0}.

3 A function u is monotone if

x′ ≫ x =⇒ u(x′) > u(x).
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(p0, m) or (p1, m) includes xλ plus choices not available in budget (pλ, m).4 Thus
Lancaster’s Principle implies v(pλ, m) ⩽ v(p0, m), and quasiconvexity is assured.

We now show that with one technical assumption (upper semicontinuity in
income) any standard of living index satisfying the properties above must be the
indirect utility for some utility function.

13.3 The indirect utility problem

It is well known know that the indirect utility v derived from a locally nonsatiated
continuous utility u will be continuous and satisfy properties P–S below. (Prop-
erty N is a harmless normalization.) See, e.g., Diewert [2], Varian [6, Section 7.3],
Mas-Colell, Whinston, and Green [5, Prop. 3.D.3]. Moreover u is determined on
the range of the demand function by the inversion formula in the next lemma.

13.3.1 Lemma If v is the indirect utility for a locally nonsatiated utility u, then
for any x in the range of the demand function,

u(x) = min
p

v(p, p · x).

Proof : Fix x̄ = x∗(p̄, m̄) in the range of the demand function. For any p, the
point x̄ belongs to the budget (p, p · x̄), so u(x̄) ⩽ v(p, p · x̄). But for p̄, we have
u(x̄) = v(p̄, m̄) = v(p̄, p̄ · x̄) by budget exhaustion. q.e.d.

The obvious question is: If v satisfies properties N–S is it an indirect utility?
Surprisingly, the standard texts mentioned above do not answer this question. The
inversion formula determines what u ought to be, but it remains to prove that v
is the maximized value of u over the budget set. Diewert [2, Theorem 4, p. 558]
comes close to stating Theorem 13.3.2, but he makes the ad hoc assumption the
function u derived by the inversion formula is continuous. In general it is not.
Krishna and Sonnenschein [3] prove Theorem 13.3.2 by different means.

13.3.2 Indirect Utility Theorem Let v : Rn
++×R+ → R satisfy the following

properties:

N (Nonnegativity): v(p, m) ⩾ 0 for all (p, m).

P (Monotonicity in p): (m > 0 & p′ ≫ p) =⇒ v(p′, m) < v(p, m).

M (Monotonicity in m): m′ > m =⇒ v(p, m′) > v(p, m).

H (Homogeneity): v(λp, λm) = v(p, m) for all λ > 0.
4 Unless p0 ≧ p1 or vice versa, each of p0 and p1 will have at least one commodity price

lower than pλ and so offer new choices. If say p1 ≧ p0 and p1 ̸= p0, then it must be that xλ is
affordable at p0, which has at least one commodity price lower than pλ, so it offers new choices.
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Q (Quasiconvexity in p): v(p, m) is quasiconvex in p.

S (Upper semicontinuity in m): v(p, ·) is upper semicontinuous for each p.

Then there is an upper semicontinuous monotone quasiconcave utility u : Rn
+ → R

such that
v(p, m) = max

{
u(x) : x ∈ Rn

+ and p · x ⩽ m
}
.

Moreover, for any x in the range of the demand generated by u, we have

u(x) = min
p

v(p, p · x).

The proof is given in Section 13.5.
This theorem leaves one loose end. Suppose I start with a utility û having

indirect utility v. Theorem 13.3.2 asserts that the utility u generated by the
inversion formula also has indirect utility v, but Example 13.3.3 below provides
an example where u is not equal to û, so the question remains, do u and û
generate the same demand correspondence? If v is differentiable, then Roy’s Law
guarantees that the demand correspondence is actually a function and the demand
function is determined by v. But we know that if û is not quasiconcave, then the
recovered utility u may have a demand correspondence that properly includes the
demand of û, so to hope to prove that the demand depends only on v we need
to restrict ourselves to quasiconcave utilities. Theorem 13.3.4 below provides a
generalization of Roy’s Law that holds even if v is not differentiable.

13.3.3 Example Consider the quasilinear utility function for two goods x and y
defined by

u(x, y) = y − (1 − x)2

which gives a linear demand function for x. It is locally nonsatiated but not
monotone. It has the property that the demand for x never exceeds 1. It has the
same demand behavior as the monotone utility

û(x, y) =

y − (1 − x)2 x ⩽ 1
y x ⩾ 1

See Figure 13.1. □

In general, you can show the following: Let u be a locally nonsatiated contin-
uous utility with indirect utility v, and let û(x) = infp v(p, p · x). If x∗ is in the
range of the demand function for u, then û(x∗) = u(x∗) and

{x ∈ Rn
+ : û(x) ⩾ û(x∗)} is the increasing convex hull of {x ∈ Rn

+ : u(x) ⩾ u(x∗)}.

(The increasing convex hull of a set E is the smallest increasing convex set that
includes E. A set E is increasing if x ∈ E and x′ ≫ x imply x′ ∈ E.) I should
write down the proof some time. If x is not in the range of the demand, then all
bets are off, see Example 13.3.3.
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Figure 13.1. Indifference curves for locally nonsatiated utility u(x, y) = y−(1−x)2

and monotone utility with same demand.

A variant of Roy’s Law

The proof of Theorem 13.3.2 suggests the following variant of Roy’s law, which
does not require differentiability. It may be found in Diewert [2, Corollary 4.1,
p. 558].

13.3.4 Theorem Let v be an indirect utility function satisfying the hypotheses of
Theorem 13.3.2. Let x∗ be the demand correspondence derived from the recovered
utility. Then for m̄ > 0 and any p̄ ∈ Rn

++,

x∗(p̄, m̄) =
{
x ∈ Rn

+ : p̄·x = m̄ & x supports {p ∈ Rn
++ : v(p, m̄) < v(p̄, m̄)} at p̄

}
.

Proof : First assume that x̄ ∈ x∗(p̄, m̄). Then p̄ · x̄ ⩽ m̄ and u(x̄) = v(p̄, m̄). We
wish to prove that v(p, m̄) < v(p̄, m̄) implies x̄ · p > x̄ · p̄. We shall prove the
contrapositive. So assume that x̄ · p ⩽ x̄ · p̄ ⩽ m̄. The x̄ belongs to the budget
(p, m̄), so v(p, m̄) ⩾ u(x̄) = v(p̄, m̄).

For the converse, we have already proven (see (8) in the proof of Theo-
rem 13.3.2) that if x supports the convex set {p : v(p, m̄) < v(p̄, m̄)} at p̄, then x
belongs to the demand set x∗(p̄, m̄).

13.4 A composite commodity theorem

For the purpose of drawing pictures, I often want to put a single good, say “corn,”
on one axis, and “everything else” on the other. In this section I show that as
long as I don’t change the price of any of the other goods, we can find a utility
over the two goods corn and the composite good, everything else, that generates
the demand for corn.

In fact, there is a much stronger result allows us to partition the set of n goods
into N disjoint subsets and as long as the price ratios within a subset are fixed,
there is a utility that generates the demand for these N composite commodities.

KC Border src: L13 v. 2020.09.30::14.29



Ec 121a Fall 2020
KC Border Demand Theory 2 13–8

The proof is the same as for the case here, but the notation is more complicated.
For details see my on-line notes [1].

So let u be a utility function for the n + 1 goods, good x and goods y1, . . . , yn.
Let

(x∗, y∗) =
(
x∗(px, p1, . . . , pn; m), y∗

1(px, p1, . . . , pn; m), . . . , y∗
n(px, p1, . . . , pn; m)

)
be the demand function for these n + 1 goods and let v(px, p1, . . . , pn; m) be the
indirect utility.I need to work on

improving this
notation. Now fix the prices of goods y1, . . . , yn at

pY = (p1, . . . , pn).

We now create a composite good Y out of (y1, . . . , yn) by defining

Y (y) =
∑
i=1

piyi.

Note that the units of this composite good are measured in money. The composite
good Y is just the amount spent on the shopping cart y at prices p̄Y . For the
composite consumption vector we have a price vector π with only two prices, πX ,
the price of X, and πY , the price of the composite good Y . Usually the composite
good is taken as the numéraire, and some authors refer to the composite good as
money.

Define the “demand” for X = x and the composite good Y by

X∗(πX , πY ; m) = x∗
(
(πX , πY pY )︸ ︷︷ ︸

∈Rn+1

, m
)

Y ∗(πX , πY ; m) =
n∑

j=1
pjy

∗
j

(
(πX , πY pY )︸ ︷︷ ︸

∈Rn+1

, m
)
.

(1)

Then we have the following.

13.4.1 A simple composite commodity demand theorem There is a (qua-
siconcave, monotonic, upper semicontinuous) utility U : R2

+ → R such that the
pair (

X∗(πX , πY ; m), Y ∗(πX , πY ; m)
)

defined by (1) maximizes U over the budget set

{(X, Y ) ∈ R2
+ : πXX + πY Y ⩽ m}.

Proof : The idea is to find an indirect utility and use the Indirect Utility Theorem.
But there is an obvious candidate. Define

V (πX , πY ; m) = v(πX , πY pY ; m).
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Then V is clearly increasing in m, decreasing in (πX , πY ), and has the same
continuity properties with respect to m that v does. The only thing that is not
immediately obvious is that V is quasiconvex in π. So let 0 < λ < 1. Then

V
(
(1 − λ)π1 + λπ2; m

)
= v

(
(1 − λ)π1

X + λπ2
X ,

(
(1 − λ)π1

Y + λπ2
Y

)
pY ; m)

⩽ max{v(π1
X , π1

Y pY ; m), v(π2
X , π2

Y pY ; m)}
= max{V (π1; m), V (π2; m)},

where the inequality follows from the quasiconvexity of v. Thus, V is quasiconvex.
We have shown that V is the indirect utility for some utility U : R2

+ → R+
over the goods X and Y . From the Indirect Utility Theorem, we know that

U(X, Y ) = inf
π

V (πX , πY ; πXX + πY Y )

and
V (π, m) = max{U(X, Y ) : πXX + πY Y ⩽ m}

We now have to show that the “demands” X∗ and Y ∗ defined by (1) are generated
by maximizing U over the budget set. Since V is the maximized utility, what we
need to show is that

U
(
X∗(π, m), Y ∗(π, m)

)
= V (π, m). (2)

It becomes notationally easier if we define two mappings:

φ(πX , πY ) = (πX , πY pY ),

which maps a vector of prices for the composite goods back to a vector of prices
for all n + 1 goods, and

ξ(x, y) = (x, pY · y),
which maps a vector of n + 1 goods down to a two-dimensional composite vector.
Observe that

π · ξ(x, y) = φ(π) · (x, y). (3)
Now fix (π, m), and to further simplify notation, let

p = (πX , πY pY ), x∗ = x∗(p, m), y∗ = y∗(p, m), X∗ = X∗(π, m), and Y ∗ = Y ∗(π, m).

Then
v(p̄, m̄) = u(x∗, y∗)

= infp v
(
p, p · (x∗, y∗)

)
Theorem 13.3.2

⩽ infπ v
(
φ(π), φ(π) · (x∗, y∗)

)
infimum over a smaller set of prices

= infπ V
(
π, π · ξ(x∗, y∗)

)
construction of V and equation (3)

= U
(
ξ(x∗, y∗)

)
construction of U

= U(X∗, Y ∗) construction of X∗, Y ∗

⩽ V (π̄, m̄) since π̄X · X∗(π̄, m̄) + πY Y ∗(π̄, m̄) ⩽ m̄

= v
(
φ(π̄), m̄

)
construction of V

= v(p̄, m̄) construction of p̄.
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Thus all the inequalities are equalities, and we are done, and as a result we can
conclude

U(X∗, Y ∗) = V (π̄, m̄),
which proves (2), and we are done.

13.5 Proof of the Indirect Utility Theorem
Proof of Theorem 13.3.2: The proof is divided into several steps.
Step 0. v(p, 0) is independent of p:
Since v(p, ·) is upper semicontinuous in m and decreasing in m, it is therefore continuous at
m = 0 for each p. Pick p, p′ ≫ 0. For λ > 0 large enough, we have λp ≫ p′. Then for each
n ⩾ 1,

v(p, 1/n) = v(λp, λ/n) > v(p′, λ/n),

where the equality follows from H, and the inequality follows from P. Letting n → ∞, continuity
at 0 implies v(p, 0) ⩾ v(p′, 0). But the roles of p and p′ are symmetrical, so the reverse inequality
also holds, implying

v(p, 0) = v(p′, 0) for all p, p′ (4)

Step 1. Construction of u:
Define u via the inversion formula

u(x) = inf{v(p, p · x) : p ∈ Rn
++}. (⋆)

Property N (nonnegativity) guarantees that this infimum is not −∞, and in fact u is a nonneg-
ative real-valued function defined for all x ≧ 0. •

Step 2. v is the indirect utility for u:
I first claim that

p̄ · x ⩽ m̄ =⇒ u(x) ⩽ v(p̄, m̄). (5)
To see this note that

u(x) = inf
p

v(p, p · x) ⩽ v(p̄, p̄ · x) ⩽ v(p̄, m̄),

where the last inequality follows from M (monotonicity in m).

Inequality (5) shows that

v(p̄, m̄) ⩾ sup{u(x) : p̄ · x ⩽ m̄}.

We now need to prove that the supremum is attained at some point, and that the inequality
holds with equality.

There are two cases to be dealt with, m = 0 and m > 0. Start with the case m = 0. Then

max{u(x) : x ∈ Rn
+ and p̄ · x ⩽ 0} = u(0) = min

p′
{v(p′, p′ · 0)} = v(p, 0)

where the last equality follows from (4).
For the case m > 0, fix (p̄, m̄) with m̄ > 0 and define

C = {p ∈ Rn
++ : v(p, m̄) < v(p̄, m̄)}.

Since m̄ > 0, assumption P (monotonicity in p) implies that the set C is nonempty. It also
implies that p̄ belongs to the boundary of C. Assumption Q (quasiconvexity in p) implies that
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p1

p2
C = {p : v(p, m̄) < v(p̄, m̄)}

x∗

{p : p · x∗ = m̄}

Figure 13.2. x∗

C is convex. Therefore by the Supporting Hyperplane Theorem 10.4.2 there is a nonzero vector
x∗ properly supporting the closure of C at p̄. (See Figure 13.2.) That is,

x∗ · p̄ ⩽ x∗ · p for all p ∈ C = {p : v(p, m̄) < v(p̄, m̄)}. (6)

Further, P implies that C is an increasing set, that is, p ∈ C and p′ ≫ p imply that p′ ∈ C so
it follows that x∗ ≧ 0, and we may normalize it so that

p̄ · x∗ = m̄. (7)

We can strengthen (6) to the following:

v(p, m̄) < v(p̄, m̄) =⇒ p · x∗ > p̄ · x∗. (8)

To see this, suppose v(p, m̄) < v(p̄, m̄). By upper semicontinuity in m, assumption S, for λ > 1
small enough, v(p, λm̄) < v(p̄, m̄). Then setting α = 1/λ < 1 we have

v(αp, m̄) = v(p, λm̄) < v(p̄, m̄).

By (6) we have x∗ · αp ⩾ x∗ · p̄, but x∗ ⩾ 0, so x∗ · p > x∗ · αp, and (8) follows. (Note that we
do not need to assume upper semicontinuity in p to derive this.)

Now by definition
u(x∗) = inf{v(p, p · x∗) : p ∈ Rn

++}.

By H (homogeneity of degree zero in p), since x∗ is nonzero, we may normalize all prices without
changing the infimum, so that

u(x∗) = inf{v(p, m̄) : p ∈ Rn
++ and p · x∗ = m̄}. (9)

Now by the contrapositive of (8),

p · x∗ = m̄ =⇒ v(p, m̄) ⩾ v(p̄, m̄).

But p̄ satisfies p̄ · x∗ = m̄, so

v(p̄, m̄) = min{v(p, m̄) : p ∈ Rn
++ and p · x∗ = m̄} = u(x∗).

Thus (5) implies
max{u(x) : p̄ · x ⩽ m̄} = u(x∗) = v(p̄, m̄)
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p1

p2

p′

p′′ = p′ + λ1

p′′′

P = {p : p · x = 1}

P ′ = {p : p · x′ = 1}

Figure 13.3. p′′′ is strictly greater than everything near p′.

This completes the proof that v is the indirect utility for u. •

Step 3. u is monotonic:
That is,

x′ ≫ x =⇒ u(x′) > u(x). (10)
To see this, let P = {p : p · x = 1} and P ′ = {p : p · x′ = 1}. As we argued above, P implies 5

u(x) = inf
{

v(p, 1) : p ∈ P
}

, u(x′) = inf
{

v(p, 1) : p ∈ P ′}.

Since x′ ≫ x, in particular x′ ≫ 0, so the closure P ′ of P ′ is compact. Moreover P ′ is disjoint
P and lies below it. It should be obvious from Figure 13.3 that u(x) = inf{v(p, 1) : p ∈ P} <
inf{v(p, 1) : p ∈ P ′} = u(x′), but here is a proof anyhow: There is a sequence p′

n ∈ P ′ with
v(p′

n, 1) → u(x′). Since P ′ is compact, the sequence must have a subsequence that converges to
p′ ∈ P ′. Then there is some λ > 0 such that the price vector p′′ = p′ +λ1 satisfies p′′ ·x = 1. Let
p′′′ be halfway between p′ and p′′. Since p′′′ ≫ p′ there is some ε > 0 such that if d(p, p′) < ε,
then p′′′ ≫ p. So for n large enough p′′′ ≫ p′

n, so v(p′
n, 1) > v(p′′′, 1). (See Figure 13.3.)

Therefore
u(x′) = lim

n
v(p′

n, 1) ⩾ v(p′′′, 1) > v(p′′, 1) ⩾ inf
p∈P

v(p, 1) = u(x).

This proves monotonicity. •

Step 4. u is quasiconcave:
That is, for 0 ⩽ λ ⩽ 1,

u
(
λx + (1 − λ)x′) ⩾ min

{
u(x), u(x′)

}
.

This is certainly the case if either x or x′ is zero, since zero is a global minimizer of u. So assume
that neither x nor x′ is zero. Then, we have already seen that H implies that

u
(
λx + (1 − λ)x′) = inf

{
v(p, 1) : p ·

(
λx + (1 − λ)x′) = 1

}
= inf

{
v(p, 1) : p ·

(
λx + (1 − λ)x′) ⩽ 1

}
,

5 Note that x′ ≫ x implies that x′ ̸= 0, so that we may normalize prices by p · x′ = 1. If
x = 0, we can’t have p · 0 = 1, but a simple modification of the following argument shows that
u(x′) > u(0). I’ll leave that to you.
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where the second equality follows from M. Now if p ·
(
λx + (1 − λ)x′) ⩽ 1 we must have p · x ⩽ 1

or p · x′ ⩽ 1 (or both.) But p · x ⩽ 1 implies v(p, 1) ⩾ u(x) = inf{v(p, 1) : p · x ⩽ 1}. Similarly
p · x′ ⩽ 1 implies v(p, 1) ⩾ u(x′). Either way,

p ·
(
λx + (1 − λ)x′) ⩽ 1 =⇒ v(p, 1) ⩾ min

{
u(x), u(x′)

}
.

Therefore
u

(
λx + (1 − λ)x′) = inf

{
v(p, 1) : p ·

(
λx + (1 − λ)x′) ⩽ 1

}
⩾ min

{
u(x), u(x′)

}
.

So u is quasiconcave. •

Step 5. u is upper semicontinuous:
Recall that u is upper semicontinuous if for each real α the strict lower contour set {x : u(x) < α}
is open. So fix α and pick x̄ such that u(x̄) < α. Since

u(x̄) = inf
p

v(p, p · x̄),

there is some p̄ satisfying
v(p̄, p̄ · x̄) < α.

By S (upper semicontinuity of v in m), there is a neighborhood U of x̄ such that x ∈ U implies
v(p̄, p̄ · x) < α.

Thus for x ∈ U ,
u(x) = inf

p
v(p, p · x) ⩽ v(p̄, p̄ · x) < α.

Thus u is upper semicontinuous. •
This completes the proof of the theorem.
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