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Lecture 11: Introduction to Capital Theory

11.1 Present discounted value

Comparing income streams

If you can invest one dollar at an annual rate of interest r, then in one year you
will have 1 + r dollars. If that 1 + r is reinvested for another year it will be worth
(1 + r)2 dollars in two years. In general, after t years of reinvestment, it will be
worth (1 + r)n dollars.

Equivalently, to get one dollar in t years, you need to invest 1/(1 + r)t dollars
today and reinvest the proceeds annually. In this sense, 1/(1 + r)t dollars today
is worth 1 dollar in t years, and is called the present discounted value of $1 at
date t.

Moreover present value is linear: In order to have xt dollars at each date t,
t = 1, . . . , n, you need to invest

n∑
t=1

xt

(1 + r)t

today (t = 0). This is the present discounted value of the income stream
x1, . . . , xn. If the sequence xt is bounded (or does not grow too fast), then we can
compute the present value of the stream x1, x2, . . . as a convergent infinite series.

The present value of an income stream x is what you should be willing to
pay today to receive that income stream. In fact, if two income streams x =
(x1, x2, . . . ) and y = (y1, y2, . . . ) have the same present value, then you can convert
y into x via a series of borrowing and investing transactions, where you can
borrow and invest at the same rate r. (If there are no financial intermediaries,
borrowers pay investors, so the rate on investing and borrowing must be equal.)
Equivalently, the present value of x is the stock of cash you have to have today
in order to receive the income stream x.

Compounding periods

Interest is often compounded more frequently than annually. If interest is com-
pounded n times annually, the annual interest rate is divided by n and credited
at the end of each 1/nth year, so the value in t years is (1 + r

n
)nt. Now

lim
n→∞

(
1 + r

n

)nt

= ert,
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so with continuous compounding the present discounted values of a dollar
at time t is just e−rt today.

Continuous income flows

Sometimes economists prefer to work with continuous time instead of discrete
periods. In this case, we need to distinguish between stocks and flows. The
simplest analogy is that of filling a swimming pool with with a garden hose. Water
flows from the hose at variable rate and creates a stock of water in the pool. Flows
are measured in gallons per minute (or other appropriate units such as liters per
second) and over the course of an interval of time the integrated flow becomes a
stock, which is measured in gallons (or liters). In the swimming pool case, the
stock cannot change instantaneously, they must change as the result of inflows or
outflows over an interval of time. But in economics and finance sometimes the
stock of capital can change discontinuously by borrowing or lending part of the
stock.

We shall measure time so that “now” is t = 0. Consider now a “flow” of income
f(t) at time t measured in dollars per second (or euros per second), for t ⩾ 0.
The present discounted value of the flow f is the stock of cash∫ ∞

0
f(t)e−rt dt.

The stock of cash is in units of dollars (or euros).
See the Appendix for a generalization of this to time-varying interest rates.

11.2 A typical investment problem

The following notes are based on the wonderful book Income, Wealth, and the
Maximum Principle by Martin L. Weitzman [16] and the paper by Robert Dorf-
man [3, 4].

A small firm has a capital stock (measured in dollars) that it uses to produce
a flow of income. Let f(K) denote the flow rate of gross income that the firm
produces using a capital stock of size K, and assume that f is twice continuously
differentiable, strictly concave, and strictly increasing with f ′ > 0 and f ′′ < 0.

We assume that capital depreciates at the constant rate δ ⩾ 0. That is, the
outflow rate of capital δK. The firm can increase its capital stock by saving a
flow of I of the income as a net investment in the capital stock.

The firm can borrow and lend at the market interest rate r > 0, so what it
cares about is the present discounted value of its net income. What the firm must
choose is a time path, or trajectory of its control variable I (net investment)
over the time horizon [0, ∞). (In what follows I shall use bold letters to denote
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trajectories.) The control influences the state variable K through the differential
“equation of motion”

K̇(t) = I(t).

(Here I use the traditional dot notation to indicate derivatives with respect to
time.) For simplicity assume that there is a maximal rate Ī of investment, and
note that with no gross investment the net investment rate is I(t) = −δK(t) due
to depreciation. Then the firm faces constraints given by the initial condition

K(0) = Ko,

a nonnegativity constraint K(t) ⩾ 0 for all t, and

−δK(t) ⩽ I(t) ⩽ Ī .

Its goal is to maximize ∫ ∞

0

[
f
(
K(t)

)
− I(t)

]
e−rt dt.

You might think that solving this requires a manager who is very far-sighted
and can balance the trade-off between investing more now at the expense of current
income to provide more income in the future, but in fact

there is a trajectory p of “prices” that temporally decentralize
this problem so that each instant t the manager chooses the
level of investment I(t) to maximize a simple function of K,
I, and p, called the Hamiltonian. The entire trade-off is
summarized at each point in time by the value p(t).

11.3 A more general mathematical formulation

This is a special case of the following maximization problem,

maximize
I

∫ ∞

0
G
(
K(t), I(t)

)
e−rt dt

subject to the constraints (1)–(4).

K̇(t) = I(t). (1)
K(0) = Ko. (2)

m
(
K(t)

)
⩽ I(t) ⩽ M

(
K(t)

)
t ⩾ 0, (3)

K(t) ⩾ 0 t ⩾ 0. (4)
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Here m and M are known functions that of course satisfy m(K) ⩽ M(K) for all
K ⩾ 0.1 We shall require that m be convex and decreasing and M be concave
and increasing. For many problems m is the zero function.

The function G is the instantaneous gain function, and r is the discount
rate. The arguments of G are the current levels of the state variable K, and
the control variable I.

11.3.1 Assumption G is concave and continuously differentiable, and satisfies
G(0, 0) = 0, and D1G ⩾ 0 and D2G < 0 everywhere.

Admissible controls

We restrict attention to control trajectories that are piecewise continuous. In
other words, I is required to have at most finitely many discontinuities in any
finite time interval.

Steady states

A steady state is a pair (K, I) of trajectories satisfying

K(t) = K, I(t) = 0 for all t ⩾ 0.

We shall refer to a steady state by the level K of the capital stock it maintains. A
steady state may or may not exist, and if it exists, it may or may not be optimal.
So fix K > 0 and let

φ0 =
∫ ∞

0
G(K, 0)e−rt dt = G(K, 0)/r,

the present value of the steady state K. A standard technique from the calculus
of variations is to look at trajectory and consider a variation on it. The variation
on I = 0 that I want to consider is this. Invest at the rate ε/δ for a short time δ
to increase the capital stock to K + ε. Intuitively, this incurs an “instantaneous”
cost on the order of D2(K, 0)ε now, but provides an increment in the present
discounted value of the flow of D1G(K, 0)ε/r. Thus it will pay to adjust the
capital stock up or down by ε unless −D1G(K, 0)/D2G(K, 0) = r. Weitzman
defines the stationary return on capital by

R(K) = −D1G(K, 0)
D2G(K, 0)

.

We now make some tedious approximation arguments to make this intuition rig-
orous.

1 The general formulation of the Maximum Principle allows for additional constraints.
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So let ε > 0 and define the piecewise continuous trajectory

vε,δ(t) =

{
ε
δ t < δ

0 t ⩾ δ.

where δ > 0. This leads to the following capital stock trajectory:

Kε,δ(t) =

{
K + ε

δ t t < δ

K + ε t ⩾ δ
,

and the resulting value is

φ(ε, δ) =
∫ ∞

0
G
(
Kε,δ(t), vε,δ(t)

)
e−rt dt

=
∫ δ

0
G
(
K + ε

δ
t,

ε

δ

)
e−rt dt +

∫ ∞

δ

G(K + ε, 0)e−rt dt

⩽
∫ δ

0
G
(
K,

ε

δ

)
e−rt dt +

∫ ∞

δ

G(K + ε, 0)e−rt dt.

Since concave functions lie below their tangent lines (the supergradient inequality) we have

G
(

K,
ε

δ

)
⩽ G(K, 0) + D2G(K, 0)ε

δ

and
G(K + ε, 0) ⩽ G(K, 0) + D1G(K, 0)ε,

so

φ(ε, δ) ⩽
∫ δ

0

(
G(K, 0) + D2G(K, 0)ε

δ

)
e−rt dt +

∫ ∞

0

(
G(K, 0) + D1G(K, 0)ε

)
e−rt dt = φ̄(ε, δ).

If φ(ε, δ) > φ0, then the steady state K cannot be optimal and φ̄(ε, δ) > φ0. That is,

0 < φ̄(ε, δ) − φ0 =
∫ δ

0

(
D2G(K, 0)ε

δ

)
e−rt dt +

∫ ∞

δ

D1G(K, 0)εe−rt dt

⩽
∫ δ

0

(
D2G(K, 0)ε

δ

)
e−rδ dt +

∫ ∞

0
D1G(K, 0)εe−rt dt

(remember D2G < 0)

=D2G(K, 0)εe−rδ + D1G(K, 0)ε
r

,

which for ε > 0 implies (given that D2G < 0)

−D1G(K, 0)
D2G(K, 0)

> re−rδ.

Now if the steady state K is optimal, this variation cannot be an improvement so the reverse
inequality above most hold. Letting δ ↓ 0 we see that i K is an optinmal steady state, then

R(K) = −D1G(K, 0)
D2G(K, 0)

⩽ r.
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We now have to consider the variations with ε < 0. The above argument shows that for this
case, if K is an optimal steady state, then

R(K) = −D1G(K, 0)
D2G(K, 0)

⩾ r.

So if a steady state K > 0 is optimal, then

R(K) = −D1G(K, 0)
D2G(K, 0)

= r (5)

must necessarily hold.

Related functions

We now define three functions related to the problem above. The first is the value
function V . It is the maximized value of the objective function as a function of
the initial capital stock. That is,

V (K) = max
I

∫ ∞

0
G
(
K(t), I(t)

)
e−rt dt

where the maximum is taken with respect to trajectories satisfying the constraints
(1)–(4) with Ko = K. This of course assumes that a maximum exists for Ko = K.
Also, if we want to index the problem by K, we really ought to index the optimal
trajectories by K, but we shan’t. The thing to note about the value function is
that it satisfies Bellman’s Principle of Optimality, which states that if I∗, K∗

are optimal trajectories starting at K(0) = Ko, then for any time t ⩾ 0,

V (Ko) =
∫ t

0
G
(
K∗(s), I∗(s)

)
e−rs ds + e−rtV

(
K∗(t)

)
. (6)

What this says is that when the capital stock reaches K∗(t) at time t, the optimal
continuation is the same as if we reset the clock to zero, and then followed the
optimal trajectory for Ko = K∗(t). This implies that if an optimal trajectory K∗

exists starting at Ko, then an optimal trajectory exists for every starting value
K∗(t). In particular, V is defined for every K∗(t). Since K∗ has a derivative
(namely I), it is continuous, so its range is an interval. Thus V must be defined
on some interval (perhaps degenerate).

The next function we define is the Hamiltonian (more precisely, the current
value Hamiltonian) for the problem,

H(K, I, p) = G(K, I) + pI.

It is the sum of the gain function and a multiplier or costate variable p multi-
plying the function that defines K̇. Why we do this will become apparent later.
Closely related is the maximized Hamiltonian H̃, defined by

H̃(K, p) = max
I:m(K)⩽I⩽M(K)

H(K, I, p).

It is the optimal value function for maximizing the Hamiltonian with respect to I.
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Theorem

Assumptions

Here are the assumptions that Weitzman uses. They are satisfied for many eco-
nomic problems. He notes that there are weaker assumptions under which the
theorem remains true, but they are less easy to understand and the proofs are less
intuitive.

1. G is concave and continuously differentiable, G(0, 0) = 0, and D1G ⩾ 0 and
D2G < 0 everywhere.

2. The functions m and M are twice continuously differentiable, m is convex and
nonincreasing, and M is concave and nondecreasing (so for K > 0, m′(K) ⩽ 0,
m′′(K) ⩾ 0, M ′(K) ⩾ 0, M ′′(K) ⩽ 0). In addition, for K ⩾ 0, we assume
m(K) ⩽ 0 ⩽ M(K). To make sure that K never becomes negative, we also
assume m(0) = 0. Even if we do not allow capital to be consumed, it may still
depreciate, in which case we generally take m(K) = −δK.

3. An optimal trajectory exists for Ko = 0.

4. Accessibility Hypothesis: Define R(K) = −D1G(K, 0)/D2G(K, 0). If
there exists K̂ satisfying R(K̂) = r (that is, K̂ is a candidate for an optimal
steady state), then R′(K̂) < 0 (which implies K̂ is locally unique) and m(K̂) <
0 < M(K̂) (which implies that K̂ is accessible from both sides). Note that this
rules out m(K) = 0 for all K if such a K̂ exists.

The (One-Dimensional) Maximum Principle

Under the assumptions above, the pair of trajectories (K∗, I∗) is optimal (within
the class of piecewise continuous trajectories) if and only if there exists a trajec-
tory p∗ of the costate variable such that for all t ⩾ 0,

p∗(t) ⩾ 0; (7)

at each time t, I(t) is chosen to

maximize
I

H
(
K(t), I, p(t)

)
subject to m

(
K(t)

)
⩽ I ⩽ M

(
K(t)

)
,

that is,
H
(
K∗(t), I∗(t), p∗(t)

)
= H̃

(
K∗(t), p∗(t)

)
; (8)

the trajectory p∗ satisfies

ṗ∗(t) = −D1H̃
(
K∗(t), p∗(t)

)
+ rp∗(t); (9)
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and the following transversality condition holds,

lim
t→∞

p∗(t)K∗(t)e−rt = 0. (10)

Moreover, the value function V is concave, continuously differentiable, nonde-
creasing, nonnegative, and its derivative is the costate variable. That is, for all
t ⩾ 0,

p∗(t) = V ′
(
K∗(t)

)
.

For a proof see Chapter 3 of Weitzman [16]. Let me just say here that the
proof proceeds by defining the wealth function

W (t) = V
(
K∗(t)

)
,

and using Bellman’s optimality principle

V (Ko) =
∫ t

0
G
(
K∗(s), I∗(s)

)
e−rs ds + e−rtV

(
K∗(t)

)
.

to write
W (t) = ert

[
W (0) −

∫ t

0
G
(
K∗(s), I∗(s)

)
e−rs ds

]
,

which proves that W is differentiable. Since V is concave (this is easy to show),
the chain rule for left- and right-hand derivatives implies that V is differentiable
and

V ′
(
K∗(t)

)
= Ẇ (t)

I∗(t)
,

provided I∗(t) ̸= 0. (The case I∗(t) = 0 requires a bit more work.) This now
allows us to define p∗(t) to be V ′

(
K∗(t)

)
, and the remaining properties follow

by more or less standard methods. Since a differentiable concave function is
continuously differentiable, we conclude that p∗(t) is continuous.

Commentary

On p∗ and the Hamiltonian

According to the theorem, the costate variable p∗ is the derivative of the value
function, that is, it is the marginal value of a unit of capital to the firm, or
the shadow price of investment. It is precisely the value of investment. The
Hamiltonian is the sum

G(K, I) + pI,

the sum of the net income plus the value of investment. The fact that this is
maximized at each point in time says that the firm should choose its investment
to maximize the sum of its dividends G plus retained earnings p∗I, where the
retained capital I is valued at its true marginal value p∗ = V ′(K∗).
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On ṗ∗

By the Envelope Theorem, if I∗(t) is an interior maximizer of the Hamiltonian,
the derivative of the maximized Hamiltonian with respect to K or p is the partial
derivative of the Hamiltonian. That is,

D1H̃
(
K∗(t), p∗(t)

)
= D1H

(
K∗(t), I∗(t), p∗(t)

)
= D1G

(
K∗(t), I∗(t)

)
and

D2H̃
(
K∗(t), p∗(t)

)
= D3H

(
K∗(t), I∗(t), p∗(t)

)
= I∗(t).

In this case, (9) can be rewritten as

ṗ∗(t) = −D1G
(
K∗(t), I∗(t)

)
+ rp∗(t). (11)

This can be interpreted as a no-arbitrage condition. At time t I can buy
∆ units of capital at a price p(t) and use it earn an incremental flow of income
at the rate D1G · ∆ for a length of time ε, and then resell it time t + ε at a price
p(t + ε). The gain from this is

∆
[
p(t + ε) − p(t) + εD1G

]
.

Or I could take p(t)∆ and lend it at the interest rate r for a period of length ε
and earn p(t)∆εr. Absence of arbitrage implies that these two strategies must
have the same return, or

p(t + ε) − p(t) + εD1G = p(t)εr.

Dividing by ε and taking the limit as ε → 0 implies (11).

Stationary optima

A stationary optimum need not exist, but suppose K̂ > 0 is a stationary optimum.
That is, if K0 = K̂, then K∗(t) = K̂ for all t ⩾ 0. Then I∗(t) = 0 for all t. If this
is an interior maximizer of the Hamiltonian, then the first order condition implies

D2G(K̂, 0) + p∗(t) = 0,

so that p∗ must also be constant. Then (9) and (11) imply

−D1G
(
K∗(t), I∗(t)

)
+ rp∗(t) = 0,

or in terms of the stationary return on capital function R,

R(K̂) = r.
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The transversality condition

To see the necessity of the transversality condition, first use the Principle of Op-
timality (6) to get

e−rtV
(
K∗(t)

)
= V (Ko) −

∫ t

0
G
(
K∗(s), I∗(s)

)
e−rs ds

=
∫ ∞

t
G
(
K∗(s), I∗(s)

)
e−rs ds

Since the integral is convergent, we have

lim
t→∞

e−rtV
(
K∗(t)

)
= lim

t→∞

∫ ∞

t
G
(
K∗(s), I∗(s)

)
e−rs ds = 0. (12)

Now we use the concavity of V . Since concave functions lie below their tangent
lines (Theorem 5.12.2)

V (0) ⩽ V (K) + V ′(K)(0 − K)

for all K. In particular, for K = K∗(t), using the fact that p∗(t) = V ′
(
K∗(t)

)
,

we can rearrange this to get

V
(
K∗(t)

)
− V (0) ⩾ p∗(t)K∗(t) ⩾ 0

for all t > 0. Thus

e−rt
(
V
(
K∗(t)

)
− V (0)

)
⩾ e−rtp∗(t)K∗(t) ⩾ 0. (13)

Thus (12) and (13) imply

lim
t→∞

e−rtp∗(t)K∗(t) = 0.

The economics of the transversality condition

The transversality condition also has an economic interpretation as another no-
arbitrage condition. Suppose it failed—that is, suppose that

lim sup
t→∞

e−rtp∗(t)K∗(t) = A > 0.

Suppose I adopt the strategy of running the firm until time T , then selling it and
investing the proceeds at the interest rate r. The present value of this is∫ T

0
G
(
K∗(t), I∗(t)

)
e−rt dt + p∗(T )K∗(T )e−rT .

By choosing T large enough I can make this arbitrarily close to∫ ∞

0
G
(
K∗(t), I∗(t)

)
e−rt dt + A,

creating an arbitrage profit of just less than A. In order for this not to profitable,
the transversality condition must hold.
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The present value Hamiltonian

The Hamiltonian H I defined is called the current value Hamiltonian. Some
authors prefer to work with the present value Hamiltonian

Ĥ(K, I, t, q) = e−rtG(K, I) + qI

= e−rtH(K, I, ertq).

So in other words
H(K, I, p) = ertĤ(K, I, t, e−rtp).

Thus if I∗(t) maximizes H(K, I, p) it will also maximize Ĥ(K, I, t, e−rtp). Thus
the maximized present value Hamiltonian ˜̂

H satisfies
˜̂
H(K, t, q) = H̃(K, ertq).

Then defining q∗(t) = e−rtp∗(t), the transversality condition becomes

q∗(t)K∗(t) → 0 as t → ∞.

Also
q̇∗(t) = −re−rtp∗(t) + e−rtṗ∗(t)

= −re−rtp∗(t) + e−rt
(
−D1H̃

(
K∗(t), p∗(t)

)
+ rp∗(t)

)
= −D1

˜̂
H
(
K∗(t), e−rtp∗(t)

)
= −D1

˜̂
H
(
K∗(t), q∗(t)

)

The Wealth and Income Version of the Maximum Principle

This statement is sometimes called the Hamilton–Jacobi formulation, or Jacobi’s
integral form of Hamilton’s equations of motion.

Under the assumptions here, the feasible trajectories (K∗, I∗) are optimal if
and only if there exists a continuous nonnegative price trajectory p∗ satisfying for
all t ⩾ 0,

rV
(
K∗(t)

)
= G

(
K∗(t), I∗(t)

)
+ p∗(t)I∗(t)

= H̃
(
K∗(t), p∗(t)

)
.

(14)

Let’s interpret this in economic terms. On the left-hand side, V
(
K∗(t)

)
is the

value of the optimal time-t capital stock, in other words it is market value of
the firm’s equity shares (wealth). So rV

(
K∗(t)

)
is flow of interest that this

equity would generate if invested at the market rate of interest (income). It is
equated to the right-hand side, which consists of two parts: G

(
K∗(t), I∗(t)

)
, the

instantaneous net income, that is, the dividends paid out; plus p∗(t)I∗(t), the
value of the optimal time-t investment at prices p∗(t), which is the firm’s internal
shadow price of capital.
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11.4 Application to non-renewable resources

Consider the problem of finding the monopolistic price of oil over time. The rate
of interest is r > 0, the initial stock of oil is Ko. For simplicity we shall assume
this is known. Let E(t) ⩾ 0 be the amount of oil (as a flow) that is pumped and
sold at time t. For simplicity we shall assume the cost of pumping is negligible.
The flow of revenue Φ from selling the flow quantity E at a given time is given by

Φ(E) = E(θ−1)/θ,

where θ > 1. Note that the consumer price is Φ(E)/E = E−1/θ.
The monopolist therefore seeks to choose the trajectory maximize E to maxi-

mize ∫ ∞

0
E(t)(θ−1)/θe−rt dt

subject to

K(0) = Ko,

K̇(t) = − E(t),
E(t) ⩾ 0,

The Hamiltonian is G(K, I) + pI. Since in this problem K̇(t) = − E(t), we
see that −E plays the role of I, so I ⩽ 0 and

G(K, I) = (−I)(θ−1)/θ.

Note that K does not appear in G at all! Also note that since θ > 1 and I < 0,
G is a decreasing function of I. Moreover ∂G2/∂I2 = − θ−1

θ2 (−I)−(θ+1)/θ < 0 so
G is a concave function of (K, I), as we need for the assumption of our version
of the Maximum Principle. Rewriting everything in terms of E we get as the
Hamiltonian,

H(K, E, p) = E
θ−1

θ − pE (15)
We now find the maximum of the Hamiltonian with respect to E, fixing K

and p. The first and second partial derivatives of the Hamiltonian with respect
to E are

∂H

∂E
= θ − 1

θ
E−1/θ − p

and
∂2H

∂E2 = −θ − 1
θ2 E− θ+1

θ < 0.

Thus the Hamiltonian is concave in E, and ∂H
∂E

→ ∞ as E → 0. Thus the
maximum with respect to E occurs at E > 0. The first order condition for an
interior maximum with respect to E is

θ − 1
θ

E−1/θ − p = 0,
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or

E∗(K, p) =
(

θ − 1
pθ

)θ

. (16)

The maximized Hamiltonian is therefore

H̃(K, p) =
(

θ − 1
pθ

)θ−1

− p

(
θ − 1

pθ

)θ

= p1−θ

(
θ − 1

θ

)θ
(θ − 1

θ

)−1

− 1



= p1−θ

θ − 1

(
θ − 1

θ

)θ

.

(17)

The three necessary and sufficient optimality conditions are (substituting − E
for I):

p∗(t) ⩾ 0

ṗ∗(t) = −D1H̃
(
K∗(t), p∗(t)

)
+ rp∗(t)

= rp∗(t)
(18)

(since K does not appear in H̃). Also, E∗(t) maximizes the Hamiltonian, so by
the above,

E∗(t) =
(

θ − 1
p∗(t)θ

)θ

. (19)

Finally,
lim
t→∞

p∗(t)K∗(t)e−rt = 0, (20)

From the differential equation (18) we have that

p∗(t) = p∗(0)ert.

The trick is to figure out p∗(0).
But before we do that, let’s rewrite (19) as

E∗(t) =
(

θ − 1
p∗(t)θ

)θ

=
(

θ − 1
p∗(0)θ

)θ

︸ ︷︷ ︸
=E∗(0)

e−rθt > 0. (21)

That is, the extraction never stops. From (20)

p∗(t)K∗(t)e−rt = p∗(0)ertK∗(t)e−rt = p∗(0)K∗(t) −−−→
t→∞

0,

which implies
K∗(t) −−−→

t→∞
0.
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That is, all of the oil will eventually be extracted. This gives us the leverage we
need to pin down p∗(0). For

K(t) = Ko −
∫ t

0
E(τ) dτ

so the condition that all the oil is extracted can be written∫ ∞

0
E(τ) dτ = Ko.

From (21), this becomes

Ko =
∫ ∞

0
E∗(0)e−rθτ dτ

= E∗(0)
∫ ∞

0
e−rθτ dτ

= E∗(0)
rθ

or
E∗(0) = rθK0.

We can use this and (21) to solve for p∗(0):

p∗(0) = θ − 1
θ

(rθKo)−1/θ > 0.

Finally let π(t) denoted the price paid by consumers. As remarked above

π(t) = E(t)−1/θ = E(0)ert.

To summarize:

p∗(0) = θ − 1
θ

(rθKo)−1/θ.

p∗(t) = p∗(0)ert.

E∗(0) = rθKo.

E∗(t) = E∗(0)e−rθt.

K∗(t) = Koe
−rθt.

π(t) = rθKoe
rt

The relevant properties are that (i) all the oil is extracted,
but it takes forever; (ii) the shadow price p grows at the rate
of interest over time, and this is independent of the form of
the revenue but does depend on the assumption that the cost
of extraction is zero and independent of the stock of oil; and
(iii) the consumer price π grows at the rate of interest over
time, but this is a special property of the revenue function.
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Aside: Some loose ends: Note that the theorem as stated calls for an upper and lower
bound on E and we only put a lower bound on E. We can take an arbitrarily large
upper bound, as long as it is large enough.

We also have the technical Accessibility Hypothesis to worry about. The station-
ary rate of return is defined in the notes as R(K) = −D1G(K,0)

D2G(K,0) where G(K, E) =
(−E)(θ−1)/θ, so R(K) = 0 for all K. The Accessibility Hypothesis applies if there is
a K̂ satisfying R(K̂) = r, which never occurs since r > 0. Thus the Accessibility
Hypothesis is vacuously satisfied.

Aside: The costate variable p∗(t) acts as a shadow price the producer has to pay for
extracted oil. Even though the oil is sitting there and can be freely extracted, each
unit extracted reduces the stock, and so reduces the value of the stock. The costate
variable p∗ captures this value reduction.

Note that in this case, the ratio of the shadow price p∗(t) to the consumer price π(t)
is the constant p∗(0)/ E∗(0). This is an artifact due the special nature of the demand
curve, which has constant price elasticity θ.

Aside: How do the trajectories change as r changes? As r increases, p∗(t) increases
for each t. See Figure 11.1.

20 40 60 80 100
t

100

200

300

400

p

Ρ=0.09

Ρ=0.07

Ρ=0.05

Ρ=0.03

Ρ=0.01

Figure 11.1. The shadow price.

As r increases, E∗(0) increases, but for large t, E∗(t) decreases. See Figure 11.2.
As r increases, K∗(t) decreases for each t. See Figure 11.3.
All figures are for the case θ = 1.1

KC Border src: L11 v. 2020.09.30::14.29



Ec 121a Fall 2020
KC Border Capital Theory 11–16

20 40 60 80 100
t

0.01

0.02

0.03

0.04

E

Ρ=0.09

Ρ=0.07

Ρ=0.05

Ρ=0.03

Ρ=0.01

Figure 11.2. The extraction rate.
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Figure 11.3. The remaining stock.
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11.5 Appendix: The economics of first-order linear differ-
ential equations

This really has nothing to do with the maximum principle, but it’s fun. The
following theorem is a standard statement of the solution to a first order linear
differential equation. I took it from Apostol [1, Theorems 8.2 and 8.3, pp. 309–
310].

11.5.1 Theorem (First order linear differential equation) Assume P, Q
are continuous on the open interval I. Let a ∈ I, b ∈ R.

Then there is one and only one function y = f(x) that satisfies the initial value
problem

y′ + P (x)y = Q(x) (22)
with f(a) = b. It is given by

f(x) = be−A(x) + e−A(x)
∫ x

a
Q(t)eA(t) dt

where
A(x) =

∫ x

a
P (t) dt.

The theorem appears a bit mysterious in this form, but I can give it an eco-
nomic interpretation that makes it obvious (at least to me). The first thing we
will do is change the variable on which y depends from x to time, t.

Interpret y(t) as the value of a savings account at time t. At each point of
time it earns an instantaneous rate of return r(t). Moreover, we add a “flow” of
additional savings to the account at the rate s(t). Thus the rate of change of the
value of the account is

y′(t) = r(t)y(t) + s(t). (23)
Moreover, let’s rewrite the initial condition as y(t0) = y0. This yields the following
translation.

11.5.2 Theorem (First order linear differential equation) Assume r, s
are continuous on the open interval I. Let t0 ∈ I, y0 ∈ R.

Then there is one and only one function y that satisfies the initial value problem

y′ = r(t)y + s(t)

with y(t0) = y0. It is given by

y(t) = [y0 + S(t)] er(t)(t−t0)

where
r(t) = 1

t − t0

∫ t

t0
r(τ) dτ

and
S(t) =

∫ t

t0
s(τ)e−r(τ)(τ−t0) dτ.
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But this version is obviously true!

Proof : We rely on the following well-known (easily proved) result:

lim
n→∞

(
1 + (r/n)

)nt
= ert.

That is, the result of compounding interest on a dollar continuously over t periods
is ert dollars.

Case 1: s = 0. If the instantaneous rate of return at time t is r(t), the
average rate of return r(t) over the interval [t0, t] is just

r(t) = 1
t − t0

∫ t

t0
r(τ) dτ.

Now if we add nothing to the initial investment over time, that is, if s(t) = 0 for
all t, then I claim that the value of the account at time t is given by

y(t) = y0e
r(t)(t−t0). (24)

That is, earning the varying rate of return r over the interval [t0, t] is the same
as earning the average rate of return r over the interval. We can verify this by
showing that y given by (24) solves (23).

dy

dt
= d

dt
y0e

r(t)(t−t0)

= y0e
r(t)(t−t0) d

dt
(r(t)(t − t0))

= y0e
r(t)(t−t0) d

dt

∫ t

t0
r(τ) dτ

= y0e
r(t)(t−t0)r(t)

= r(t)y(t),

which is (23) with s = 0.
Case 2: General s. But in general, the additional savings s(t) is not zero. In

order to deal with the general case, we use the incredibly useful notion of present
value. If you invest $1 at time t0 it will be worth $er(t)(t−t0) at time t, so the value
at time t0, that is,

the present value of $1 at time t ise−r(t)(t−t0).

For if you invest e−r(t)(t−t0) at t0, you will have e−r(t)(t−t0)er(t)(t−t0) = 1 dollar at
time t.

The present value of the flow s(t) is s(t)e−r(t)(t−t0). The present value S(t) of
all the additional savings up to time t is thus

S(t) =
∫ t

t0
s(τ)e−r(τ)(τ−t0) dτ.
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But at time t this present value will be worth an additional

S(t)er(t)(t−t0).

Thus the total value of the savings account at time t is given by

y(t) = (y0 + S(t)) er(t)(t−t0).
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