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Lecture 7: More about Cost Functions

7.1 Summary of properties of cost functions

Let f be a monotonic production function. The associated cost function c(w,y)
is

e continuous

e concave in w

e monotone nondecreasing in (w,y)

e  homogeneous of degree one in w, that is, c(Aw,y) = Ac(w,y) for A > 0.
Moreover, if Z(w,y) is the conditional factor demand, then

de(w, y)

Twi = xi<w7y)'

7.2 Cost minimization
Mathematically the cost minimization problem can be formulated as follows.
minimize w - x subject to f(x) >y, = 20,

where w > 0 and y > 0.

It is clear that if f is monotonic, we may replace the condition f(z) > y by
f(z) —y = 0 without changing the solution. Let Z(w,y) solve this problem, and
assume that & > 0. The Lagrangean for this minimization problem is

w-x—)\(f(x) —y).

The gradient of the constraint function (with respect to z) is just f’'(Z), which
is not zero. Therefore by the Lagrange Multiplier Theorem, there is a Lagrange
multiplier A (depending on w,y) so that locally the first order conditions

wi—j\(w,y)fi(:?:(w,y)) =0, i=1,...,n, (1)

where f;(x) = 852(6@, and the constraint

y— f(#(w,y)) =0 (2)
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hold for all w,y. Note that (1) implies that A > 0.
The second order condition is that
)\ Z Z f@] UZU] ~ 7 (3>

i=17=1

for all v € R" satisfying

Using the method of implicit differentiation with respect to each w; on (1)
yields:

a& c & 0, i=1,...,n
dij T)— A 7) 0, Y 4
(9w (2) Z:: x@wj j=1,...,n (4)
where 6;; is the Kronecker delta,
I A
0 ifi#j.
Differentiating (1) with respect to y yields
O A S Oy,
_7fz£'_/\ fzkﬁizoa :17 y 1, 5
5, B A Y ful®) ] )
Now differentiate (2) with respect to each w; to get
) O .
—kaxawi: j=1,...,n, (6)
and with respect to y to get
" 6:1:k
=D ful@) 5~ +1=0. (7)
k=1 y

We can rearrange equations (4) through (7) into one gigantic matrix equation:

To see where this comes from, break up the (n+1) x

(Ao M A [0 5] 1o 00

N N M . O. .

: Do : oo : 0 (8)
Mot oo M | | 5o B B 0 .. 010
! fo 0|2 .22 0. 01]

(n+1) matrix equation into

four blocks. The upper left n x n block comes from (4). The upper right n x 1

v. 2020.09.30::14.29

src: LO7

KC Border



Ec 121A Farr 2020
KC BORDER MORE ABOUT COST FUNCTIONS 73

Figure 7.1. The blocks in the matrix version of equations (4) through (7).

block comes from (5). The lower left 1 x n block comes from (6), and finally the
lower right 1 x 1 block is just (7). This tells us is that

0% 0T, 0%
i " dw, Oy (Ao Man fi]

0y, 0z, 0,

dw, " dw, Oy M1 oo AMoan [
95 9A oA L i fa O
L Ow;  Ow, Oy |
So the second order conditions and Theorems 6.7.1 and 6.7.2 imply that the n xn
matrix
o8 on
8w1 o 8wn
i, Oy
ow,  Ow,

is negative semidefinite of rank n—1, being the upper left block of the inverse of
a bordered matrix that is negative definite under constraint. (See my notes on
quadratic forms [2].) It follows therefore that

0z;
<0 2=1,...,n.
8102‘ !
Note that this approach provides us with conditions under which the cost func-
tion is twice continuously differentiable. It follows from (9) that if the bordered

Hessian is invertible, the Implicit Function Theorem tells us that & and \ are
C! functions of w and y (since f is C?). On the other hand, if Z and A are C"
functions of w and y, then (8) implies that the bordered Hessian is invertible. In
either case, the marginal cost g—; = 5\, is a O function of w and ¥, so the cost

function is C?, which is hard to establish by other means.
Returning now to (9), note that since the Hessian is a symmetric matrix, we
have a number of reciprocity results. Namely:
8:?:1_8@ 2':1,...,77,

ow;  Ow; j=1,...,n,
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and R
c%z . 8)\ . (926

oy  Ow, Ow;0y

7.3 The marginal cost function

Define the cost function ¢ by

C(w7 y) = Z wki'k (w7 y)
k=1

Then
ac(w,y) _ iw aj:k(wvy>
dy =T gy
and
826<wvy) _ . 82‘%k(w7y)
o - ,-:kakiayQ . (10)
From (1), we have wy = ka(fc), SO
3C(w,y) C = ~ 8ik(w,y) i\
— " =) (1) —————== = )\, 11
G =AY )T (1)

where the second equality is just (7).

That is, the Lagrange multiplier \ is the marginal cost.

Now let’s see whether the marginal cost is increasing or decreasing as a function
of y. Differentiating (7) with respect to y yields

" (0% ) 8:62 0%
Zl( ]Zfljz f(l‘) ay2j>:07
]:

or rearranging,

" z 0z, 0%;
i = fii (@) =— =2 (12)
Z:: z;; ! 3y dy
. 10% .
From (10) and (1) we have that the left-hand side of (12) is N What is

the right-hand side?

Fix w and consider the curve y — Z(y). This is called an expansion path.
It traces out the optimal input combination as a function of the level of output.
The tangent line to this curve at Z is just {Z + av : @ € R}, where

oz;
oy’

vV =
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Write the output along this tangent line, f(# 4 awv), as a function f of . That
is, f(a) = f(Z + av). By the chain rule,

n

fle) =3 fi(@ + av)y;,

and .
Z Z [i (@ + av)vv,,
i=1j5=1
SO
no2 8% 8%
Z Z fl] a 8
i=1j=1 Y Y
Thus (12) can be written as
d%c PN
— = =-\1"(0).
o= A

In other words (12) asserts that the slope of the marginal cost curve is increasing
(that is, the cost function is a locally convex function of y) when the production
function is locally concave on the line tangent to the expansion path, and vice-versa.

7.4 Average cost and elasticity of scale

Recall that a production function f exhibits constant returns to scale if
flax) = af(z) for all & > 0. It exhibits increasing returns to scale if
f(azx) > af(x) for a > 1, and decreasing returns to scale if f(az) < af(x)
for a > 1. If f is homogeneous of degree k, that is, if

flaz) = o* f(2),
then the returns to scale are decreasing, constant, or increasing, as k < 1, k =1,
or k > 1. Define

h(a,z) = f(ax).

The elasticity of scale e(z) of the production function at z is defined to be

Dih(1,2) fi(x) -/ f(x),

1 E—
f(x)
where D; denotes the partial derivative with respect to the first argument «, and
which Varian [3] writes as

df (o) o
da  f(x)

If f is homogeneous of degree k, then e(z) = k, as

a=1

Dih(a, x) = k™ f ().
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Even if f is not homogeneous, following Varian, we can express the elasticity of
scale in terms of the marginal and average cost functions, at least for points x
that minimize cost uniquely for some (y, w):

e(i‘(y,w))

Il
—

"(2)-2/f(2)

_ ;‘\] 2y by the first order condition w = Af’(%)

_ clyw)/y —w- A=

~ Dycly, w) as c(y,w) = w - &(y,w), and by (11) A = Dyc(y, w)
= AC(y)/ MC(y).

Holding w fixed, and writing the cost simply as a function of y,
d dely) dyy—cly) 1 ( / C(y)> 1
— AC(y) = — = =—|(cd(y) ———=| =-(MC(y) — AC(y)) .
TACH) = 4. () = 22 = S i) - Acw)
Thus

AC'(y) >0 < MC(y) > AC(y) < e(2) < 1.

7.5 Average cost and constant returns to scale

If f exhibits constant returns to scale, then:

e the conditional input demand functions Z(w,y) are homogenous of degree 1
in y.
e  Marginal cost = average cost.

e For a price-taking profit maximizer, price = marginal cost = average cost, so
profit is zero.

e  If price is less than marginal cost, then the optimal output is zero. If price is
equal to marginal cost, then every level of output maximizes profit, which is zero.
If price is greater than marginal cost, then the profit function is unbounded, so
no profit maximizer exists.

7.6 Recovering the Production Function
from a Cost Function

We already know from the support function that the input requirement set for y
is
{z:w-2>c(w,y) for all w € RY }.
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But there is often another way to get a nicer expression for the production function
using the envelope theorem.

7.6.1 Example Consider the cost function (with two inputs)

c(w,y) = yluf +ug)"”.

By the envelope theorem

dc
8?1)1' N

1 l1—0o
o o\ — o—1 __ %
y;(uﬁ +wi) e ow] T =1

7

where z*(w, y) is the cost minimizing input vector. We can eliminate w; and ws
and solve for y as a function of x; and x5. Here’s the trick: exponentiate the
above equality to the

power to get

and sum over ¢ to get
o+ 2 = (] +0g) 7 ] + ) =y,
which gives the production function
y = (2] +a5)"/".

This called the constant elasticity of substitution production function, or the
Arrow—Chenery—Minhas—Solow production function, see [1]. O

7.6.2 Example Given the cost function

clw,y) =y auw;
=1

By the envelope theorem
dc
awi N
where z*(w,y) is the cost minimizing input vector. This implies that the cost
minimizing point z* is independent of w! Thus

£
oy =2,

Using the support function approach to finding the input requirement set, we see
that it is { : = 2*}, so that the production function is

Xy
Yy = min —.
i
This sort of production function is a Leontief production function. O
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