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Lecture 2: Profit Maximization

2.1 Digression: Maximization

My on-line notes on optimization [1] cover the mathematics of optimization in one
dimension, including the following topics.

• Local vs. global maxima and minima.

• Strict extrema.

• First order necessary conditions for interior extrema.

• First order necessary conditions at a boundary.

• Second order necessary conditions.

• Second order sufficient conditions.

• Taylor’s Theorem and nth-order conditions.

• Concave and convex functions.

2.2 Maximization and comparative statics

Just as above, our “equilibrium” conditions are often the results of some maximiz-
ing behavior. Consider this simple model of a firm. When the firm produces the
level y ⩾ 0 of output, it receives revenue R(y) and incurs cost C(y). The profit is
then R(y) − C(y). In addition, it pays an ad rem tax ty. It seeks to maximize its
after-tax profit:

maximize R(y) − C(y) − ty.

Let y∗(t) solve this problem. What do we know?

R′(y∗) − C ′(y∗) − t = 0

(or does it?). This does not tell us much about data that we might observe, but
let’s see how y∗ changes with t:

R′
(
y∗(t)

)
− C ′

(
y∗(t)

)
− t = 0 for all t.

Therefore, by differentiating both sides with respect to t we get[
R′′
(
y∗(t)

)
− C ′′

(
y∗(t)

)]
y∗′(t) − 1 = 0
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or
y∗′(t) = 1

R′′
(
y∗(t)

)
− C ′′

(
y∗(t)

) .

How can we sign this? The answer is, via the second order conditions. Namely,

R′′(y∗) − C ′′(y∗) ⩽ 0.

This implies that
y∗′(t) < 0.

What if R′′(y∗)−C ′′(y∗) = 0? Then the fraction has zero in the denominator,
which means that y∗′(t) does not exist!

The Implicit Function Theorem guarantees that if R′′(y∗) − C ′′(y∗) > 0, then
y∗(t) is unique and differentiable. But more on that later.

2.2.1 Revenue maximization

What if the firm maximizes after-tax revenue R(y)− ty instead of profit. The first
order condition is

R′(y) − t = 0
and the second order condition is

R′′(y) ⩽ 0.

(Note that I have used the economists’ sloppy notation of omitting the ∗. I should
actually use something different, since it is a different function.)

Differentiating the first order condition with respect to t yields

R′′(y)y′ − 1 = 0

or
y′ = 1

R′′ < 0,

where the inequality follows from the strict second order condition.
Thus a change in an ad rem tax gives us no leverage on deciding whether a

firm after-tax maximizes revenue or after-tax profit.

2.2.2 Wages

Suppose that the firm’s costs C are a function both of its level of output and a
wage parameter, and assume that the partial derivative DyC > 0 (which must be
the case if the firm is minimizing costs).

For profit maximization,

maximize
y

R(y) − C(y; w),
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the first order condition is

R′(y) − DyC(y; w) = 0

for an interior solution (marginal cost = marginal revenue), and the second order
condition is

R′′(y) − D2
yC(y; w) ⩽ 0.

Letting y∗(w) be the maximizer we see that

h(w) = R′
(
y∗(w)

)
− DyC

(
y∗(w); w

)
= 0

for all w. Thus h is constant so h′ = 0. By the chain rule

h′(w) = R′′
(
y∗(w)

)
y∗′(w) − D2

yC
(
y∗(w); w

)
y∗′(w) − DywC

(
y∗(w); w

)
= 0.

Solving for y∗′ gives

y∗′(w) =
DywC

(
y∗(w); w

)
R′′
(
y∗(w)

)
− D2

yC
(
y∗(w); w

) .

The denominator must be negative, so the sign of this is the opposite of the sign
of the mixed partial DywC. Hmmm! We’ll get back to this.

For revenue maximization,

maximize
y

R(y),

the first order condition is
R′(y) = 0

for an interior solution, and the second order condition is

R′′(y) ⩽ 0.

Letting ŷ(w) be the maximizer we see that it is independent of w! Thus ŷ′(w) = 0!

An application to sports economics

What is the effect of player salaries on ticket prices?
For a profit-maximizing sports franchise (and one visit to Dodger Stadium

ought to convince you that profits are being fiercely pursued), the revenue comes
from ticket sales, parking, and concessions, but the costs are almost entirely de-
termined by players’ (and coaches’ and groundskeepers’) wages and utility bills for
the lights, all of which do not depend on how many tickets are sold. The number
of tickets sold will depend on the price charged, so the revenue is not going to be
a linear function of the number of tickets sold.
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A reasonable approximation to profit is

profit = R(y) − C(w),

where y is the number of tickets sold. (Parking and concessions tend to be propor-
tional to the number of tickets.) There is also TV revenue, which does not depend
on y, but can be treated as an additive constant. While some costs (free bobble
heads, programs, etc.) are proportional to tickets they are small, and could also
be netted out of the ticket revenues. We can see that w has no effect on y, so it
cannot affect the ticket price.

What about second-order effects—higher wages attract better players, and so
increase demand for tickets, enabling the franchise to sell the same number of
tickets at a higher price. This works only if higher wages are limited to one team
that is able to attract all the good players—if all teams’ wages go up, there is no
reason to expect any one team to get better.

What about third-order effects—if wages are too high the team will fold and
then there will be no tickets available at any price. This might be more convincing
if team prices were lower, but according to Forbes, as of September 2020, NFL
franchises were worth on average over $3 billion, ranging from from $2 billion
(Cincinatti Bengals) to $5.7 billion (Dallas Cowboys). (See Forbes’ list).

If, as the owners usually claim come time to negotiate with players, teams are
such money losers, then why are team prices so high? For one thing, teams are
a good tax shelter. A new owner can assign 80% of the value to player contracts
and depreciate them over four or five years, then resell the team for largely capital
gains. They are also frequently real cash cows. And then there are some special
accounting practices that allow profits to be counted as expenses. (As when the
the owner’s son-in-law is given a fancy title without any particular value-producing
responsibilities. Movie studios do this too.)

If you are interested in the economics of professional sports, I highly recom-
mend Pay Dirt by my former colleagues Jim Quirk and Rod Fort [3].

2.3 After tax profit revisited

maximize
y

R(y) − C(y) − ty.

Let y∗ solve this problem. Last time we used the second order conditions to
conclude

d

dt
y∗(t) < 0,

provided the derivative exists.
But we got stuck when it came to dealing with wages. In that case

sgn d

dw
ŷ(w) = − sgn DywC(y, w).

For this we can use another approach.
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2.4 A lemma

2.4.1 Proposition Let X and P be open intervals in R, and let f : X × P → R
be twice continuously differentiable. Assume that for all x ∈ X and all p ∈ P ,

∂2f(x, p)
∂p∂x

⩾ 0. (1)

Let x0 maximize f(·, p0) over X and x1 maximize f(·, p1) over X. Then

(p1 − p0)(x1 − x0) ⩾ 0. (2)

In other words, the sign of the change in the maximizing x is the same as the sign
of the change in p.

If ⩽ replaces ⩾ in (1), then the sign of the change in x is the opposite of the
sign of the change in p.

For minimization rather than maximization the sign of the effect is reversed.

Proof : By definition of maximization, we have

f(x0, p0) ⩾ f(x1, p0) and f(x1, p1) ⩾ f(x0, p1).

“Cross-subtracting” implies

f(x1, p1) − f(x1, p0) ⩾ f(x0, p1) − f(x0, p0). (∗)

But
f(x1, p1) − f(x1, p0) =

∫ p1

p0

∂f

∂p
(x1, π) dπ

and
f(x0, p1) − f(x0, p0) =

∫ p1

p0

∂f

∂p
(x0, π) dπ.

So (∗) becomes ∫ p1

p0

∂f

∂p
(x1, π) dπ ⩾

∫ p1

p0

∂f

∂p
(x0, π) dπ,

or ∫ p1

p0

(
∂f

∂p
(x1, π) − ∂f

∂p
(x0, π)

)
dπ ⩾ 0.

Now we use the same trick of writing a difference as an integral of the derivative
to get ∫ p1

p0

(
∂f

∂p
(x1, π) − ∂f

∂p
(x0, π)

)
dπ =

∫ p1

p0

(∫ x1

x0

∂2f

∂p∂x
(ξ, π) dξ

)
dπ ⩾ 0.

By assumption ∂2f
∂p∂x

⩾ 0, so by the convention that
∫ b

a = −
∫ a

b , we conclude that
if p1 > p0, then x1 ⩾ x0, and the conclusion follows.
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Application

So consider
f(y, t) = R(y) − C(y) − ty.

Then
∂f(y, t)

∂t
= −y

so
∂2f(y, t)

∂y∂t
= −1 < 0,

so
d

dt
y∗(t) < 0.

Application

Apply to revenue maximization.

Application

Consider y = f(x), where x is an input that gets paid wage w. The profit
maximization problem is

maximize
x

pf(x) − wx.

Letting g(x, w) = pf(x) − wx, we have ∂2g
∂x∂w

= −1, so dx∗/dw < 0.
Letting g(x, p) = pf(x) − wx, we have ∂2g

∂x∂p
= f ′(x), which is presumably

positive, so dx∗/dp > 0.

2.5 ⋆ Supermodularity

If inequality (∗) holds whenever x1 > x0 and p1 > p0, we say that f exhibits in-
creasing differences, a property related to what we now call supermodularity.
To define this, we first need to define a lattice.

2.5.1 Definition A partial order ⪰ on a set X is a binary relation that is
transitive, reflexive, and antisymmetric. A lattice is a partially ordered set (X, ⪰)
with the property that every pair x, y ∈ X, has a least upper bound x ∨ y (also
called the join) and a greatest lower bound x ∧ y (also called the meet).

For now, the most important example of a lattice is Rn with the coordinatewise
ordering ≧, where x ≧ y if xi ⩾ yi for each i = 1, . . . , n.

2.5.2 Definition A real-valued function f on a lattice is supermodular if

f(x ∧ y) + f(x ∨ y) ⩾ f(x) + f(y).
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Proposition 2.4.1 can be restated as follows.

2.5.3 Proposition If f is a twice differentiable function on (Rn,≧), then f is
supermodular if and only if for i ̸= j

∂2f(x)
∂xi∂xj

⩾ 0.

That is, an increase in i increases the marginal increase of j. That is i and j
are complements.

We might discuss this in greater depth later. See my on-line notes [2].

2.6 Appendix: A note on the chain rule

Above, I used the following version of the chain rule.

2.6.1 Proposition (An application of the chain rule) Let f1, . . . , fm be
differentiable functions on an open interval I of R. These define a function
f : I → Rm by f(t) =

(
f1(t), . . . , fm(t)

)
. Let U be an open set in Rm and

let g : U → R have partial derivatives and assume that f(t) lies in U for each
t ∈ I. Then the composition h = g ◦ f defined by

h(t) = g
(
f(t)

)
= g

(
f1(t), . . . , fm(t)

)
is differentiable and

h′(t) =
m∑

i=1
Dig

(
f(t)

)
f ′

i(t).

If the functions are twice differentiable, then

h′′(t) = d

dt

m∑
i=1

Dig
(
f(t)

)
f ′

i(t)

=
m∑

i=1

d

dt
Dig

(
f(t)

)
f ′

i(t)

=
m∑

i=1


 m∑

j=1
Dijg

(
f(t)

)
fj(t)

 f ′
i(t) + Di(g

(
f(t)

)
f ′′

i (t)


=

 m∑
i=1

m∑
j=1

Dijg
(
f(t)

)
fj(t)fi(t)

+
(

m∑
i=1

Di(g
(
f(t)

)
f ′′

i (t)
)

Here is an important special case.

2.6.2 Corollary Let g : U ⊂ Rm → R and let x ∈ U . Pick some v ∈ Rm and
define

h(t) = g(x + tv).
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Then
h′(0) =

m∑
i=1

Dig(x)vi

and
h′′(0) =

m∑
i=1

m∑
j=1

Dijg(x)vivj
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