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Lecture 1: Introduction to Comparative Statics

The models we study in this class are largely qualitative. Here is a simple
example of what I mean by a qualitative model.

1.1 Supply and Demand in a Single Market

You may recall from Ec 11 that a demand curve expresses a relation between
quantities and prices for buyers. This being economics, there are at least two
interpretations of the demand curve. The Walrasian demand curve [?] gives
the quantity that buyers are willing to buy as a function of the price they pay.
As a function it maps prices to quantities. The Marshallian demand curve [?]
gives for each quantity the price at which buyers are willing to buy that quantity.
This is not to be confused with the all-or-nothing demand curve.

Since the time of Marshall it has been traditional to draw demand and supply
curves with quantity as the abscissa, but I usually do not. Instead, I usually put
price on the horizontal axis, since the theories we shall discuss treat price as the
independent variable from the point of view of buyers and sellers. Fortunately,
the sign of the slope is the same either way. See Figures ?? and ??.

• The definition of a market and the Law of One Price.

1.2 Comparative Statics of Supply and Demand

The model has these pieces:

• The (Walrasian) demand curve gives the quantity that buyers are willing
to buy as a function of the price they pay:

D(p) is the quantity demanded at price p.

• Behavioral assumption: The demand curve is downward sloping. To simplify
things, let’s assume the demand curve is smooth and that

D′(p) < 0.
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Figure 1.1. A (Walrasian) demand curve.

p

q
D̃(q) = D−1(q)

Figure 1.2. The same curve as a Marshallian demand.
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• The (Walrasian) supply curve give the quantity that sellers are willing to
sell as a function of the price they receive.

S(p) is the quantity supplied at price p.

• Behavioral assumption: The supply curve is upward sloping:

S ′(p) > 0.

q

p

S(p)

Figure 1.3. A (Walrasian) supply curve.

• The market equilibrium price p∗ and equilibrium quantity q∗ are deter-
mined by “market forces” so that the quantity demanded is equal to the quantity
supplied, or the market “clears.” That is,

D(p∗) − S(p∗) = 0.

q∗ = D(p∗) = S(p∗).

• By itself this tells us nothing about what the price and quantity might be—it
is consistent with any values of p∗ and q∗. Nevertheless the model is not without
content.

• The testable content does not come from characterizing the price-quantity
pairs that can be market equilibria, but rather from the way the equilibrium
changes in response to interventions or exogenous changes to the environment.
The identification of how the static equilibrium changes in response to changes in
outside factors is called comparative statics.
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Figure 1.4. Market-clearing.

1.2.1 Testable implications

Suppose an ad rem excise tax of t per unit is imposed. What happens to the
market price and quantity?

To answer this we need to be careful about which price we are speaking of.
Let pb denote the price the buyer pays and ps the price the seller receives. Then

pb − ps = t.

So now we must modify the last part of the model to this:

• The market prices p̂b(t) and p̂s(t), which depend on the size of the tax, are
determined by “market forces” so that the quantity demanded is equal to the
quantity supplied.

D
(
p̂b(t)

)
− S

(
p̂s(t)

)
= 0.

q̂(t) = D
(
p̂b(t)

)
= S

(
p̂s(t)

)
. (1)

p̂b(t) = p̂s(t) + t.

We are interested in how p̂b and p̂s vary with the tax t. In other words, we
want to know what we can about p̂′

s, p̂′
b, and q̂′.

• Well, for starters, if there are market clearing prices, we know that for all t

D
(
p̂s(t) + t

)
− S

(
p̂s(t)

)
= 0. (2)

Differentiate both sides to get

D′
(
p̂s(t) + t

)(
p̂′

s(t) + 1
)

− S ′
(
p̂s(t)

)
p̂′

s(t) = 0.
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Figure 1.5. Market-clearing with an ad rem tax.

Solve to get

p̂′
s(t) = −

D′
(
p̂s(t) + t

)
D′

(
p̂s(t) + t

)
− S ′

(
p̂s(t)

) . (3)

Since D′ < 0 and S ′ > 0, it follows that

−1 < p̂′
s(t) < 0.

• Next try it with
D

(
p̂b(t)

)
− S

(
p̂b(t) − t

)
= 0.

Differentiating with respect to t yields

D′
(
p̂b(t)

)
p′

b(t) − S ′
(
p̂b(t) − t

)(
p̂′

b(t) − 1
)

= 0,

so

p̂′
b(t) = −

S ′
(
p̂b(t) − t

)
D′

(
p̂b(t)

)
− S ′

(
p̂b(t) − t

) . (4)

This implies
0 < p̂′

b(t) < 1.

• Now observe that since t = p̂b(t) − p̂s(t), from (??)–(??) we have

t′ = p̂′
b(t) − p̂′

s(t) =
−S ′

(
p̂b(t) − t

)
D′

(
p̂b(t)

)
− S ′

(
p̂b(t) − t

) −
−D′

(
p̂s(t) + t

)
D′

(
p̂s(t) + t

)
− S ′

(
p̂s(t)

)

=
D′

(
p̂s(t) + t

)
− S ′

(
p̂s(t)

)
D′

(
p̂s(t) + t

)
− S ′

(
p̂s(t)

) =
D′

(
p̂b(t)

)
− S ′

(
p̂b(t) − t

)
D′

(
p̂b(t)

)
− S ′

(
p̂b(t) − t

)
= 1.
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This is comforting.

• How do we know that market clearing prices will exist? That is, how can
we be sure that the supply and demand curves cross? Here is a sufficient set of
conditions that will guarantee it (assuming smoothness, which implies no jumps).

◦ If the price is low enough, then demand exceeds supply.

lim
p→0

D(p) > lim
p→0

S(p).

◦ If the price is high enough, then supply exceeds demand.

lim
p→∞

S(p) > lim
p→∞

D(p).

• The mathematical sticklers among you may object to the previous line of�
argument. I differentiated p̂b and p̂s with respect to t, but how did I know that
these functions were differentiable? The answer is given by the Implicit Function
Theorem, which is stated as Theorem ?? below. In our case, (??) states that
D(p + t) − S(p) = 0, which is an equation of the form f(p, t) = 0. This implicitly
defines p as a function of t. The Implicit Function Theorem states that if f
is (continuously) differentiable, and if ∂f

∂x
̸= 0, then at least locally this equation

uniquely defines p as a (continuously) differentiable function of t. For more details,
see Section ?? below, or for more even details and extensions, see my online
notes [?].

1.3 Market equilibria as maximizers

For a smooth function f , if its derivative is positive to the left of x∗ and negative
to the right, then it achieves a maximum at x∗. In our simple market, demand is
greater than supply to the left of equilibrium and less than supply to the right.
Thus excess demand (demand − supply) acts like the derivative of a function that
has a maximum at the market equilibrium.

Define A(p) by
A(p) =

∫ p

0
D(x) − S(x) dx,

which is the (signed) area under the Walrasian demand curve and above the
Walrasian supply curve up to p. (There is a mathematical chance that this
area might be infinite, but that could not be the case for a demand curve, as it
would imply that the revenue obtainable by lowering the price and increasing the
quantity would be unbounded, which cannot happen in a real economy.) Then by
the First Fundamental Theorem of Calculus (see, e.g., Apostol [?, Theorem 5.1,
p. 202]),

A′(p) = D(p) − S(p), and A′′(p) = D′(p) − S ′(p) < 0,
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Figure 1.6. Market equilibrium maximizes A(p).
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M(q)

Figure 1.7. Market equilibrium maximizes Marshallian surplus M(q).
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so A is strictly concave. Its maximum occurs at the market clearing price p∗.
Thus, at least in this simple case, finding the market clearing price is equivalent

to maximizing an appropriate function. This is a theme to which we shall return
later. But now let us recast the above argument in a Marshallian framework.

The Marshallian demand curve is the inverse of the Walrasian demand curve
and ditto for the supply curves. Marshallian consumers’ surplus is the area
under the Marshallian demand up to some quantity q. You may recall from Ec 11
(we shall derive it later) that the inverse supply curve of a price-taking seller is the
marginal cost. Thus the area under the inverse supply curve up to q is the total
variable cost of producing q. Thus the (signed) area M(q) between the inverse
demand curve and the inverse supply curve is equal to consumers’ surplus minus
(variable) cost. Once again, the market equilibrium quantity q∗ maximizes the
Marshallian surplus M(q). See Figure ??.

1.4 Appendix: The Implicit Function Theorem

An equation of the form
f(x, p) = y (5)

implicitly defines x as a function of pon a domain P if there is a function ξ
on P for which

f(ξ(p), p) = y

for all p ∈ P . It is traditional to assume that y = 0, but not essential. (We can
always convert y to zero by defining f̂(x, p) = f(x, p)−y. Then f(x, p) = y if and
only if f̂(x, p) = 0.)

1.4.1 Classical Implicit Function Theorem Let X × P be an open subset of
Rn × Rm, and let f : X × P → Rn be Ck, for k ⩾ 1. Assume that Dxf(x̄, p̄) is
invertible.

Then there are neighborhoods U ⊂ X and W ⊂ P of x̄ and p̄ on which (??)
uniquely defines x as a function of p. That is, there is a function ξ : W → U such
that:
1. f(ξ(p); p) = f(x̄, p̄) for all p ∈ W .

2. For each p ∈ W , ξ(p) is the unique solution to (??) lying in U . In particular,
then

ξ(p̄) = x̄.

3. ξ is Ck on W , and

∂ξ1

∂p1
. . .

∂ξ1

∂pm... ...
∂ξn

∂p1
. . .

∂ξn

∂pm

 = −


∂f1

∂x1
. . .

∂f1

∂xn... ...
∂fn

∂x1
. . .

∂fn

∂xn



−1 

∂f1

∂p1
. . .

∂f1

∂pm... ...
∂fn

∂p1
. . .

∂fn

∂pm

 .
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f(x, p) = 0

p

x
f(x, p) > 0

f(x, p) < 0

(x1, p1)

(x2, p2) (x3, p3)f ′

Figure 1.8. Looking for implicit functions.

1.4.2 Theorem (Implicit Function Theorem 0) Let X be a subset of Rn,
let P be a metric space, and let f : X × P → Rn be continuous. Suppose the
derivative Dxf of f with respect to x exists at a point (x̄, p̄) in the interior of
X × P and that Dxf(x̄, p̄) is invertible.

Then for any neighborhood U of x̄, there is a neighborhood W of p̄ and a
function ξ : W → U such that:

1. ξ(p̄) = x̄.

2. f
(
ξ(p), p

)
= f(x̄, p̄) for all p ∈ W .

3. ξ is continuous at the point p̄.

However, it may be that ξ is neither continuous nor uniquely defined on any
neighborhood of p̄.

1.4.1 Examples

Figure ?? illustrates the Implicit Function Theorem for the special case n = m =
1, which is the only one I can draw. The figure is drawn sideways since we are
looking for x as a function of p. In this case, the requirement that the differential
with respect to x be invertible reduces to ∂f

∂x
̸= 0. That is, in the diagram the

gradient of f may not be horizontal. In the figure, you can see that the points,
(x1, p1), (x2, p2), and (x3, p3), the differentials Dxf are zero. At (x1, p1) and (x2, p2)
there is no way to define x as a continuous function of p locally. (Note however,
that if we allowed a discontinuous function, we could define x as a function of p
in a neighborhood of p1 or p2, but not uniquely.) At the point (x3, p3), we can
uniquely define x as a function of p near p3, but this function is not differentiable.

Another example of the failure of the conclusion of the Classical Implicit Func-
tion Theorem is provided by the following function.

1.4.3 Example (Differential not invertible) Define f : R × R → R by

f(x, p) = (x − p2)(x − 2p2).

Consider the function implicitly defined by f(x, p) = 0. The function f is zero
along the parabolas x = p2 and x = 2p2, and in particular f(0, 0) = 0. See
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Figure ??. The hypothesis of the Implicit Function Theorem is not satisfied since
∂f(0,0)

∂x
= 0. The conclusion also fails. The problem here is not that a smooth

implicit function through (x, p) = (0, 0) fails to exist. The problem is that it is
not unique. There are four distinct continuously differentiable implicitly defined
functions. □

f < 0

f < 0

f > 0 f > 0

p

x

Figure 1.9. f(x, p) = (p − x2)(p − 2x2).

1.4.4 Example (Lack of continuous differentiability) Consider the func-
tion h(x) = x + 2x2 sin 1

x2 , see Figure ??. This function is differentiable ev-
erywhere, but not continuously differentiable at zero. Furthermore, h(0) = 0,
h′(0) = 1, but h is not monotone on any neighborhood of zero. Now consider
the function f(x, p) = h(x) − p. It satisfies f(0, 0) = 0 and ∂f(0,0)

∂x
̸= 0, but there

is no unique implicitly defined function on any neighborhood, nor is there any
continuous implicitly defined function.

To see this, note that f(x, p) = 0 if and only if h(x) = p. So a unique implicitly
defined function exists only if h is invertible on some neighborhood of zero. But
this is not so, for given any ε > 0, there is some 0 < p < ε

2 for which there
are 0 < x < x′ < ε satisfying h(x) = h(x′) = p. It is also easy to see that no
continuous function satisfies h

(
ξ(p)

)
= p either. □

If x is more than one-dimensional there are subtler ways in which Dxf may fail
to be continuous. The next example is taken from Dieudonné [?, Problem 10.2.2,
p. 273].
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Figure 1.10. The function x + 2x2 sin 1
x2 .

1.4.5 Example Define f : R2 → R2 by

f1(x, y) = x

and

f2(x, y) =



y − x2 0 ⩽ x2 ⩽ y

y2 − x2y

x2 0 ⩽ y < x2

−f2(x, −y) y < 0.

Dieudonné claims that f is everywhere differentiable on R2, and Df(0, 0) is the
identity mapping, but Df is not continuous at the origin. I’ll let you ponder that.

Furthermore in every neighborhood of the origin there are distinct points (x, y)
and (x′, y′) with f(x, y) = f(x′, y′). To find such a pair, pick a (small) x′ = x > 0
and set y = x2 and y′ = −x2. Then f1(x, y) = f1(x′, y′) = x, and f2(x, y) =
f2(x′, y′) = 0.

This implies f has no local inverse, so the equation f(x, y) − p = f(0, 0) = 0
does not uniquely define (x, y) as a function of p = (p1, p2) near the origin. □
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