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Section 1

Introduction

1.1 Miscellaneous notation
The set of real numbers is denoted R, while n-dimensional Euclidean space is denoted Rn. I
adopt the usual convention of denoting the ith unit coordinate vector by ei, regardless of the
dimension of the underlying space. That is, the ith coordinate of ei is one and all the others
are zero. Similarly, the unit vector, which has all its components equal to one, is denoted 1,
regardless of the dimension of the space. (This includes infinite-dimensional sequence spaces.)

For vectors x, y ∈ Rn, define

x · y =
n∑

i=1
xiyi,

the Euclidean inner product. The Euclidean norm of a vector in Rn is defined by

∥x∥ = (x · x) 1
2 =

(
n∑

i=1
x2

i

) 1
2

.

We may occasionally wish to think of coordinates of a vector as being numbered from 0
through n rather than 1 through n+ 1.

The usual ordering on R is denoted ⩾ or ⩽. On Rn, the ordering x ≧ y means xi ⩾ yi,
i = 1, . . . , n, while x ≫ y means xi > yi, i = 1, . . . , n. We may occasionally write x > y to
mean x ≧ y and x ̸= y. A vector x is nonnegative if x ≧ 0, strictly positive if x ≫ 0, and
semipositive if x > 0. I shall try to avoid using the adjective “positive” by itself, since to most
mathematicians it means “nonnegative,” but to many nonmathematicians it means “strictly
positive.” Define Rn

+ = {x ∈ Rn : x ≧ 0} and Rn
++ = {x ∈ Rn : x ≫ 0}, the nonnegative

orthant and strictly positive orthant of Rn respectively.

x ≧ y ⇐⇒ xi ⩾ yi, i = 1, . . . , n
x > y ⇐⇒ xi ⩾ yi, i = 1, . . . , n and x ̸= y
x ≫ y ⇐⇒ xi > yi, i = 1, . . . , n

Figure 1.1. Orderings on Rn.

1.1.1 Extended real numbers
The extended real number system R♯ consists of the real numbers plus two additional
entities ∞ (sometimes known as +∞) and −∞. The ordering of the real numbers is extended

1
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so that for any real number α, we have −∞ < α < ∞. Furthermore we extend the definitions
of addition and multiplication as follows.

α+ ∞ = ∞ and α− ∞ = −∞;

∞ · α = ∞, if α > 0 and ∞ · α = −∞, if α < 0;

∞ · 0 = 0;

for any real number α. The combination ∞ − ∞ of symbols has no meaning.

1.1.2 Infimum and supremum
A set A of real numbers is bounded above if there exists some real number α, satisfying α ⩾ x
for all x ∈ A. In this case we say that x is an upper bound for A. Similar definitions apply
for lower bounds.

A number is the greatest element of A if it belongs to A and is an upper bound for A.
A lower bound for A that belongs to A is the least element of A. Note that greatest and least
elements are unique, for if x and y are both upper bounds that belong to A, then x ⩾ y and
y ⩾ x, so x = y.

The infimum of a set A of real numbers, denoted inf A, is the greatest lower bound of A in
the set of extended real numbers. That is,

∀α ∈ A inf A ⩽ α,

and for any other extended real β,

(∀α ∈ A β ⩽ α) =⇒ β ⩽ inf A.

The supremum of A is the greatest lower bound of A in the extended real numbers. Note that
the definitions imply the following.

inf ∅ = ∞ and sup∅ = −∞.

The real numbers are constructed so that they have the following properties:

1 Fact (The real numbers are complete.) If a nonempty set of real numbers is bounded
above, then it has a supremum. If a nonempty set of real numbers is bounded below, then it
has an infimum.

1.1.3 Contours of a function
Given a real function f : X → R, we may use the statistician’s convention where

[f > α] means {x ∈ X : f(x) > α}, etc.

A set of the form [f = α] is a level set of f , [f ⩾ α] is an upper contour set, and [f > α] is
a strict upper contour set of f .

The graph of a function f : X → R♯ is just {(x, α) ∈ X × R : α = f(x)}. The epigraph is
{(x, α) ∈ X × R : α ⩾ f(x)}, and the hypograph1 is {(x, α) ∈ X × R : α ⩽ f(x)}.

1Some authors use the term subgraph instead of hypograph, but epi- and hypo- are Greek prefixes, while
super- and sub- come from Latin. I will stick with Greek here, since no one says “supergraph.”

v. 2015.11.20::14.58 src: misc KC Border
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1.2 Maxima and minima
A function f : X → R attains a global maximum or absolute maximum over X at x∗ ∈ X
if f(x∗) = supx∈X f(x). That is, if f(x∗) ⩾ f(x) for every x ∈ X. We may also say that x∗ is a
global maximizer or global maximum point of f on X, or that x∗ maximizes f over X.
The value f(x∗) is called the global maximum of f on (or over) X.2

The function f achieves a minimum at x∗ if f(x∗) ⩽ f(x) for every x ∈ X. An extremum
of f is a point where f attains either a maximum or a minimum. Notice that f achieves a
maximum at x∗ if and only if −f achieves a minimum there. Consequently, anything we say
about maxima can be converted into a statement about minima by appropriately changing signs.
In particular, all the definitions listed here regarding maxima have corresponding definitions for
minima. A function f has a strict maximum on X at x∗ ∈ X if f(x∗) > f(x) for every x ∈ X
satisfying x ̸= x∗. We may sometimes use the term weak maximum instead of maximum to
emphasize that we do not necessarily mean a strict maximum. When X ⊂ Rn, we say that f
has a local maximum or relative maximum at x∗ or that x∗ is a local maximizer of f on
X if there is a neighborhood U of x∗ in X such that x∗ maximizes f on U .

Often we are interested in maxima and minima of f on a subset of its domain. A common
way to define such a subset is in terms of inequality constraints of the form gj(x) ⩾ αj , where
gj : X → R, j = 1, . . . ,m. (Or, we may write g(x) ≧ a, where g = (g1, . . . , gm) : X → Rm, and
a = (α1, . . . , αm).) We say that a point x satisfies the constraints if it belongs to X and Introduce general

notation for
vector-valued functions.g(x) ≧ a. The set of points satisfying the constraints, [g ≧ a] = {x ∈ X : g(x) ≧ a}, is called

the constraint set. The function f itself may be referred to as the objective function to
distinguish it from the constraint functions g1, . . . , gm.

We say that x∗ is a constrained maximizer of f if x∗ satisfies the constraints, g(x∗) ≧ a,
and f(x∗) ⩾ f(x) for every x satisfying the constraints. The point x is a local constrained
maximizer if it satisfies the constraints and there is a neighborhood U of x such that f(x∗) ⩾
f(x) for every x ∈ U satisfying the constraints. The point x∗ is an interior maximizer of f if
its lies in the relative interior of the constraint set.

2Over the years I have slipped into the practice of referring to the point x∗ as a maximum of f . Roko Aliprantis
has convinced me that this is potentially confusing at best and wrong at worst. For instance, what is the maximum
of the cosine function, 1 or 0? Most people will answer 1, but this value is attained at 0.

I shall endeavor to avoid this perhaps erroneous practice, but I may backslide. Incidentally, I am not alone.
A quick random sample of my bookshelves reveals that Luenberger [103] and Varian [156] also refer to x∗ as a
maximum of f , while Apostol [7], Debreu [41], and Mas-Colell, Whinston, and Green [108] do not. Some authors
equivocate, e.g., Marsden [107]. The venerable Hancock [71] says that “f is a maximum for x∗.”
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Section 2

Basic topologcal concepts

This section is to briefly summarize some of the theory of topological spaces, especially metric
spaces, but is not intended to be comprehensive. An excellent treatment of metric spaces may
be found in Rudin [134, Chapter 2] or Aliprantis and Border [3, Chapters 2 and 3]. My favorite
books on general topology include Aliprantis and Border [3], Wilanksy [160], and Willard [161].

I recently combined
several disjoint sets of
notes here. I need to
make sure that things
are in order, and that I
make it clear which
results apply only to
metric spaces.

2.1 Metric spaces
A metric (or distance) on a nonempty set X is a function d : X × X → R satisfying the
following four properties:

1. Positivity: d(x, y) ⩾ 0 and d(x, x) = 0 for all x, y ∈ X.

2. Discrimination: d(x, y) = 0 implies x = y.

3. Symmetry: d(x, y) = d(y, x) for all x, y ∈ X.

4. Triangle Inequality: d(x, y) ⩽ d(x, z) + d(z, y) for all x, y, z ∈ X. (See Figure 2.1.)

If d is a metric on a set X, then the pair (X, d) is called a metric space. A semimetric
satisfies properties (1), (3), and (4).

︸ ︷︷ ︸
d(x, y)

︸︷︷︸ d(x, z)

︸︷
︷︸ d(z, y)

x y

z

Figure 2.1. The triangle inequality.

2 Example (Metrics) Let X be any nonempty set. The function d defined by

d(x, y) =

{
1 if x ̸= y

0 if x = y

is a metric, called the discrete metric.

5
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The natural metric on R is
d(x, y) = |x− y|.

There are several natural metrics on Rn.
The Euclidean metric is defined by

d(x, y) =
( n∑

i=1
|xi − yi|2

) 1
2
.

Here is a roundabout but instructive proof of the triangle inequality for the Euclidean
metric:
We start by proving the Cauch–Schwartz inequality,

|x · y| ⩽ ∥x∥ · ∥y∥.

First observe that if either x = 0 or y = 0, this inequality holds an equality, so we need only
consider the case where x ̸= 0 and y ̸= 0. Now observe that

∥αx + βy∥2 = (αx + βy) · (αx + βy) = α2∥x∥2 + 2αβx · y + β2∥y∥2 (2.1)

so that
−2αβx · y = α2∥x∥2 + β2∥y∥2 − ∥αx + βy∥2 ⩽ α2∥x∥2 + β2∥y∥2.

Considering α and β of various signs, we conclude that

2|αβ| |x · y| ⩽ α2∥x∥2 + β2∥y∥2.

Setting α = 1/∥x∥ and β = 1/∥y∥ and rearranging gives the desired inequality.
Setting α = β = 1 in (2.1) and applying the Cauchy–Schwartz yields

∥x + y∥2 = ∥x∥2 + 2x · y + ∥y∥2 ⩽ ∥x∥2 + 2|x · y| + ∥y∥2 ⩽ ∥x∥2 + 2 ∥x∥ ∥y∥ + ∥y∥2 =
(
∥x∥ + ∥y∥

)2

Taking square roots yields the following, which is also called the triangle inequality,

∥x + y∥ ⩽ ∥x∥ + ∥y∥.

Thus
d(x, z) = ∥x − z∥ = ∥x − y + y − z∥ ⩽ ∥x − y∥ + ∥y − z∥ = d(x, y) + d(y, z),

which proves the triangle inequality for the Euclidean metric.

The ℓ1 metric is defined by

d(x, y) =
n∑

i=1
|xi − yi|.

The sup metric or uniform metric is defined by

d(x, y) = max
i=1,...,n

|xi − yi|.

These definitions can be extended to spaces of infinite sequences, by replacing the finite sum
with an infinite series. The infinite dimensional spaces of sequences where every point has
a finite distance from zero under these metrics (that is, when the infinite series is absolutely
convergent) are called ℓ2, ℓ1, and ℓ∞, respectively. (Although for the metric on ℓ∞, the maximum
must replaced by a supremum: d(x, y) = supn |xn − yn|.)

In general, a norm ∥ · ∥ on a vector space defines a metric by

d(x, y) = ∥x− y∥.

□

Given a subset A of a metric space (X, d), the distance function for A, x 7→ d(x,A), is
defined by

d(x,A) = inf{d(x, y) : y ∈ A}.
Clearly such a function is nonnegative.
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2.2 Open sets in metric spaces
Let (X, d) be a metric space. A point x is an interior point of a subset A of X if there is some
ε > 0 such that the ε-neighborhood, or ε-ball,

Bε(x) = {y ∈ X : d(y, x) < ε}

is included in A. In that case we also say that A is a neighborhood of x.1 The set of interior
points is called the interior of X, denoted intX or sometimes X◦. A set G is open if every
point in G is an interior point, that is, G = intG.

Let E be a subset of A. A point x is a relative interior point of E with respect to A if
there is some ε > 0 such that Bε(x)∩A = {y ∈ A : d(y, x) < ε} ⊂ E. The set of relative interior
points is called the relative interior of E. A set E is relatively open in A if every point in
G is a relative interior point. Note that A is always relatively open in A.

• The interior intX of a set X is open. Indeed it is the largest open set included in X.

• The union of a family of open sets is open.

• The intersection of a finite family of open sets is open.

• The empty set and X are both open.

• Every open ball Br(x) is an open set.
To see this, let Br(x) be an open ball and let y ∈ Br(x). Put ε = r − d(x, y) > 0. Now if
z ∈ Bε(y), then the triangle inequality implies d(x, z) ⩽ d(x, y) + d(y, z) < d(x, y) + ε = r.
So Bε(y) ⊂ Br(x), which means that Br(x) is a d-open set.

The collection of open sets in a metric space is called the topology of the metric space. Two
metrics generating the same topology are equivalent. The Euclidean, ℓ1, and sup metrics on
Rn are equivalent. A property of a metric space that can be expressed in terms of open sets
without mentioning a specific metric is called a topological property.

2.3 Topological spaces
The collection of open subsets of a metric space is closed under finite intersections is closed
under finite intersections and arbitrary unions. Use that as the motivation for the following
definition.

3 Definition A topology τ on a nonempty set X is a family of subsets of X, called open sets
satisfying

1. ∅ ∈ τ and X ∈ τ .

2. The family τ is closed under finite intersections. That is, if U1, . . . , Un belong to τ , then∩n
i=1 Ui belongs to τ .

3. The family τ is closed under arbitrary unions. That is, if Uα, α ∈ A belong to τ , then∪
α∈A Uα belongs to τ .

The pair (X, τ) is a topological space.
The topology τ is a Hausdorff topology if for every two distinct points x, y in X there are

disjoint open sets U , V with x ∈ U and y ∈ V .
The set A is a neighborhood of x if there is an open set U satisfying x ∈ U ⊂ A.

1Be aware that Rudin [134] defines a neighborhood to be what I call an ε-neighborhood. Under my definition
a neighborhood need not be a ball, nor need it be open.
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Every metric topology is a Hausdorff topology. A property of X that can be expressed in
terms of its topology is called a topological property.

4 Lemma A set is open if and only it is a neighborhood of each of it points.

Proof : Clearly an open set is neighborhood of its points. So assume the set G is a neighborhood
of each of it points. That is, for each x ∈ G there is an open set Ux satisfying x ∈ Ux ⊂ G.
Then G =

∪
x∈G Ux is open, being a union open sets.

2.4 Closed sets
A set in a topological space is closed if its complement is open. Thus:

• The intersection of any family of closed sets is closed.

• The union of a finite family of closed sets is closed.

• The empty set and X are both closed.

• The smallest closed set including a set A is called the closure of A, denoted A or clA. It
is the intersection of all closed sets that include A.

• It follows that A is closed if and only if A = A. Also, if A ⊂ B, then A ⊂ B.

• In a metric space, {y : d(y, x) < ε} ⊂ {y : d(y, x) ⩽ ε}.

For the Euclidean metric on Rn, there is equality, but for arbitrary metric spaces the
inclusion may be proper. (Consider the metric space of integers with its usual metric.
Then {n : d(n, 0) < 1} = {0} ⊊ {n : d(n, 0) ⩽ 1} = {−1, 0, 1}.)

5 Lemma x belongs to A if and only if every neighborhood of x contains a point in A.

Proof : (⇐=) If every neighborhood if x contains a point of A, then the open set Ac does not
contain x, so x ∈ A.

( =⇒ ) Assume U is a neighborhood of x (that is, x ∈ intU) such that U ∩ A = ∅ (so
that A ⊂ U c ⊂ (intU)c). Then x does not belong to the closed set (intU)c that includes A, so
x /∈ A.

6 Lemma In a metric space, x ∈ A if and only if d(x,A) = 0.

Proof : Let D = {x : d(x,A) = 0}. Then D is closed. To see this, observe that if x ∈ Dc, say
d(x,A) = α > 0, then Bα(x) is an open ball included in Dc, so Dc is open. Now clearly we have
A ⊂ D, so A ⊂ D = D.

By definition,
A =

∩
{F : A ⊂ F, F c is open},

so if x /∈ A, then x belongs to some open set F c with A ⊂ F . Therefore, there is some ε > 0 so
that Bε(x) ⊂ F c. Thus d(x,A) ⩾ ε, so x /∈ D.

That is, x ∈ A if and only if d(x,A) = 0.
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2.5 Compactness
Let K be a subset of a topological space. A family A of sets is a cover of K if

K ⊂
∪

A∈A

A.

If each set in the cover A is open, then A is an open cover of K. A family B of sets is a
subcover of A if B ⊂ A and K ⊂ ∪A∈BA.

For example, let K be a subset of R, and for each x ∈ K, let εx > 0. Then the family
A = {(x− εx, x+ εx) : x ∈ K} of open intervals is a open cover of K.

7 Definition A subset K of a topological space is compact if every open cover of K has a
finite subcover.

There is an equivalent characterization of compact sets that is perhaps more useful. A family
A of sets has the finite intersection property if every finite subset {A1, . . . , An} of A has a
nonempty intersection,

∩n
i=1 Ai ̸= ∅.

For example, the family {[x,∞) : x ∈ R} of closed intervals has the finite intersection
property. (Why?)

8 Theorem A set K is compact if and only if every family of closed subsets of K having the
finite intersection property has a nonempty intersection.

Proof : Suppose thatK is compact, and let A be a family of closed subsets ofK. If
∩

A∈AA = ∅,
then K ⊂

∪
A∈AA

c, so {Ac : A ∈ A} is an open cover of K. Thus there are A1, . . . , An ∈ A

satisfying K =
∪n

i=1 A
c
i . This implies

∩n
i=1 Ai = ∅, so A does not have the finite intersection

property. Thus, if A possesses the finite intersection property, then
∩

A∈AA ̸= ∅.
For the converse, assume that every family of closed subsets of K with the finite intersection

property has nonempty intersection, and that V is an open cover of K. Then
∩

V ∈V V
c = ∅, so

the finite intersection property must be violated. That is, there exist V1, . . . , Vn ∈ V satisfying∩n
j=1 V

c
j = ∅, or K ⊂

∪n
j=1 Vj , which proves that K is compact.

9 Lemma A compact subset of a Hausdorff space is closed.

Proof : Let K be compact, and let x /∈ K. Then by the Hausdorff property, for each y ∈ K
there are disjoint open sets Uy and Vy with y ∈ Uy and x ∈ Vy. Thus {Uy : y ∈ K} is an
open cover of K. Since K is compact, it has a finite subcover, that is, there are y1, . . . , yk with
K ⊂

∪k
i=1 Uyi = U . Then V =

∩k
i=1 Vyi is an open set satisfying x ∈ V ⊂ U c ⊂ Kc. That is,

Kc is a neighborhood of x. Since x is an arbitrary member of Kc, we see that Kc is open, so K
is closed.

10 Lemma A closed subset of a compact set is compact.

Proof : Let K be compact and F ⊂ K be closed. Let G be an open cover of F . Then G ∪ {F c}
is an open cover of K. Let {G1, . . . , Gk, F

c} be a finite subcover of K. Then {G1, . . . , Gk} is a
finite subcover of F .

It is easy to see the following.

11 Lemma Finite unions of compact sets are compact.

For a nonempty subset A of a metric space (X, d) its diameter is sup
{
d(x, y) : x, y ∈ A

}
.

A set is bounded if its diameter is finite. A subset of a metric space is totally bounded if for
every ε > 0, it can be covered by finitely many ε-balls. Boundedness and total boundedness are
not topological properties, they may depend on the particular metric.

The next result follows easily from the definitions.
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12 Lemma Every compact subset of a metric space is totally bounded.

The following lemma is easy to prove.

13 Lemma If subset of Rn is bounded under the Euclidean metric (or the ℓ1, or the ℓ∞ metric),
then it is totally bounded.

The Heine–Borel–Lebesgue Theorem characterizes compactness for subsets of Rn. It follows
from Lemma 13 and Theorem 23 below.

14 Heine–Borel–Lebesgue Theorem A subset of Rn is compact if and only if it is both
closed and bounded in the Euclidean metric.

This result is special. In general, a set may be closed and bounded without being totally
bounded or compact, but see Theorem 23 below.

15 Example (A noncompact, closed bounded set in ℓ∞) Consider ℓ∞, the vector space
of bounded sequences, with the norm ∥x∥ = supn xn. The set C of unit coordinate vectors ei,
i = 1, 2, . . ., is closed and bounded, but not compact. The collection of open balls of radius 1

2
centered at each coordinate vector covers C but has no finite subcover. □

2.6 Convergence and continuity
Let (X, d) be a metric space. A sequence x1, x2, . . . in X converges to a point x in X, written

xn −−−−→
n→∞

x

if d(xn, x) → 0 as a sequence of real numbers. In other words, if

∀ε > 0 ∃N ∀n ⩾ N d(xn, x) < ε.

Or in yet other words, if the sequence eventually lies in any neighborhood of x.
For metric spaces (but not necessarily for more general topological spaces), limits of sequences

determine the closure of a set.

16 Lemma Let A be a subset of a metric space X. The closure of A consists of all the limits
of sequences in A.

Proof : By Lemma 6, x ∈ A if and only if d(x,A) = 0. If d(x,A) = 0, for each n there is xn with
d(x, xn) < 1/n. Then xn → x. Conversely, if xn → x and each xn ∈ A, then d(x,A) = 0.

17 Definition Let X and Y be topological spaces and let f : X → Y . Then f is continuous
if the inverse image of open sets are open. That is, if U is an open subset of Y , then f−1(U) is
an open subset of X.

The function f is continuous at x if the inverse image of every open neighborhood of f(x)
is a neighborhood of x.

This corresponds to the usual ε-δ definition of continuity that you are familiar with.

18 Lemma A function is continuous if and only if it is continuous at each point.

Proof : Let f : X → Y . Assume f is continuous, and let V be an open neighborhood of f(x).
Then x ∈ f−1(V ), and since f is continuous, f−1(V ) is a neighborhood of x.

Conversely, assume f is continuous at each point, and let V be an open set in Y . Let x
belong to f−1(V ), or f(x) ∈ V . Since V is an open neighborhood of f(x), and f is continuous
at x, the inverse image f−1(V ) is a neighborhood of x. Since x is an arbitrary member of
f−1(V ), it is open (Lemma 4).
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In a metric space, f is continuous if and only if

xn → x =⇒ f(xn) → f(x).

Or equivalently,

∀x ∈ X ∀ε > 0 ∃δ > 0 ∀z ∈ X d(x, z) < δ =⇒ ρ
(
f(x), f(z)

)
< ε.

19 Definition Let X and Y be topological spaces. A function f : X → Y is a homeomor-
phism if it is one-to-one and onto, is continuous, and its inverse is continuous.

If f is homeomorphism U ↔ f(U) is a one-to-one correspondence between the topologies of
X and Y . Thus X and Y have the same topological properties. They can in effect be viewed
as the same topological space, where f simply renames the points.

20 Lemma Let f : X → Y be continuous. If K is a compact subset of X, then f(K) is a
compact subset of Y .

Proof : Let {Gi}i∈I be an open cover of f(K). Then {f−1(Gi)}i∈I is an open cover of K. Let
{f−1(G1), . . . , f−1(Gk)} be a finite subcover of K. Then {G1, . . . , Gk} is a finite subcover of
f(K).

21 Lemma Let f : X → Y be one-to-one and continuous, where Y is a Hausdorff space and X
is compact. Then f : X → f(X) is a homeomorphism.

Proof : We need to show that f−1 is continuous on f(X). So let G be any open subset of X. We
must show that (f−1)−1(G) = f(G) is open. Now Gc is a closed subset of X, and thus compact.
Therefore f(Gc) is compact, and since Y is Hausdorff, f(Gc) is a closed subset of Y . But then
f(Gc)c = f(G) is open.

2.7 Lipschitz continuity
Let (X, d) and (Y, ρ) be metric spaces. A function f : X → Y satisfies a Lipschitz condition
at x0 or is Lipschitz continuous at x0 if there is some M > 0 and ε > 0 such that for every
x

d(x0, x) < ε =⇒ ρ
(
f(x0), f(x)

)
< Md(x0, x).

The number M is called a Lipschitz constant for f at x0. Apostol [6] makes the following
more general definition. The function f satisfies a Lipschitz condition of order α at x0 if
there is some M > 0 and ε > 0 such that for every x

d(x0, x) < ε =⇒ ρ
(
f(x0), f(x)

)
< Md(x0, x)α.

When α is not mentioned, it is tacitly assumed to be 1. Note that if f satisfies a Lipschitz
condition of order α > 0 at x0, then it is indeed continuous at x0.

We say that f is uniformly Lipschitz continuous on the set A if there is some M > 0
such that for all x, z

x, z ∈ A =⇒ ρ
(
f(x), f(z)

)
< Md(x, z).

We also say that f is locally uniformly Lipschitz continuous at x0 if there is some M > 0
and a neighborhood U of x0 such that f is uniformly Lipschitz continuous on U . Equivalently,
there is some ε > 0 such that for all x, z

x, z ∈ Bε(x0) =⇒ ρ
(
f(x), f(z)

)
< Md(x, z).
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Note that a function can be continuous without being Lipschitz continuous. For example
f(x) = x

1
3 is continuous at 0 but not Lipschitz continuous at 0. (As x 1

3 < Mx if and only if
x > M− 2

3 for x > 0, but it does satisfy a Lipschitz condition of order 1
3 .) We shall see later on

(Proposition 64, Lemma 91) that Lipschitz continuity at a point is implied by differentiability
at that point. The converse is not true, as the function f given by f(x) = x sin 1

x for x ̸= 0 and
f(0) = 0 is Lipschitz continuous at 0 with constant 1, but not differentiable at 0.

2.8 Complete metric spaces
A sequence x1, x2, . . . in the metric space (X, d) is a Cauchy sequence if

∀ε > 0 ∃N ∀n,m ⩾ N d(xn, xm) < ε.

A metric space (X, d) is complete if every Cauchy sequence converges to a point in X. It is easy
to see that any closed subset of a complete metric space is itself complete under the restriction
of the metric.

The next result is a profoundly useful fact about complete metric spaces. Let us say that a
sequence {An} of sets has vanishing diameter if

lim
n→∞

diameterAn = 0.

22 Cantor Intersection Theorem In a complete metric space, if a decreasing sequence
of nonempty closed subsets has vanishing diameter, then the intersection of the sequence is a
singleton.

Proof : Let {Fn} be a decreasing sequence of nonempty closed subsets of the complete metric
space (X, d), and assume limn→∞ diameterFn = 0. The intersection F =

∩∞
n=1 Fn cannot have

more that one point, for if a, b ∈ F , then d(a, b) ⩽ diameterFn for each n, so d(a, b) = 0, which
implies a = b.

To see that F is nonempty, for each n pick some xn ∈ Fn. Since d(xn, xm) ⩽ diameterFn

for m ⩾ n, the sequence {xn} is Cauchy. Since X is complete there is some x ∈ X with xn → x.
But xn belongs to Fm for m ⩾ n, and each Fn is closed, so x belongs to Fn for each n.

Completeness is not a topological property. That is, there can be two metrics d and d′ on X
that generate the same topology, and one can be complete, while the other isn’t. For instance,
under the usual metric d(n,m) = |n − m|, the set of natural numbers is complete, as the only
Cauchy sequences are eventually constant. But the function d′(n,m) =

∣∣ 1
n − 1

m

∣∣ is also a metric.
Under d′ the sequence 1, 2, 3, . . . is Cauchy, but there is no natural number that is the limit of
the sequence.

Similarly, total boundedness is not a topological property. Using the metrics d and d′ of the
previous paragraph, the natural numbers are totally bounded under d′ but not under d.

However, there is a topological consequence to having a metric that is both complete and
totally bounded.

23 Theorem (Compactness of metric spaces) For a metric space the following are equiv-
alent:

1. The space is compact.

2. The space is complete and totally bounded.

3. The space is sequentially compact. That is, every sequence has a convergent subsequence.
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Proof : Let (X, d) be a metric space.
(1) =⇒ (2) Since X =

∪
x∈X Bε(x), there exist x1, . . . , xk in X such that X =

∪k
i=1 Bε(xi).

That is, X is totally bounded. To see that X is also complete, let {xn} be a Cauchy sequence
in X, and let ε > 0 be given. Pick n0 so that d(xn, xm) < ε whenever n,m ⩾ n0. The sequence
{xn} has a limit point, say x. I claim that xn −→ x. Indeed, if we choose k ⩾ n0 such that Write as a theorem.

d(xk, x) < ε, then for each n ⩾ n0, we have

d(xn, x) ⩽ d(xn, xk) + d(xk, x) < ε+ ε = 2ε,

proving xn → x. That is, X is also complete.
(2) =⇒ (3) Fix a sequence {xn} in X. Since X is totally bounded, there must be infinitely

many terms of the sequence in a closed ball of radius 1
2 . (Why?) This ball is totally bounded too,

so it must also include a closed set of diameter less than 1
4 that contains infinitely many terms

of the sequence. By induction, construct a decreasing sequence of closed sets with vanishing
diameter, each of which contains infinitely many terms of the sequence. Use this and the Cantor
Intersection Theorem 22 to construct a convergent subsequence.

(3) =⇒ (1) Let {Vi}i∈I be an open cover of X. First, we claim that there exists some
δ > 0 such that for each x ∈ X we have Bδ(x) ⊂ Vi for at least one i.2 Indeed, if this is
not the case, then for each n there exists some xn ∈ X satisfying B1/n(xn) ∩ V c

i ̸= ∅ for
each i ∈ I. If x is the limit point of some subsequence of {xn}, then it is easy to see that
x ∈

∩
i∈I V

c
i =

(∪
i∈I Vi

)c = ∅, a contradiction.
Now fix some δ > 0 such that for each x ∈ X we have Bδ(x) ⊂ Vi for at least one i. We

claim that there exist x1, . . . , xk ∈ X such that X =
∪k

i=1 Bδ(xi). To see this, assume by way
of contradiction that this is not the case. Fix y1 ∈ X. Since the claim is false, there exists some
y2 ∈ X such that d(y1, y2) ≥ δ. Similarly, since X ̸= Bδ(y1) ∪Bδ(y2), there exists some y3 ∈ X
such that d(y1, y3) ≥ δ and d(y2, y3) ≥ δ. So by an inductive argument, there exists a sequence
{yn} in X satisfying d(yn, ym) ≥ δ for n ̸= m. However, any such sequence {yn} cannot have
any convergent subsequence, contrary to our hypothesis. Hence there exist x1, . . . , xk ∈ X such
that X =

∪k
i=1 Bδ(xi).

Finally, for each 1 ⩽ j ⩽ k choose an index ij such that Bδ(xj) ⊂ Vij
. Then X =

∪k
j=1 Vij

,
proving that X is compact.

2.9 Product topology
24 Definition If X and Y are topological spaces, the product topology on X × Y consists
of arbitrary unions of sets of the form U ×V , where U is an open set in X and V is an open set
in Y .

The product topology is indeed a topology.
The Cartesian product of two metric spaces (X, d1) and (Y, d2) is a metric space under the

metric d
(
(x, y), (x′, y′)

)
= d1(x, x′) + d2(y, y′). The topology it defines is called the product

topology. If (Z, d3) is a metric space, and f : X × Y → Z is continuous with respect to the
product topology, we say that f is jointly continuous in (x, y). We say that f is separately
continuous in (x, y) if for each x, the function y 7→ f(x, y) is continuous, and for each y,
the function x 7→ f(x, y) is continuous. Joint continuity implies separate continuity, but the
converse is not true.

25 Example (Separate continuity does not imply joint continuity)
***************** □

2Such a number δ is known as a Lebesgue number of the cover.
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It is possible to define a natural product topology for an arbitrary product of metric spaces,
but unless the set of factors is countable, the result will not be a metric space. Nonetheless, the
notion of compactness is topological, so the next result makes sense. A proof may be found, for
instance, in Aliprantis and Border [3, Theorem 2.57, p. 52].

26 Tychonoff Product Theorem The Cartesian product of an arbitrary family of compact
sets is compact.

2.10 Semicontinuous functions
The real-valued function f : X → R is upper semicontinuous on X if for each α ∈ R, the
upper contour set [f ⩾ α] is closed, or equivalently, the strict lower contour set [f < α] is open.
It is lower semicontinuous if every lower contour set [f ⩽ α] is closed, or equivalently, the
strict upper contour set [f > α] is open.

The extended real valued function f is upper semicontinuous at the point x if f(x) < ∞
and

∀ε > 0 ∃δ > 0 d(y, x) < δ =⇒ f(y) < f(x) + ε.

Similarly, f is lower semicontinuous at the point x if f(x) > −∞ and

∀ε > 0 ∃δ > 0 d(y, x) < δ =⇒ f(y) > f(x) − ε.

Equivalently, f is upper semicontinuous at x if f(x) < ∞ and

f(x) ⩾ lim sup
y→x

f(y) = inf
ε>0

sup
0<d(y,x)<ε

f(y).

Similarly, f is lower semicontinuous at x if f(x) > −∞ and

f(x) ⩽ lim inf
y→x

f(y) = sup ε > 0 inf
0<d(y,x)<ε

f(y).

Note that f is upper semicontinuous if and only if −f is lower semicontinuous.

27 Lemma A real valued function f : X → R is upper semicontinuous on X if and only if it
is upper semicontinuous at each point of X. It is lower semicontinuous on X if and only if it is
lower semicontinuous at each point of X.

Proof : I’ll prove the result for upper semicontinuity. Assume that f is upper semicontinuous
on X. For any real number α, if f(x) < β < α, then {y ∈ X : f(y) < β} is an open
neighborhood of x. Thus for ε > 0 small enough d(y, x) < ε implies f(y) < β. Therefore
lim supy→x f(y) ⩽ β < α. Setting α = lim supy→x f(y), we see that it cannot be the case that
f(x) < lim supy→x f(y), for then f(x) < α = lim supy→x f(y) < α, a contradiction. That is, f
is upper semicontinuous at x.

For the converse, assume that f is upper semicontinuous at each x. Fix a real number
α, and let f(x) < α. Since f(x) ⩾ lim supy→x f(y), there is ε > 0 small enough so that
supy:0<d(y,x)<ε f(y) < α, but this implies {x ∈ X : f(x) < α} is open, so f is upper semicontin-
uous on X.

28 Corollary A real-valued function is continuous if and only if it is both upper and lower
semicontinuous.

29 Theorem An extended real-valued function f is upper semicontinuous on X if and only if
its hypograph is closed. It is lower semicontinuous on X if and only if its epigraph is closed.
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Proof : Assume f is upper semicontinuous, and let (xn, αn) be a sequence in its hypograph, that
is, f(xn) ⩾ αn for all n. Therefore lim supn f(xn) ⩾ lim supn αn. If (xn, αn) → (x, α), since f
is upper semicontinuous at x, we have α = limn αn ⩽ lim supn f(xn) ⩽ f(x). Thus α ⩽ f(x),
or (x, α) belong to the hypograph of f . Therefore the hypograph is closed.

Assume now that the hypograph is closed. Pick x and let α = lim supy→x f(y). Then there
is a sequence xn → x with f(xn) ↑ α. Since

(
xn, f(xn)

)
belongs to the hypograph for each n,

so does its limit (x, α). That is, lim supy→x f(y) = α ⩽ f(x), so f is upper semicontinuous at
x.

30 Exercise Prove that if both the epigraph and hypograph of a function are closed, then the
graph is closed. Give an example to show that the converse is not true. □

31 Proposition The infimum of a family of upper semicontinuous functions is upper semicon-
tinuous. The supremum of a family of lower semicontinuous functions is lower semicontinuous.
Proof : Let {fν}ν be a family of upper semicontinuous functions, and let f(x) = infν fν(x). Then
[f ⩾ α] = ∩ν [fν ⩾ α], which is closed. Lower semicontinuity is dealt with mutatis mutandis.

32 Definition Given an extended real-valued function f on the metric space X, we define the
upper envelope f of f by

f(x) = max{f(x), lim sup
y→x

f(y)} = inf
ε>0

sup
d(y,x)<ε

f(y),

and the lower envelope f of f by
f(x) = min{f(y), lim inf

y→x
f(y)},= sup

ε>0
inf

d(y,x)<ε
f(y).

Clearly if f is upper semicontinuous at x, then f(x) = f(x), and if f is lower semicontinuous
at x, then f(x) = f(x). Consequently, f is upper semicontinuous if and only f = f , and f is
lower semicontinuous if and only f = f .

We say that the real-valued function g dominates the real-valued function f on X if for
every x ∈ X we have g(x) ⩾ f(x).

33 Theorem The upper envelope f is the smallest upper semicontinuous function that domi-
nates f and the lower envelope f is the greatest lower semicontinuous function that f dominates.

Moreover,
hypograph f = hypograph f.

and
epi f = epi f.

Proof : Clearly, f dominates f and f dominates f .
Now suppose g is upper semicontinuous and dominates f . Then for any x, we have g(x) ⩾

lim supy→x g(y) ⩾ lim supy→x, so g(x) ⩾ f(x). That is, g dominates f .
Similarly if g is lower semicontinuous and f dominates g, then f dominates g.
It remains to show that f is upper semicontinuous. It suffices to prove that the hypograph

of f is closed. We prove the stronger result that
hypograph f = hypograph f.

Let (xn, αn) be a sequence in the hypograph of f , and assume it converges to a point (x, α). Since
αn ⩽ f(xn), we must have α ⩽ lim supy→x f(y), so α ⩽ f . That is, hypograph f ⊂ hypograph f .
For the opposite inclusion, suppose by way of contradiction that (x, α) belongs to the hypograph
of f , but not to hypograph f . Then there is a neighborhood Bε(x) × Bε(α) disjoint from
hypograph f . In particular, if d(y, x) < ε, then f(y) < α ⩽ f(x), which implies f(x) >
max{f(x), lim sup −y → xf(y)}, a contradiction. Therefore hypograph f ⊃ hypograph f .

The case of f is similar.
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2.11 Existence of extrema
A fundamental theorem on continuity and compactness is:

34 Theorem The continuous image of a compact set is compact.

Proof : Let f : X → Y be continuous. Let K be a compact subset of X, and {Uα} be an
open cover of f(K). Then {f−1(Uα)} is an open cover of K, and so has a finite subcover
f−1(U1), . . . , f−1(Uk). Then U1, . . . , Uk is an open cover of f(K).

This theorem and the Heine–Borel–Lebesgue Theorem imply the next result, which is the
fundamental result on the existence of maxima. But a more direct proof is instructive.

But first I will give a tediously detailed proof of an “obvious” fact.

35 Lemma Every nonempty finite set of real numbers has a greatest and least element.

Proof : I will prove the statement for greatest elements. The proof proceeds by induction. Let
P(n) denote the proposition: Every set of n elements has a greatest element. By reflexivity of
⩾, the statement P (1) is true. We now prove that P (n) =⇒ P (n + 1). Assume P (n) is true,
and let A be a set of cardinality n + 1. Pick some x ∈ A. Then A \ {x} has n elements, and
so has a greatest element y. That is, y ⩾ z for all z ∈ A \ {x}. Since ⩾ is a total order on R
x ⩾ y or y ⩾ x (or both). If y ⩾ x, then y ⩾ z for all z ∈ (A \ {x}) ∪ {x} = A. On the other
hand, if x ⩾ y, then by transitivity x ⩾ z for all z ∈ A \ {x}, and by reflexivity x ⩾ x, so x is
the greatest element of A.

36 Weierstrass’ Theorem Let K be a compact set, and let f : K → R be continuous. Then
f achieves both a maximum and a minimum over K.

Proof : I will prove that f achieves a maximum, the proof for a minimum is similar. Observe
that the family

{
[f < α] : α ∈ R

}
is an open cover of K. Since K is compact, it has a finite

subcover, say {[f < α1], . . . , [f < αm]}. Let α∗ = maxi=1,...,m αi. The f is bounded above by
α∗ on K. The real numbers are complete, so the set of upper bounds has least upper bound
β = sup{f(x) : x ∈ K}. Assume by way of contradiction that there is no x in K with f(x) = β.
Then {[f < α] : α < β} is an open cover of K without a finite subcover, which contradicts the
compactness of K.

Alternate proof : I will prove that f achieves a maximum, the proof for a minimum is similar.
Observe that the family

{
[f ⩾ α] : α ∈ f(K)

}
has the finite intersection property. Since f

is continuous, each set [f ⩾ α] is closed. Since K is compact, Theorem 8 implies that this
family has nonempty intersection. Thus

∩
α∈f(K)

{
x ∈ K : f(x) ⩾ α

}
is the nonempty set of

maximizers of f .

The same proofs demonstrates the following theorem.

37 Theorem Let f : X → R be upper semicontinuous. Suppose that for some α ∈ R the
upper contour set [f ⩾ α] is nonempty and compact. Then f achieves a maximum on X.

If f : X → R is lower semicontinuous and [f ⩽ α] is nonempty and compact for some α,
then f achieves a minimum on X.

38 Example (Functions without maxima) To see what can go wrong, consider the fol-
lowing examples.

1. Set X = (0, 1), which is bounded but not closed, and set f(x) = x, which is a well behaved
continuous function, but there is no point in (0, 1) that maximizes f . Thus f is bounded
above but does not achieve a maximum.
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2. Set X = R, which is closed but not bounded, and set f(x) = x. Again there is no point
in R that maximizes f . In this case f is not bounded above.

3. Set X = [0, 1], which is closed and bounded, and define f by

f(x) =

{
x 0 ⩽ x < 1

0 x = 1.

Then f is not continuous, and no point in [0, 1] maximizes f . Again f is bounded above
but does not achieve a maximum.

□

2.12 Topological vector spaces
39 Definition A (real) topological vector space is a vector spaceX together with a topology
τ where τ has the property that the mappings scalar multiplication and vector addition are
continuous functions. That is, the mappings

(α, x) 7→ αx

from R ×X to X and
(x, y) 7→ x+ y

from X ×X to X are continuous. (Where, of course, R has its usual topology, and R ×X and
X ×X have their product topologies.)

For a detailed discussion of topological vector spaces, see chapter five of the Hitchhiker’s
Guide [3]. But here are some of the results we will use.

40 Fact Every normed vector space (including Rn) is a topological vector space.

41 Lemma If V is open, then V + y is open.

Proof : Since f : x 7→ x− y is continuous, V + y = f−1(V ) is open.

42 Corollary If V is open, then V +A is open for any set A.

Proof : V +A = ∪y∈AV + y is open as a union of open sets.

43 Lemma If V is open, and α ̸= 0, then αV is open.

Proof : Since f : x 7→ (1/α)x is continuous, αV = f−1(V ) is open.

44 Corollary If V is open, then αV + βA is open for any set A and scalars α, β with α ̸= 0.

45 Definition A set C in a vector space is circled or radial if αC ⊂ C whenever |α| ⩽ 1.

46 Lemma Let V be a neighborhood of zero. Then there is an open circled neighborhood U
of zero included in V .
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Proof : The mapping f : (α, x) 7→ αx is continuous, and f(0, 0) = 0, the inverse image f−1(V )
is a neighborhood of 0. Thus there is a δ > 0 and an open neighborhood W of 0 such that
(−δ, δ) ×W ⊂ f−1(V ). This implies that for any α with |α| < δ and x ∈ W , we have αx ∈ V .
In other words αW ⊂ V . Set

U =
∪

α:0<|α|<δ

αW

Then U ⊂ V , U is circled, and U is open, being the union of the open sets αW .

47 Lemma Let T : X → Y be a linear transformation between topological vector spaces. Then
T is continuous on X if it is continuous at 0.

Proof : Let V be an open set in Y . It suffices to prove that T is continuous at each point x. So
let V be an open neighborhood of T (x). Then V −T (x) is an open neighborhood of 0. Since T is
continuous at 0, the inverse image T−1(V −T (x)

)
, is a neighborhood of 0, so T−1(V −T (x)

)
+x

is a neighborhood of x. But by linearity, T−1(V − T (x)
)

+ x = T−1(V ), and we are done.

2.13 Continuity of the coordinate mapping
This section proves the following theorem, which everyone seems to take for granted.

48 Theorem Let X be a Hausdorff topological vector space of dimension n, and let x1, . . . , xn

be an ordered basis for X. The coordinate mapping T : X → Rn defined by

T

(
n∑

i=1
αixi

)
= (α1, . . . , αn)

is a linear homeomorphism. That is, T is well-defined, linear, one-to-one, maps X onto Rn, is
continuous, and T−1 is continuous.

Proof : Let X be an n-dimensional Hausdorff tvs, and let v1, . . . , vn be an ordered basis for X.
The coordinate mapping T : X → Rn is defined by

T

(
n∑

i=1
λivi

)
= (λ1, . . . , λn).

From basic linear algebra, T is a linear bijection from X onto Rn. Also T−1 : (λ1, . . . , λn) 7→∑n
i=1 λixi is a linear bijection. Moreover, T−1 is continuous, as scalar multiplication and vector

addition are continuous. It remains to prove that T is continuous. It suffices to prove that T is
continuous at zero.

Let B be the open unit ball and let S be the unit sphere in Rn. Since S is compact and T−1

is continuous, T−1(S) is compact. Since X is Hausdorff, T−1(S) is closed. Now 0X /∈ T−1(S),
as 0Rn /∈ S, so there exists a circled neighborhood V of zero such that V ∩ T−1(S) = ∅. Since
V is circled, we have V ⊂ T−1(B): For if there exists some x ∈ V such that x /∈ T−1(B) (that
is, ∥T (x)∥ ≥ 1), then x

∥T (x)∥ ∈ V ∩ T−1(S), a contradiction.
Thus, T−1(B) is a neighborhood of zero. Since scalar multiples of B form a neighborhood

base at zero in Rn, we see that T is continuous at zero, and therefore continuous.

Informally this says that Rn is the only n-dimensional Hausdorff topological vector space.
A useful corollary of this is.

49 Corollary Let X be a Hausdorff topological vector space, and let {x1, . . . , xn} be a linearly
independent subset of X. Let αm be a sequence in Rn. If

∑n
i=1 αmixi −−−−→

m→∞

∑n
i=1 αixi, then

for each i = 1, . . . , n, we have αmi −−−−→
m→∞

αi.
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Proof : The linear subspace X spanned by {x1, . . . , xn} is a Hausdorff topological space in the
relative topology, and Theorem 48 gives the conclusion.

When X is already some Rp, there is a more familiar proof of the corollary.

Proof of Corollary for Rp: Let X be the p×n matrix whose jth column is xj . By the theory of
ordinary least squares estimation if x = Xα =

∑n
j=1 αjxj is a linear combination of {x1, . . . , xn},

then the coordinate mapping T (x) is given by

T (x) = (X ′X)−1X ′x,

which is clearly continuous.

The corollary is rather delicate—it can fail if either X is not Hausdorff or {x1, . . . , xn} is
dependent.

50 Example Let X = R2 under the semi-metric d
(
(x, y), (x′, y′)

)
= |x − x′|. (This topology

is not Hausdorff.) Then X is a topological vector space. Let x1 = (1, 0) and x2 = (0, 1)
be the unit coordinate vectors. Then 1

mx1 + 0x2 = (1/m, 0) → (0, 1) = 0x1 + 1x2, (since
d
(
(1/m, 0), (0, 1)

)
= 1/m, but the second coordinates do not converge (0 ̸→ 1). □

51 Example Let X = R2 with the Euclidean topology and let x1 = (1, 0) and x2 = (−1, 0).
Then nx1 + nx2 = (0, 0) → (0, 0) = 0x1 + 0x2, but n ̸→ 0. □

2.14 Continuous linear transformations
A word about linear transformations is appropriate here. Between finite dimensional Euclidean
spaces every linear transformation is continuous and has a representation in terms of matrix
products. Between infinite-dimensional normed spaces, there can be discontinuous linear trans-
formations! Here is a simple example.

52 Example (Discontinuous linear transformation) Let X be the set of real sequences
that have a limit, and let L(x) denote the limit of the sequence x = (x1, x2, . . .). Then stan-
dard properties of the limit show that X is a linear space under termwise addition and scalar
multiplication, and L : X → R is a linear transformation. Consider the norm on X defined by

∥x∥ =
∞∑

k=1

|xk|
2k

.

(It is easily verified that this is indeed a norm.) The sequence (x1, x2, . . .) in X given by

xn = ( 0, . . . , 0︸ ︷︷ ︸
n zeroes

, 1, 1, . . .)

satisfies ∥xn∥ = 2−n, so xn ∥·∥−−−−→
n→∞

0 (where 0 is the sequence of zeroes), but L(xn) = 1 for all
n. Since L(0) = 0, we see that L is not continuous. □

A linear transformation T : X → Y between normed vector spaces is bounded if it is
bounded on the unit ball. That is, if

sup
{∥∥T (x)

∥∥ : ∥x∥ ⩽ 1
}
< ∞.

This supremum is called the operator norm of T , denoted ∥T∥. This norm has the property
that

∥T (x)∥ ⩽ ∥T∥ · ∥x∥ for all x.
The next result is standard.
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53 Theorem (Bounded and continuous linear transformations) Let T : X → Y be a
linear transformation between normed spaces. The following are equivalent.

1. T is continuous at zero.

2. T is continuous.

3. T is bounded.

4. T is Lipschitz continuous.

Proof : (1) =⇒ (2) Exercise.
(2) =⇒ (3) Taking ε = 1 in the definition of continuity there is some δ > 0 such that

∥x − 0∥ = ∥x∥ < δ implies ∥T (x)∥ = ∥T (x) − T (0)∥ < 1. Set M = 1
δ . Then by homogeneity

∥x∥ < 1 implies ∥δx∥ < δ, so δ∥T (x)∥ = ∥T (δx)∥ < 1, or ∥T (x)∥ < 1
δ = M . That is, T is

bounded.
(3) =⇒ (4) Clearly ∥T (x− z)∥ ⩽ ∥T∥ · ∥x− z∥, so the operator norm is a global Lipschitz

constant.
(4) =⇒ (1) Obvious.

The space of continuous linear functions from the normed space X into the normed space Y
is denoted LXY . On this space, the operator norm is indeed a norm.

A function B : X ×X → Y is called bilinear if is linear in each variable separately. That is,
if B

(
αx + (1 − α)z, v

)
= αB(x, v) + (1 − α)B(z, v) and B

(
x, αv + (1 − α)w

)
= αB(x, v) +

(1 − α)B(x,w). Clearly every continuous linear transformation T from X into LXY with
the operator norm, corresponds to a continuous bilinear transformation B : X × X → Y via
B(x, v) = T (x)(v), and vice-versa. (Well, if it’s not clear, see Dieudonné [43, Theorem 5.7.8,
p. 108].)

2.15 Correspondences
This section covers just enough about correspondences to prove the maximum theorem in the
next section. More results are available in Border [30].

54 Definition A correspondence φ from X to Y associates to each point in X a subset of
Y . We write this as φ : X ↠ Y . For a correspondence φ : X ↠ Y , let grφ denote the graph of
φ. That is,

grφ = {(x, y) ∈ X × Y : y ∈ φ(x)}.

Let φ : X ↠ Y , E ⊂ Y and F ⊂ X. The image of F under φ is defined by

φ(F ) = ∪x∈Fφ(x).

For correspondences there are two useful notions of inverse.

55 Definition The upper (or strong) inverse of E under φ, denoted φu[E], is defined by

φu[E] = {x ∈ X : φ(x) ⊂ E}.

The lower (or weak) inverse of E under φ, denoted φℓ[E], is defined by

φℓ[E] = {x ∈ X : φ(x) ∩ E ̸= ∅}.

For a single y in Y , define
φ−1(y) = {x ∈ X : y ∈ φ(x)}.

Note that φ−1(y) = φℓ[{y}].
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Corresponding to the two notions of inverse are two notions of continuity.

56 Definition A correspondence φ : X ↠ Y is upper hemicontinuous (uhc) at x if when-
ever x is in the upper inverse of an open set, so is a neighborhood of x; and φ is lower hemi-
continuous (lhc) at x if whenever x is in the lower inverse of an open set so is a neighborhood
of x.

The correspondence φ : X ↠ Y is upper hemicontinuous (resp. lower hemicontinuous)
if it is upper hemicontinuous (resp. lower hemicontinuous) at every x ∈ X. Thus φ is upper
hemicontinuous (resp. lower hemicontinuous) if the upper (resp. lower) inverses of open sets are
open.

A correspondence is called continuous if it is both upper and lower hemicontinuous.

Warning. The definition of upper hemicontinuity is not standard. Berge [18] requires in
addition that φ have compact values in order to be called upper hemicontinuous.

If φ : X ↠ Y is singleton-valued it can be considered a function from X to Y and we may
sometimes identify the two. In this case the upper and lower inverses of a set coincide and agree
with the inverse regarded as a function. Either form of hemicontinuity is equivalent to continuity
as a function. The term “semicontinuity” has been used to mean hemicontinuity, but this usage
can lead to confusion when discussing real-valued singleton correspondences. A semicontinuous
real-valued function is not a hemicontinuous correspondence unless it is also continuous.

57 Definition The correspondence φ : E ↠ F is closed at x if whenever xn → x, yn ∈ φ(xn)
and yn → y, then y ∈ φ(x). A correspondence is closed if it is closed at every point of its
domain, that is, if its graph is closed.

58 Example (Closedness vs. Upper Hemicontinuity) In general, a correspondence may
be closed without being upper hemicontinuous, and vice versa.

Define φ : R ↠ R via

φ(x) =

{
{ 1

x } x ̸= 0

{0} x = 0.

Then φ is closed but not upper hemicontinuous.
Define µ : R ↠ R via µ(x) = (0, 1). Then µ is upper hemicontinuous but not closed.3 □

59 Proposition Let E ⊂ Rm, F ⊂ Rk and let φ : E ↠ F .

1. If φ is upper hemicontinuous and closed-valued, then φ is closed.

2. If F is compact and φ is closed, then φ is upper hemicontinuous.

3. If φ is singleton-valued at x and upper hemicontinuous at x, then φ is continuous at x.

Proof : 1. Suppose (x, y) /∈ grφ. Then since φ is closed-valued, there is a closed neighborhood
U of y disjoint from φ(x). Then V = U c is an open neighborhood of φ(x). Since φ is
upper hemicontinuous, φu[V ] contains an open neighborhood W of x, i.e., φ(z) ⊂ V for
all z ∈ W . Thus (W × U) ∩ grφ = ∅ and (x, y) ∈ W × U . Hence the complement of grφ
is open, so grφ is closed.

2. Suppose not. Then there is some x and an open neighborhood U of φ(x) such that for every
neighborhood V of x, there is a z ∈ V with φ(z) ̸⊂ U . Thus we can find zn → x, yn ∈ φ(zn)
with yn /∈ U . Since F is compact, {yn} has a convergent subsequence converging to y /∈ U .
But since φ is closed, (x, y) ∈ grφ, so y ∈ φ(x) ⊂ U , a contradiction.

3Again, under Berge’s definition, an upper hemicontinuous correspondence is automatically closed.
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60 Proposition Let E ⊂ Rm, F ⊂ Rk, φ : E ↠ F .

1. If φ is compact-valued, then φ is upper hemicontinuous at x if and only if for every sequence
xn → x and yn ∈ φ(xn) there is a convergent subsequence of {yn} with limit in φ(x).

2. Then φ is lower hemicontinuous if and only if xn → x and y ∈ φ(x) imply that there is a
sequence yn ∈ φ(xn) with yn → y.

Proof : 1. Suppose φ is upper hemicontinuous at x, xn → x and yn ∈ φ(xn). Since φ is
compact-valued, φ(x) has a bounded neighborhood U . Since φ is upper hemicontinuous,
there is a neighborhood V of x such that φ(V ) ⊂ U . Thus {yn} is eventually in U , thus
bounded, and so has a convergent subsequence. Since compact sets are closed, this limit
belongs to φ(x).
Now suppose that for every sequence xn → x, yn ∈ φ(xn), there is a subsequence of {yn}
with limit in φ(x). Suppose φ is not upper hemicontinuous; then there is a neighborhood
U of x and a sequence zn → x with yn ∈ φ(zn) and yn /∈ U . Such a sequence {yn} can
have no subsequence with limit in φ(x), a contradiction.

61 Proposition Let E ⊂ Rm, F ⊂ Rk and φ, µ : E ↠ F , and define (φ ∩ µ) : E ↠ F by
(φ ∩ µ)(x) = φ(x) ∩ µ(x). Suppose φ(x) ∩ µ(x) ̸= ∅.

1. If φ and µ are upper hemicontinuous at x and closed-valued, then (φ ∩ µ) is upper hemi-
continuous at x.

2. If µ is closed at x and φ is upper hemicontinuous at x and φ(x) is compact, then (φ ∩ µ)
is upper hemicontinuous at x.

Proof : Let U be an open neighborhood of φ(x) ∩ µ(x). Put C = φ(x) ∩ U c.

1. Note that C is closed and µ(x) ∩C = ∅. Thus there are disjoint open sets V1 and V2 with
µ(x) ⊂ V1 and C ⊂ V2. Since µ is upper hemicontinuous at x, there is a neighborhood W1
of x with µ(W1) ⊂ V1 ⊂ V c

2 . Now φ(x) ⊂ U∪V2, which is open and so x has a neighborhood
W2 with φ(W2) ⊂ U ∪ V2, as φ is upper hemicontinuous at x. Put W = W1 ∩W2. Then
for z ∈ W , φ(z) ∩ µ(z) ⊂ V c

2 ∩ (U ∪ V2) ⊂ U . Thus (φ ∩ µ) is upper hemicontinuous at x.

2. Note that in this case C is compact and µ(x)∩C = ∅. Since µ is closed at x, if y /∈ µ(x) then
we cannot have yn → y, where yn ∈ µ(xn) and xn → x. Thus there is a neighborhood Uy of
y andWy of x with µ(Wy) ⊂ U c

y . Since C is compact, we can write C ⊂ V2 = Uy1 ∪· · ·∪Uyn ;
so setting W1 = Wy1 ∩ · · · ∩Wyn , we have µ(W1) ⊂ V c

2 . The rest of the proof is as in (1).

2.16 The maximum theorem
One of the most useful and powerful theorems employed in mathematical economics and game
theory is the “maximum theorem.” It states that the set of solutions to a maximization problem
varies upper hemicontinuously as the constraint set of the problem varies in a continuous way.
Theorem 62 is due to Berge [18] and considers the case of maximizing a continuous real-valued
function over a compact set which varies continuously with some parameter vector. The set of
solutions is an upper hemicontinuous correspondence with compact values. Furthermore, the
value of the maximized function varies continuously with the parameters.
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62 Berge Maximum Theorem Let P,X be metric spaces and let φ : P ↠ X be a compact-
valued correspondence. Let f : X × P → R be continuous. Define the “argmax” correspondence
µ : P ↠ X by

µ(p) = {x ∈ φ(p) : x maximizes f(·, p) on φ(p)},

and the value function V : P → R by

V (p) = f(x, p) for any x ∈ µ(p).

If φ is continuous at p, then µ is closed and upper hemicontinuous at p and V is continuous at
p. Furthermore, µ is compact-valued.

Proof : First note that since φ is compact-valued, µ is nonempty and compact-valued. It suffices
to show that µ is closed at p, for then µ = φ ∩ µ and Proposition 61 (2) implies that µ is
upper hemicontinuous at p. Let pn → p, xn ∈ µ(pn), xn → x. We wish to show x ∈ µ(p)
and V (pn) → V (p). Since φ is upper hemicontinuous and compact-valued, Proposition 59 (1)
implies that indeed x ∈ φ(p). Suppose x /∈ µ(p). Then there is z ∈ φ(p) with f(z, p) > f(x, p).
Since φ is lower hemicontinuous at p, by Proposition 60 there is a sequence zn → z with
zn ∈ φ(pn). Since zn → z, xn → x, and f(z) > f(x), the continuity of f implies that eventually
f(zn, pn) > f(xn, pn), contradicting xn ∈ µ(pn).

To see that V is continuous at p, let G be an open neighborhood of V (p). Then f−1(G) is
open in X ×P . Thus for each x ∈ µ(p) there are open neighborhoods Ax of x and Bx of p such
that

(x, p) ∈ Ax ×Bx ⊂ f−1(G).

Clearly {Ax : x ∈ µ(p)} is an open cover of the compact set µ(p), so there is a finite subcollection
Ax1 , . . . , Axn with µ(p) ⊂ Ax1 ∪ · · · ∪Axn . Set A =

∪n
i=1 Axi and B =

∩n
i=1 Bxi . Observe that

A × B ⊂ f−1(G). Since µ is upper hemicontinuous, C = B ∩ µu(A) is an open neighborhood
of p. Furthermore, if q ∈ C and x ∈ µ(q), then (x, q) ∈ A × B ⊂ f−1(G). Therefore V (q) =
f(x, q) ∈ U , so C ⊂ V −1(G), which shows that V is continuous at p.

2.17 Lebesgue measure and null sets
In this section I describe just enough about Lebesgue measure to understand the meaning of
“almost everywhere.” Lebesgue measure is a generalization of the concept of length from intervals
to more general subsets of the real line (or more generally Rn).

By definition, the Lebesgue measure λ of any interval is its length. This is true regardless
of whether the interval is closed, open, or half-open. In particular, the Lebesgue measure of a
point is zero and the measure of R is ∞. The measure of a disjoint union of intervals is the sum
of the lengths of the intervals. For a countable family of pairwise disjoint intervals, the measure
is the infinite series of the lengths, which may be finite or ∞.

A setA of real numbers has Lebesgue measure zero, or is a null set, if for every ε > 0 there
is a countable collection of intervals whose union includes A and whose total length is no more
than ε. For instance, every countable set has Lebesgue measure zero. To see this, enumerate the
countable set A as x1, x2, . . .. Let In be the (open) interval (xn − 1

2n+1 ε, xn + 1
2n+1 ε), which has

length ε2−n and contains xn. Then the total length of these intervals is ε and the union includes
A. There are uncountable sets of Lebesgue measure zero, too. One example is the Cantor set
described in Section 3.4. The idea is that a set of measure zero cannot be very big in the sense
of length. A property is said to hold almost everywhere if the set of points where it fails is
of Lebesgue measure zero.

2.17.1 A little more on Lebesgue measure
A σ-algebra Σ of subsets of a set X is a family of subsets with the following properties.
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1. X and ∅ belong to Σ.

2. If A belongs to Σ, then so does Ac. (That is, Σ is closed under complements.)

3. If A1, A2, . . . is a countable family of elements of Σ, then
∪∞

n=1 An belongs to Σ, and∩∞
n=1 An belongs to Σ.

A measure µ on a σ-algebra Σ is a function from Σ into [0,∞] satisfying the following countable
additivity property. If A1, A2, . . . is a countable sequence of pairwise disjoint elements of Σ,
then

µ

( ∞∪
n=1

An

)
=

∞∑
n=1

µ(An).

The power set of a set X is a σ-algebra of subsets of X, and every family of subset of X
is included in a smallest σ-algebra. The smallest σ-algebra of subset of R that includes all the
intervals is called the Borel σ-algebra, and it members are Borel sets.

There is exactly one measure on the Borel σ-algebra that agrees with length on intervals.
It is called Lebesgue measure. It is possible to extend Lebesgue measure to a measure on a
largest σ-algebra of subsets of R, whose members are called Lebesgue measurable sets. This
extension is unique, and is also called Lebesgue measure. Every Lebesgue measurable set is of
the form B ∪N , where B is a Borel set and N is a null set (has Lebesgue measure zero).

The Lebesgue measure of an interval or collection of intervals is translation invariant, that
is, the length of the interval [α, β] is the same as the interval [α+γ, β+γ] for every γ. Lebesgue
measure is also translation invariant on σ-algebra of Lebesgue measurable sets. In fact, it is the
only translation invariant measure that extends length.

The bad news is that there are subsets of R that are not Lebesgue measurable.
For details and proofs of all these assertions see Aliprantis and Border [3, Chapter 10],

Halmos [70, Chapter 3], or Royden [132, Chapter 3].
In Rn, the same definitions are made where the role of the intervals is played by the “rect-

angles,” which are Cartesian products of intervals, and length is replaced by n-dimensional
volume.
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Section 3

Calculus

3.1 A little calculus
This section is not intended to be a comprehensive review of calculus. Rather, I just mention
some of the more salient results, and have written down some of the results for which I have a hard
time remembering the exact statement. My favorite sources for basic calculus are Apostol [7, 8]
and Hardy [72]. Good references for advanced calculus include Apostol [6, Chapter 5] (a bit old
fashioned now, which is useful at times), Dieudonné [43] (elegant, but abstract), Loomis and
Sternberg [100] (quite abstract with slightly eccentric notation and terminology, but with better
versions of most theorems), Marsden [107, Chapter 6] (quite readable and chatty), Rudin [134]
(quite readable), and Spivak [145] (also quite readable, but fast moving).

Let f be a real-valued function of a real variable. We start by recalling that the notation

lim
x→α

f(x) = β

means that for every ε > 0, there is some δ > 0 such that if 0 < |x−α| < δ, then |f(x) −β| < ε.
The reason we restrict attention to x with 0 < |x − α| is so that we can divide by x − α, as in
the next definition.

63 Definition (Derivative of a function) Let f : (α, β) → R be a real function of one real
variable. If the limit

lim
v→0

f(x+ v) − f(x)
v

exists (as a finite real number), then we say that f is differentiable at x and that the limit is
the derivative of f at x, denoted f ′(x) or Df(x). Introduce one-sided

derivates.

According to this definition, a function has a derivative only at interior points of its domain,
and the derivative is always finite.1

64 Proposition (Differentiability implies local Lipschitz continuity) If f is differen-
tiable at a point x in (α, β), then there exist δ > 0 and M > 0 for which 0 < |v| < δ implies

|f(x+ v) − f(x)| < M |v|.
1There are occasions when we may wish to allow the derivative to assume the values ±∞, and we shall indicate

this by explicitly. But most of the time when we say that a function is differentiable, we want the derivative to be
finite. To give you an idea of why, consider the function f : R → R by f(x) = x1/2 for x ⩾ 0, and f(x) = (−x)1/2

for x < 0. This function is continuously differentiable by our definition everywhere except at 0, where we might
be tempted to set f ′(0) = ∞. Now consider the everywhere continuously differentiable function g(x) = x2. Then
g ◦ f(x) = |x|, which is not even differentiable at 0.

25
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Proof : Since f is differentiable at x, taking ε = 1, there is some δ > 0 such that 0 < |v| < δ
implies ∣∣∣∣f(x+ v) − f(x)

v
− f ′(x)

∣∣∣∣ < 1.

This in turn implies ∣∣f(x+ v) − f(x)
∣∣ < (∣∣f ′(x)

∣∣+ 1
)
|v|,

which proves the assertion.

The conclusion of the theorem is that f satisfies a Lipschitz condition at x0. It readily
implies the following.

65 Corollary If f is differentiable at a point x in (α, β), then f is continuous at x.

66 Squeezing Lemma Suppose f ⩾ h ⩾ g everywhere and f(x) = h(x) = g(x). If f and g
are differentiable at x, then h is also differentiable at x, and f ′(x) = h′(x) = g′(x).

Next we present the well known Mean Value Theorem, see e.g., Apostol [7, Theorem 4.5,
p. 185], and an easy corollary, cf. [7, Theorems 4.6 and 4.7].

67 Mean Value Theorem Suppose f is continuous on [α, β] and differentiable on (α, β).
Then there exists γ ∈ (α, β) satisfying

f(β) − f(α) = f ′(γ)(β − α).

This result has some corollaries relating derivatives and monotonicity of functions.

68 Definition (Monotonicity) Let f : [α, β] → R. We say that f is

strictly increasing on (α, β) if α < x < y < β implies f(x) < f(y).

increasing or nondecreasing on (α, β) if α < x < y < β implies f(x) ⩽ f(y). The term
isotone is occasionally used to mean this.

strictly decreasing on (α, β) if α < x < y < β implies f(x) > f(y).

decreasing or nonincreasing on (α, β) if α, β implies f(x) ⩾ f(y). The term antitone is
occasionally used to mean this.2

monotone on (α, β) if it is either increasing on (α, β) or decreasing on (α, β).

Some authors, notably Hardy [72] and Landau [97, Definition 27, p. 88], say that f is in-
creasing at γ if there exists some ε > 0 such that γ − ε < x < γ < y < γ + ε implies
f(x) ⩽ f(γ) ⩽ f(y).

f is decreasing at γ if there exists some ε > 0 such that γ − ε < x < γ < y < γ + ε implies
f(x) ⩾ f(γ) ⩾ f(y).

69 Corollary (Derivatives and Monotonicity) Suppose f : [α, β] → R is continuous on
[α, β] and differentiable on (α, β). If f ′(x) ⩾ 0 for all x ∈ (α, β), then f is nondecreasing on
[α, β]. If f ′(x) > 0 for all x ∈ (α, β), then f is strictly increasing on [α, β].

Similarly if f ′(x) ⩽ 0 for all x ∈ (α, β), then f is nonincreasing on [α, β]. If f ′(x) < 0 for all
x ∈ (α, β), then f is strictly decreasing on [α, β].

If f ′(x) = 0 for all x ∈ (α, β), then f is constant on [α, β].
2Topkis [149] points out that the negation of the statement “f is increasing” is not “f is nonincreasing.” For

instance the sine function is not an increasing function, nor is it a nonincreasing function in my terminology.
This does not seem to lead to much confusion however.
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It is extremely important in the above theorem that f ′(x) > 0 for all x ∈ (α, β) in order to
conclude that f is strictly increasing. If we know only that f ′(x0) > 0, we cannot conclude even
that f is monotone! The following example is well known, see e.g., Marsden [107, Exercise 7.1.3,
p. 209], but was introduced to me by Ket Richter.

70 Example (Nonmonotonicity with f ′(x0) > 0) Consider the function on R given by

f(x) = x+ 2x2 sin 1
x2 .

Then f is differentiable everywhere on R, and f ′(0) = 1, but f is not monotone on any open
interval around 0. To see that f is differentiable, the only difficulty is at zero. But observe that f
is squeezed between g(x) = x+2x2 and h(x) = x−2x2, which have the property that g ⩾ f ⩾ h
everywhere, g(0) = f(0) = h(0) = 0, and g′(0) = h′(0) = 1, so by the Squeezing Lemma 66, f
is differentiable at zero and f ′(0) = 1. For nonzero x, f ′(x) = 1 + 4x sin 1

x2 − 2
x cos 1

x2 , which is
continuous and attains arbitrarily large positive and negative values in every neighborhood of
zero. Therefore f cannot be monotone on a neighborhood of zero. See Figure 3.1. Note that
the derivative of f is discontinuous at zero. The idea of the

derivative as the slope
of a tangent line is
weird in this case.

Note that this function is increasing at zero in Landau’s sense, but is not monotone on any
open interval containing zero. □

-0.4 -0.2 0.2 0.4

-1

-0.75

-0.5

-0.25

0.25

0.5

Figure 3.1. The nonmonotone function x+ 2x2 sin 1
x2 .

The next lemma is not hard to see. Compare it to Theorem 75 below.

71 Lemma Let f : (α, β) → R be differentiable at x with f ′(x) > 0. Then f is increasing at x
(in Landau’s sense). Likewise if f ′(x) < 0. Then f is increasing at x.

The next result is another consequence of the Mean Value Theorem, see Apostol [7, Exer-
cise 10, p. 187].

72 Intermediate Value Theorem Let f : (α, β) → R be everywhere differentiable on (α, β).
Then f ′ assumes every value between f ′(a) and f ′(b) somewhere in (α, β). Are f′(α) and f′(β)

defined?

This implies among other things that the derivative of a function cannot have any jump
discontinuities. If a derivative is not continuous, the discontinuities must be of the second kind.
That is, if f ′ is not continuous at some point γ it must be that limx→γ f

′(x) fails to exist.
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Many of the results on maximization can be derived from Taylor’s Theorem, which has
two useful forms. The first is a generalization of the Mean Value Theorem, and assumes n−1
continuous derivatives on an open set and the existence everywhere of the nth derivative. The
version here is taken from Apostol [6, Theorem 5–14, p. 96].

73 Taylor’s Theorem Let f : (α, β) → R be n−1 times continuously differentiable on (α, β)
and assume that f has an nth derivative at each point of (α, β). Fix a point x in (α, β). For
any v ̸= 0 such that x+ v belongs to (α, β), there is a point u strictly between 0 and v such that

f(x+ v) = f(x) +
n−1∑
k=1

f (k)(x)
k!

vk + f (n)(x+ u)
n!

vn.

The other useful form of Taylor’s Theorem is Young’s form. It too assumes n−1 continuous
derivatives on an open set, but assumes only that the nth derivative exists at a point, and has a
remainder term. This statement is a slight rewording of Serfling [138, Theorem C, p. 45], who
cites Hardy [72, p. 278].

74 Young’s Form of Taylor’s Theorem Let f : (α, β) → R be n−1 times continuously
differentiable on (α, β) and assume that f has an nth derivative at the point x in (α, β). For
any v such that x+ v belongs to (α, β),

f(x+ v) = f(x) +
n∑

k=1

f (k)(x)
k!

vk + r(v)
n!

vn,

where the remainder term r(v) satisfies

lim
v→0

r(v) = 0.

I will prove the multivariable version of this for the case n = 2 in Theorem 106 below. That
will demonstrate how the proof works in this case.

3.2 Extrema of a function of one variable
The main reference for these results is Apostol [7, pp. 181–195, 273–280].

3.2.1 Necessary first order conditions
We present the so-called first order necessary conditions for an interior extremum. They
are called first order conditions because they involve first derivatives.

75 Theorem (Necessary First Order Conditions) Let f : [α, β] → R and let x∗ be a
local maximizer of f . Assume f has a derivative at x∗.

If α < x∗ < β (x∗ is an interior point), then

f ′(x∗) = 0.

If x∗ = α, then f ′(x∗) ⩽ 0. If x∗ = β, then f ′(x∗) ⩾ 0. In short, if x∗ is a local maximizer, then

f ′(x∗)(x∗ − x) ⩾ 0 for all x ∈ [α, β].

If x∗ is a local minimizer, then

f ′(x∗)(x∗ − x) ⩽ 0 for all x ∈ [α, β].
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Proof : If f has a local maximum at x∗,

f(x∗) ⩾ f(x∗ + v)

if v is small enough and x∗ + v ∈ [α, β]. Thus

f(x∗ + v) − f(x∗)
v

is
{

⩽ 0 for v > 0
⩾ 0 for v < 0.

Now take limits as v → 0 or v ↓ 0 or v ↑ 0, as appropriate.
The case of a minimum is similar, but the inequalities are reversed.

Figure 3.2. A nicely behaved maximum.

3.2.2 Sufficient first order conditions
The next result is a straightforward consequence of the Mean Value Theorem 67, cf. Apostol [7,
Theorems 4.6 and 4.7].

76 Theorem (Sufficient First Order Conditions) Suppose f is continuous on [α, β], and
differentiable on (α, β) except perhaps at γ ∈ (α, β).

• If f ′(x) > 0 for x ∈ (α, γ) and f ′(x) < 0 for x ∈ (γ, β), then γ is a strict maximizer of f
on [α, β].

• If f ′(x) ⩾ 0 for x ∈ (α, γ) and f ′(x) ⩽ 0 for x ∈ (γ, β), then γ maximizes f on [α, β].

• If f ′(x) < 0 for x ∈ (α, γ) and f ′(x) > 0 for x ∈ (γ, β), then γ is a strict minimizer of f
on [α, β].

• If f ′(x) ⩽ 0 for x ∈ (α, γ) and f ′(x) ⩾ 0 for x ∈ (γ, β), then γ is a minimizer of f on [α, β].

The conditions of Theorem 76 are sufficient conditions for the existence of a maximum at a
point, but are hardly necessary.

77 Example (An unruly maximum) This is almost the same as Example 70. Consider the
function

f(x) =

{
−x2(2 + sin

( 1
x

))
x ̸= 0

0 x = 0
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(see Figure 3.3). Clearly f is differentiable for all nonzero x, and by the Squeezing Lemma 66,
f is differentiable at zero since it is squeezed between −x2 and −3x2. In fact,

f ′(x) =

{
−2x

(
2 + sin

( 1
x

))
+ cos

( 1
x

)
x ̸= 0

0 x = 0.

Observe that f achieves a strict local maximum at zero, but its derivative switches sign infinitely
often on both sides of zero (since for small x the cos

( 1
x

)
term determines the sign of f ′(x)). In

particular, the function is neither increasing on any interval (α, 0) nor decreasing on any interval
(0, β). This example appears in Sydsaeter [146]. □Morse Theorem.

Figure 3.3. An unruly maximum at 0 for −x2 (2 + sin
( 1

x

))
.

3.2.3 Second order (and higher order) sufficient conditions
The next theorem has slightly weaker hypotheses than the standard statement, which assumes
that f is n times continuously differentiable on an interval, see, e.g., Apostol [6, Theorem 7–7,
p. 148].

78 Theorem (Higher order sufficient conditions) Let f : (α, β) → R be n−1 times
continuously differentiable on (α, β) and assume that it has an nth derivative at the interior
point x∗. Suppose in addition that

f ′(x∗) = f ′′(x∗) = · · · = f (n−1)(x∗) = 0 and f (n)(x∗) ̸= 0.

• If n is even, and f (n)(x∗) < 0, then f has a strict local maximum at x∗.
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• If n is even, and f (n)(x∗) > 0, then f has a strict local minimum at x∗.

• If n is odd, then f has neither a local maximum nor a local minimum at x∗.

Proof : From Young’s form of Taylor’s Theorem 74, for any v with x∗ + v ∈ (α, β) we have

f(x∗ + v) − f(x∗) = f (n)(x∗) + r(v)
n!

vn,

where limv→0 r(v) = 0. So for |v| small enough we have |r(v)| < |f (n)(x∗)|. Then the sign of
f(x∗ + v) − f(x∗) is the same as the sign of f (n)(x∗)vn. When n is even vn > 0 and when n is
odd vn switches signs, and the conclusion follows.

79 Corollary (Necessary Second Order Conditions) Let f : (α, β) → R is continuously
differentiable on a neighborhood of x∗ and suppose f ′′(x∗) exists. If x∗ is a local maximizer of
f , then f ′′(x∗) ⩽ 0. If x∗ is a local minimizer of f , then f ′′(x∗) ⩾ 0.

Proof : Assume first that x∗ is a local maximizer. Then by Theorem 75 we must have f ′(x∗) = 0,
so by Theorem 78, if f ′′(x∗) > 0, then it is a strict local minimizer, so it cannot be a local
maximizer. By contraposition then, f ′′(x∗) ⩽ 0. For the case of a local minimizer reverse the
signs.

80 Example (All derivatives vanishing at a strict maximum) It is possible for f to
have derivatives of all orders that all vanish at a strict local maximizer. E.g., define

f(x) =

{
−e− 1

x2 x ̸= 0

0 x = 0.

Then 0 is a strict global maximizer of f . Furthermore f has derivatives of all orders everywhere. Elaborate.

f(n)(x) = e−x−2

p(x) ,
where p is a
polynomial.

(Why?) Nevertheless f (n)(0) = 0 for all n. This example appears in Apostol [6, Exercise 5–4,
p. 98] and in Sydsaeter [146]. It is closely related to the function

f(x) =

{
e

1
x2−1 |x| ⩽ 1

0 |x| ⩾ 1,

which was shown by Cauchy to have continuous derivatives of all orders.3 □

3.3 The Classical Fundamental Theorems
This section is a review of the Fundamental Theorems of Calculus, as presented in Apostol [7].
The notion of integration employed is the Riemann integral. Recall that a bounded function is
Riemann integrable on an interval [α, β] if and only it is continuous except on a set of Lebesgue
measure zero. In this case its Lebesgue integral and its Riemann integral are the same.

Recall that an indefinite integral of f over the interval I is a function F satisfying F (x) =∫ x

α
f(s) ds for every x in I, for some fixed choice of a in I. Different values of a give rise to

different indefinite integrals. By the remarks just made, every function that is continuous almost
everywhere has an indefinite integral on a bounded interval I.

A function P is a primitive or antiderivative of a function f on an open interval I if P ′(x) =
f(x) for every x in I. Leibniz’ notation for this is

∫
f(x) dx = P (x) + C. Note that if P is an

antiderivative of f , then so is P + C for any constant function C.
3At least Horváth [77, p. 166] attributes this function to Cauchy. See Aliprantis and Burkinshaw [4, Prob-

lem 21.2, p. 152] for a proof of the properties of Cauchy’s function.
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Despite the similarity in notation, we see that an antiderivative is conceptually distinct from
an indefinite integral. The statement that P is an antiderivative of f is a statement about the
derivative of P , namely that P ′(x) = f(x) for all x in I; whereas the statement that F is an
indefinite integral of f is a statement about the integral of f , namely that there exists some α
in I with

∫ x

α
f(s) ds = F (x) for all x in I. Nonetheless there is a close connection between the

concepts, which justifies the similar notation. The connection is laid out in the two Fundamental
Theorems of Calculus.

81 First Fundamental Theorem of Calculus [7, Theorem 5.1, p. 202] Let f be inte-
grable on [α, x] for each x in I = [α, β]. Let α ⩽ γ ⩽ β, and define F by

F (x) =
∫ x

γ

f(s) ds.

Then F is differentiable at every x in (α, β) where f is continuous, and at such points F ′(x) =
f(x).

That is, an indefinite integral of a continuous integrable function is also an antiderivative of
the function.

This result is often loosely stated as, “the integrand is the derivative of its (indefinite)
integral,” which is not strictly true unless the integrand is continuous.

82 Second Fundamental Theorem of Calculus [7, Theorem 5.3, p. 205] Let f be con-
tinuous on (α, β) and suppose that f possesses an antiderivative P . That is, P ′(x) = f(x) for
every x in (α, β). Then for each x and γ in (α, β), we have

P (x) = P (γ) +
∫ x

γ

f(s) ds = P (γ) +
∫ x

c

P ′(s) ds.

That is, an antiderivative of a continuous function is also an indefinite integral.

This result is often loosely stated as, “a function is the (indefinite) integral of its derivative,”
which is not true. What is true is that “a function that happens to be an indefinite integral of
something continuous, is an (indefinite) integral of its derivative.” To see this, suppose that F
is an indefinite integral of f . That is, for some a the Riemann integral

∫ x

α
f(s) ds is equal to

F (x) for every x in the interval I. In particular, f is Riemann integrable over [α, x], so it is
continuous everywhere in I except possibly for a set N of Lebesgue measure zero. Consequently,
by the First Fundamental Theorem, except possibly for a set N of measure zero, F ′ exists and
F ′(x) = f(x). Thus the Lebesgue integral of F ′ over [α, x] exists for every x and is equal to the
Riemann integral of f over [α, x], which is equal to F (x). In that sense, F is the integral of its
derivative. Thus we see that a necessary condition for a function to be an indefinite integral is
that it be differentiable almost everywhere.

Is this condition sufficient as well? It turns out that the answer is no. There exist continuous
functions that are differentiable almost everywhere that are not an indefinite integral of their
derivative. Indeed such a function is not an indefinite integral of any function. The commonly
given example is the Cantor ternary function.

3.4 The Cantor ternary function
Given any number x with 0 ⩽ x ⩽ 1 there is an infinite sequence (a1, a2, . . .), where each an

belongs to {0, 1, 2}, such that x =
∑∞

n=1
an

3n . This sequence is called a ternary expansion of
x and the infinite series is the ternary representation of x. If x is of the form N

3m (in lowest
terms), then it has two ternary representations and expansions: a terminating representation of
the form x =

∑∞
n=1

an

3n , where am > 0 and an = 0 for n > m, and a repeating representation of
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the form x =
∑m−1

n=1
an

3n + am−1
3m +

∑∞
n=m+1

2
3n . But these are the only cases of a nonunique ternary

representation, and there are only countably many such numbers. (See, e.g., [33, Theorem 1.23,
p. 20].)

Given x ∈ [0, 1], let N(x) be the first n such that an = 1 in the ternary expansion of x. If x
has two ternary expansions use the one that gives the larger value for N(x). For this discussion
we shall call this the “preferred” expansion. If x has a ternary expansion with no an = 1, then
N(x) = ∞. The Cantor set C consists of all numbers x in [0, 1] for which N(x) = ∞. That is,
those that have a preferred ternary expansion where no an = 1. That is, all numbers x of the
form x =

∑∞
n=1

2bn

3n , where each bn belongs to {0, 1}. Each distinct sequence of 0s and 1s gives
rise to a distinct element of C. Indeed some authors identify the Cantor set with {0, 1}N endowed
with its product topology, since the mapping (b1, b2, . . .) 7→

∑∞
n=1

2bn

3n is a homeomorphism. Also
note that a sequence (b1, b2, . . .) of 0s and 1s also corresponds to a unique subset of N, namely
{n ∈ N : bn = 1}. Thus there are as many elements C as there are subset of N, so the Cantor set
is uncountable. (This follows from the Cantor diagonal procedure.) Yet the Cantor set includes
no interval.

It is perhaps easier to visualize the complement of the Cantor set. Let

An = {x ∈ [0, 1] : N(x) = n}.

The complement of the Cantor set is
∪∞

n=1 An. Define

Cn = [0, 1] \
n∪

k=1

Ak,

so that C =
∩∞

n=0 Cn. Now A1 consists of those x for which a1 = 1 in its preferred ternary
expansion. This means that

A1 =
( 1

3 ,
2
3
)

and C1 =
[
0, 1

3
]

∪
[ 2

3 , 1
]
.

Note that N( 1
3 ) = ∞ since 1

3 has as its preferred representation
∑∞

n=2
2

3n (a1 = 0, an = 2 for
n > 1). Now A2 consists of those x for which a1 = 0 or a1 = 2 and a2 = 1 in its preferred
ternary expansion. That last sentence is ambiguous. To be precise,

A2 =
( 1

9 ,
2
9
)

∪
( 7

9 ,
8
9
)

and C2 =
[
0, 1

9
]

∪
[2

9 ,
1
3
]

∪
[ 2

3 ,
7
9
]

∪
[ 8

9 , 1
]
.

Each Cn is the union of 2n closed intervals, each of length 1
3n−1 , and An+1 consists of the open

middle third of each of the intervals in Cn. The total length of the removed open segments is

1
3

+ 2 · 1
9

+ 4 · 1
27

+ · · · =
∞∑

n=0

2n

3n+1 = 1
3

∞∑
n=0

(
2
3

)n

= 1
3

· 1
1 − 2

3
= 1.

Thus the total length of the Cantor set is 1 − 1 = 0.
The Cantor ternary function f is defined as follows. On the open middle third ( 1

3 ,
2
3 ) its

value is 1
2 . On the open interval ( 1

9 ,
2
9 ) its value is 1

4 and on ( 7
9 ,

8
9 ) its value is 3

4 . Continuing
in this fashion, the function is defined on the complement of the Cantor set. The definition is
extended to the entire interval by continuity. See Figure 3.4. A more precise but more opaque
definition is this:

f(x) =
N(x)−1∑

n=1

1
2an

2n
+
aN(x)

2N(x) ,

where (a1, a2, . . .) is the preferred ternary expansion of x. (If N(x) = ∞ we interpret this as the
infinite series without the last term.)

Note that the range of f is all of [0, 1] since we can obtain the binary expansion of any real
in [0, 1] as a value for f . (Since for n < N(x) we have an = 0 or an = 2, so 1

2an is either zero
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Figure 3.4. Partial graph of the Cantor ternary function.

or one.) Finally, I claim that f is continuous. (To see this make two observations. If N(x) is
finite, then f is constant on some neighborhood of x, and thus continuous at x. If N(x) = ∞,
so that x ∈ C, then for every ε > 0, there is some M such that

∑∞
n=M

1
2n < ε and δ > 0 such

that |x− y| < δ implies N(y) > M , so |f(x) − f(y)| < ε.)
In any event, notice that f is constant on each open interval in some An, so it is differentiable

there and f ′ = 0. Thus f is differentiable almost everywhere, and f ′ = 0 wherever it exists, but

f(1) − f(0) = 1 ̸= 0 =
∫ 1

0
f ′(x) dx.

The Cantor function is also an example of a continuous function whose derivative is zero
almost everywhere, but manages to increase from f(0) = 0 to f(1) = 1. There are more
perverse functions on [0, 1] that are continuous and strictly increasing, yet have a derivative
that is zero almost everywhere. I won’t go into that here, but see, for instance, Kannan and
Krueger [88, § 8.6, pp. 208ff.] or Royden [132, Exercise 16e, p. 111].
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3.5 Differentiation on normed spaces
In this section I want to introduce progressively more restrictive notions of derivatives and
differentiability for functions between real vector spaces. The real line is considered to be the
one-dimensional vector space. Recall that a derivative is some kind of limit of line segments
joining points on the graph of a function. The simplest way to take such a limit is along a line
segment containing x.

83 Definition (One-sided directional derivative) Let A be a subset of the vector space
X, let Y be a topological vector space, and let f : A → Y .

We say that f has the one-sided directional derivative f ′(x; v) at x in the direction v,
if f ′(x; v) is a vector in Y satisfying

f ′(x; v) = lim
λ↓0

f(x+ λv) − f(x)
λ

.

In order for this definition to make sense, we implicitly require that there is some ε > 0 such
that 0 ⩽ λ ⩽ ε implies that x+ λv belongs to A, so that f(x+ λv) is defined.

For the case Y = R, we also permit f to assume one of the extended values ±∞, and also
permit f ′(x; v) to assume one of the values ±∞.

Note that in the definition of f ′(x, v), the limit is taken in Y , so a topology is needed on Y ,
but none is necessary on X. Also note that x+ λv need not belong to A for λ < 0. Considering
λ = 0 implies x ∈ A. The next lemma shows that the set of v for which a one-sided directional
derivative exists is a cone, and that f ′(x; v) is positively homogeneous in v on this cone.

84 Lemma The one-sided directional derivative is positively homogeneous of degree one. That
is, if f ′(x; v) exists, then

f ′(x;αv) = αf ′(x; v) for α ⩾ 0.

Proof : This follows from f(x+λαv)−f(x)
λ = α f(x+βv)−f(x)

β , where β = λα, and letting λ, β ↓ 0.

85 Definition If f ′(x; v) = −f ′(x; −v), then we denote the common value by Dvf(x), that is,

Dvf(x) = lim
λ→0

f(x+ λv) − f(x)
λ

,

and we say that f has directional derivative Dvf(x) at x in the direction v.

It follows from Lemma 84 that if Dv(x) exists, then Dαv(x) = αDv(x) for all α. In Rn, the
ith partial derivative of f at x, if it exists, is the directional derivative in the direction ei, the
ith unit coordinate vector.

Note that this definition still uses no topology on X. This generality may seem like a good
thing, but it has the side effect that since it does not depend on the topology of X, it cannot
guarantee the continuity of f at x in the normed case. That is, f may have directional derivatives
in all nonzero directions at x, yet not be continuous at x. Moreover, we may not be able to
express directional derivatives as a linear combination of partial derivatives.

86 Example (Directional derivatives without continuity or linearity) Let f : R2 →
R via

f(x, y) =


xy

x2 + y
y ̸= −x2

0 y = −x2.
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Observe that f has directional derivatives at (0, 0) in every direction, for

f(λx, λy) − f(0, 0)
λ

=

(
λ2xy

λ2x2 + λy

)
λ

= xy

λx2 + y
.

If y ̸= 0, then the limit of this expression is x as λ → 0, and if y = 0, the limit is 0. Thus the
directional derivative exists for every direction (x, y), but it is not continuous at the x-axis.

But f is not continuous at (0, 0). For instance, for ε > 0,

f(ε,−ε2 − ε4) = −ε(ε2 + ε4)
ε2 − ε2 − ε4 = 1

ε
+ ε → ∞ as ε → 0.

Note too that the mapping v 7→ Dvf(0) is not linear. □

87 Definition (The Gâteaux derivative) Let X and Y be normed vector spaces. If Dvf(x)
exists for all v ∈ X and the mapping T : v 7→ Dvf(x) fromX to Y is a continuous linear mapping,
then T is called the Gâteaux derivative or Gâteaux differential of f at x,4 and we say that
f is Gâteaux differentiable at x.

This notion uses the topology on X to define continuity of the linear mapping, but Gâteaux
differentiability of f is still not strong enough to imply continuity of f , even in two dimensions.
The next example may be found, for instance, in Aubin and Ekeland [15, p. 18].

88 Example (Gâteaux differentiability does not imply continuity) Define f : R2 →
R by

f(x, y) =


y

x
(x2 + y2) x ̸= 0

0 x = 0.

Then for x ̸= 0,

f(λx, λy) − f(0, 0)
λ

=

(
λy

λx
λ2(x2 + y2)

)
λ

= λy

x
(x2 + y2) → 0.

Thus Dvf(0) = 0 for any v, so f has a Gâteaux derivative at the origin, namely the zero linear
map.

But f is not continuous at the origin. For consider v(ε) = (ε4, ε). The v(ε) → 0 as ε → 0,
but

f
(
v(ε)

)
= ε

ε4 (ε8 + ε2) = ε5 + 1/ε.

Thus f
(
v(ε)

)
→ ∞ as ε ↓ 0, and f

(
v(ε)

)
→ −∞ as ε ↑ 0, so limε→0 f

(
v(ε)

)
does not exist. □

A stronger notion of derivative has proven useful. Gâteaux differentiability requires that
chords have a limiting slope along straight lines approaching x. The stronger requirement is
that chords have a limiting slope along arbitrary approaches to x. The definition quite naturally
applies to functions between any normed vector spaces, not just Euclidean spaces, so we shall
work as abstractly as possible. Dieudonné [43] claims that this makes everything clearer, but I
know some who may disagree.

4This terminology disagrees with Luenberger [102, p. 171], who does not require linearity. It is however, the
terminology used by Aubin [13, Definition 1, p. 111] , Aubin and Ekeland [15, p. 33], and Ekeland and Temam [47,
Definition 5.2, p. 23].
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89 Definition (The differential or Fréchet derivative) Let X and Y be normed real
vector spaces. Let U be an open set in X and let f : U → Y . The Gâteaux derivative is
called differential at x (also known as a Fréchet derivative, a total derivative, or simply
a derivative) if it satisfies

lim
v→0

∥f(x+ v) − f(x) −Dvf(x)∥
∥v∥

= 0. (D)

The differential is usually denoted Df(x), and it is a function from X into Y . Its value at a
point v in X is denoted Df(x)(v) rather than Dvf(x). The double parentheses are only slightly
awkward, and you will get used to them after a while.

When f has a differential at x, we say that f is differentiable at x, or occasionally for
emphasis that f is Fréchet differentiable at x.

Actually my definition is a bit nonstandard. I started out with directional derivatives and
said that if the mapping was linear and satisfied (D), then it was the differential. That is, I
defined the differential in terms of directional derivatives. The usual approach is to say that f
has a differential at x if there is some continuous linear mapping T that satisfies

lim
v→0

∥f(x+ v) − f(x) − T (v)∥
∥v∥

= 0. (D′)

It is then customary to prove the following lemma.

90 Lemma If T satisfies (D′), then T (v) = f ′(x; v). Consequently, T is unique, so

Df(x)(v) = Dvf(x) = f ′(x; v) = lim
λ↓0

f(x+ λv) − f(x)
λ

.

Proof : Fix v ̸= 0 and replace v by λv in (D′), and conclude

lim
λ↓0

∥f(x+ λv) − f(x) − T (λv)∥
λ∥v∥

= lim
λ↓0

1
∥v∥

∥∥∥∥f(x+ λv) − f(x)
λ

− T (v)
∥∥∥∥ = 0.

That is, T (v) = limλ↓0
f(x+λv)−f(x)

λ = f ′(x; v).

The continuity (equivalently boundedness) of Df(x)(·) implies the continuity of f .

91 Lemma (Differentiability implies Lipschitz continuity) If f is differentiable at x,
then f is continuous at x. Indeed f is Lipschitz continuous at x. That is, there is M ⩾ 0 and
δ > 0 such that if ∥v∥ < δ, then

∆vf(x) < M ∥v∥.

Proof : Setting ε = 1 in the definition of differentiability, there is some δ > 0 so that ∥v∥ < δ
implies ∥∆vf(x) −Df(x)(v)∥ < ∥v∥, so by the triangle inequality,

∥∆vf(x)∥ < ∥v∥ + ∥Df(x)(v)∥ ⩽
(
∥Df(x)∥ + 1

)
∥v∥,

where of course ∥Df(x)∥ is the operator norm of the linear transformation Df(x). Thus f is
continuous at x.
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Rewriting the definition
There are other useful ways to state this definition that I may use from time to time. Start by
defining the first difference function ∆vf of f at x by v, where ∆vf : X → Y , by5

∆vf(x) = f(x+ v) − f(x).

We can rewrite the definition of differentiability in terms of the first difference as follows: f is
(Fréchet) differentiable at x if

∀ε > 0 ∃δ > 0 ∀v 0 < ∥v∥ < δ =⇒ ∥∆vf(x) −Df(x)(v)∥ < ε∥v∥.

Another interpretation of the definition is this. Fix x and define the difference quotient
function dλ by

dλ(v) = f(x+ λv) − f(x)
λ

.

If f is differentiable at X, then dλ converges uniformly on norm-bounded sets to the linear
function Df(x) as λ → 0.

Further notes on the definition
When X = Y = R, the differential we just defined is closely related to the derivative defined
earlier for functions of one variable. The differential is the linear function Df(x) : v 7→ f ′(x)v,
where f ′(x) is the numerical derivative defined earlier. Despite this difference, some authors
(including Dieudonné [43], Luenberger [102], Marsden [107], and Spivak [145]) call the differential
a derivative, but with modest care no serious confusion results. Loomis and Sternberg [100,
pp. 158–159] argue that the term differential ought to be reserved for the linear transformation
and derivative for its skeleton or matrix representation. But these guys are rather extreme in
their views on notation and terminology—for instance, on page 157 they refer to the “barbarism
of the classical notation for partial derivatives.”

Also note that my definition of differentiability does not require that f be continuous any-
where but at x. In this, I believe I am following Loomis and Sternberg [100, p. 142]. Be aware
that some authors, such as Dieudonné [43, p. 149] only define differentiability for functions
continuous on an open set. As a result the function f : R2 → R defined by

f(x, y) =

{
x2 + y2 x = y

0 x ̸= y

is differentiable at (x, y) = (0, 0) under my definition, but not under Dieudonné’s definition. By
the way, Dieudonné does not require that the differential be a continuous linear transformation,
he proves it using the continuity of f . Since we do not assume that f is continuous, we must
make continuity of Df(x)(·) part of the definition (as do Loomis and Sternberg).

More variations on the definition
In Definition 89, I required that f be defined on an open set U in a normed space. Some authors,
notably Graves [64], do not impose this restriction. Graves’s definition runs like this.

Let X and Y be normed real vector spaces. Let A be a subset of X and let f : A → Y . The
differential at x is a linear transformation T : X → Y such that ******************** This
differential is also denoted Df(x). Note that if A is small enough, the differential may not be
uniquely defined.

5Loomis and Sternberg would write this as ∆fx(v). Their notation makes it awkward to write second differ-
ences (see section 3.9).
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3.6 Chain rule
92 Chain rule Let X, Y , and Z be normed vector spaces, and let U be an open subset of X
and V be an open subset of Y . Let f : U → V , and g : V → Z. If f is differentiable at x and g
is differentiable at f(x), then g ◦ f is differentiable at x and

D(g ◦ f)(x) = Dg
(
f(x)

)
◦Df(x).

Proof : There are elegant proofs of this based on Landau’s little-o notation, or what Loomis and
Sternberg call infinitesimals. I’ve never been able to remember the rules for manipulating these
for more than fifteen minutes, and I only need to do so every three or four years, so here is a
somewhat tedious proof based only on the definitions.

Observe that

g
(
f(x+ v)

)
− g
(
f(x)

)
= g

(
f(x) + ∆vf(x)

)
− g
(
f(x)

)
= ∆∆vf(x)g

(
f(x)

)
.

Fix ε > 0, and without loss of generality choose ε < 1. Set M = ∥Df(x)∥ + 1. To ease notation
to come, define u(v) = ∆vf(x) and r(v) = ∆vf(x) − Df(x)(v). Since f is differentiable at x,
there is δ1 > 0 such that 0 < ∥v∥ < δ1 implies ∥r(v)∥ < ε∥v∥ and that

∥u(v)∥ = ∥Df(x)(v) + r(v)∥ ⩽ ∥Df(x)(v)∥ + ∥r(v)∥ ⩽
(
∥Df(x)∥ + ε

)
∥v∥ ⩽M∥v∥.

(Note the weak inequalities. It is quite possible that u(v) = 0 even if v ̸= 0. If u(v) = 0, then
we actually have equality, otherwise we have strict inequality.)

Since g is differentiable at f(x), there is some δ2 > 0 such that ∥u∥ < δ2 implies

∥∆ug
(
f(x)

)
−Dg

(
f(x)

)
(u)∥ ⩽ ε∥u∥.

Thus for ∥v∥ < δ = min δ1,
δ2
M , we have ∥u(v)∥ < M∥v∥ < M δ2

M = δ2, so

∥∆u(v)g
(
f(x)

)
−Dg

(
f(x)

)(
u(v)

)
∥ ⩽ ε∥u(v)∥.

In other words,
∥g
(
f(x+ v)

)
− g
(
f(x)

)
−Dg

(
f(x)

)(
u(v)

)
∥ ⩽ ε∥u(v)∥.

But

Dg
(
f(x)

)(
u(v)

)
= Dg

(
f(x)

)(
Df(x)(v) + r(v)

)
= Dg

(
f(x)

)(
Df(x)(v)

)
+Dg

(
f(x)

)(
r(v)

)
,

so for ∥v∥ < δ,∥∥g(f(x+ v)
)

− g
(
f(x)

)
−
(
Dg
(
f(x)

)
◦Df(x)

)
(v)
∥∥ ⩽ ε

∥∥u(v)
∥∥+

∥∥Dg(f(x)
)(
r(v)

)∥∥
⩽ ε

∥∥u(v)
∥∥+

∥∥Dg(f(x)
)∥∥ ∥r(v)∥

⩽ ε
(
∥Df(x)∥ + 1

)
∥v∥ + ε

∥∥Dg(f(x)
)∥∥ ∥v∥

= ε
(
∥Df(x)∥ +

∥∥Dg(f(x)
)∥∥+ 1

)
∥v∥,

which shows that Dg
(
f(x)

)
◦Df(x) satisfies the definition of D(g ◦ f)(x).

3.7 Computing the differential
Let’s compute a few simple differentials.
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93 Lemma (Differential of a linear mapping) If T : X → Y is a continuous linear func-
tion between normed spaces, then T is everywhere differentiable, and for each x,

DT (x) = T.

Proof : To see this, just note that T satisfies the definition, as T (x+ v) − T (x) − T (v) = 0.

94 Example (Differential of the evaluation mapping) The evaluation map δx at x
assigns to each function f its value at the point x. The evaluation map δx : L(X,Y ) → Y ,

δx : T 7→ T (x)

is clearly linear. Moreover it is continuous (in the operator norm) and therefore differentiable,
so by Lemma 93, for any T ∈ L(X,Y ),

Dδx(T ) = δx

□

95 Example (Differential of the composition mapping) The composition of a linearDo this for general
bilinear functions, and
composition of general
functions. And
evaluation of general
functions.

function from Y into Z with a linear function from X into Y is a linear function from X into
Z. Consider composition as a mapping c from the vector space L(X,Y ) × L(Y,Z) into L(X,Z)
defined by

c(S, T ) = T ◦ S.

If X, Y , and Z are normed spaces, then the operator norm makes each of L(X,Y ), L(Y, Z), and
L(X,Z) into normed spaces. Is the composition map c differentiable? The answer is yes, and
moreover,

Dc(S, T )(U, V ) = T ◦ U + V ◦ S.

To see this observe that

c(S + λU, T + λV )(x) = (T + λV )
(
S(x) + λU(x)

)
= T

(
S(x)

)
+ λT

(
U(x)

)
+ λU

(
S(x)

)
+ λ2V

(
U(x)

)
,

soOops this is just the
directional derivative.

c(S + λU, T + λV ) − c(S, T )
λ

= T ◦ U + V ◦ S + λV ◦ U −−−→
λ→0

T ◦ U + V ◦ S.

That is, Dc(S, T )(U, V ) = T ◦ U + V ◦ S = c(U, T ) + c(S, V ). □

96 Example (Differential of a Cartesian product) Let f : X → Y and g : X → Z be
differentiable, and define p : X → Y × Z by

p(x) =
(
f(x), g(x)

)
.

Then p is differentiable, Dp(x) ∈ L
(
X,L(Y × Z)

)
, and

Dp(x)(v) =
(
Df(x)(v), Dg(x)(v)

)
.

The only nontrivial part of this is to figure out the appropriate norm on Y ×Z. There are many.
I like ∥(y, z)∥ = ∥y∥ + ∥z∥. □
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3.8 The mean value theorem
The mean value theorem is the workhorse of calculus. We give here a result that seems misnamed,
but it is the version favored by Dieudonné [43, Theorem 8.5.1, p. 158]. (See also Loomis and
Sternberg [100], Theorem 7.3 on p. 148 and Exercise 7.15 on p. 152.)State a conventional

version.

97 Mean Value Theorem Let X be a normed space and [a, b] be a nontrivial compact interval
in R. Let f : [a, b] → X and g : [a, b] → R be continuous and differentiable everywhere on (a, b).
Assume

∥Df(t)∥ ⩽ g′(t) t ∈ (a, b).

(Remember, ∥Df(t)∥ is the operator norm of the linear transformation.) Then

∥f(b) − f(a)∥ ⩽ g(b) − g(a).

Proof : Let ε > 0 be given and define A to be the set of points c in [a, b] such that for all
a ⩽ t < c, we have

∥f(t) − f(a)∥ ⩽ g(t) − g(a) − ε(t− a).

It is easy to see that A is an interval, that a ∈ A, and that A is closed. Moreover if A = [a, d],
then by continuity of f and g we have ∥f(d)−f(a)∥ ⩽ g(d)−g(a)−ε(d−a). Since ε is arbitrary,
we conclude that in fact ∥f(d) − f(a)∥ ⩽ g(d) − g(a). Therefore it suffices to show that d = b.

Suppose by way of contradiction that d < b. From the definition of differentiability, there is
some δ > 0 so that |v| < δ implies

∥f(d+ v) − f(d) −Df(d)(v)∥ ⩽ ε

2
|v|

and
|g(d+ v) − g(d) − g′(d) · v| ⩽ ε

2
|v|.

Thus for any 0 < v < δ, we have

∥f(d+ v) − f(a)∥ ⩽ ∥f(d+ v) − f(d)∥ + ∥f(d) − f(a)∥

⩽
(
∥Df(d)(v)∥ + ε

2
|v|
)

+ g(d) − g(a) − ε(d− a)

⩽
(
g′(d) · v + ε

2
|v|
)

+ g(d) − g(a) − ε(d− a)

⩽ ε|v| + g(d) − g(a) − ε(d− a)
⩽ g(d) − g(a) − ε(d+ v − a),

which contradicts the maximality of d. Thus d = b, so for every t < b,

∥f(t) − f(a)∥ ⩽ g(t) − g(a) − ε(t− a).

By the continuity of f and g and the fact that ε > 0 is arbitrary we see that

∥f(b) − f(a)∥ ⩽ g(b) − g(a).

Note that Dieudonné [43, Theorem 8.5.1, p. 158] proves a stronger result. He requires
differentiability only at all but countably many points in (a, b).

A consequence of this result is the following uniform approximation theorem.
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98 Theorem Let X and Y be normed spaces and let C be a convex subset of X. Let f : C → Y
be differentiable everywhere in C, and let T ∈ L(X,Y ) satisfy

∥Df(x) − T∥ ⩽ ε

for all x in C. Then
∥∆vf(x) − T (v)∥ ⩽ ε∥v∥

whenever x and x+ v belong to C.

Proof : Fix x and x + v in C, and consider the parameterized path φ : [0, 1] → Y by φ(λ) =
f(x+ λv) − T (λv). By the Chain Rule

Dφ(λ) = Df(x+ λv)(v) − λT (v).

Thus
∥Dφ(λ)∥ = ∥Df(x+ λv)(v) − T (λv)∥ ⩽ ε∥λv∥ ⩽ ε∥v∥

for 0 < λ < 1. Thus by the Mean Value Theorem 97

∥φ(1) − φ(0)∥ = ∥f(x+ v) − T (v) − f(x) + T (0)∥ = ∥∆vf(x) − T (v)∥ ⩽ ε∥v∥.

3.9 Second differentials
In this section, I want to discuss higher differentials in the abstract framework of linear transfor-
mations, including Taylor’s Theorem. From a practical standpoint this may seem superfluous,
since it is possible to use mixed partial derivatives, which are conceptually simpler. Indeed many
authors do this. There are two reasons for the exercise. The first is to make sure I understand it.
The second is that for optimization in infinite-dimensional function spaces, the partial derivative
approach is not so simple.

If f is differentiable at each point in U , we say that f is continuously differentiable if the
mapping x 7→ Df(x) from U into L(X,Y ) is continuous, where L(X,Y ) is given the operator
norm. We may also ask if this mapping has a differential at x0. If it does, then f is twice
differentiable at x0 and the differential is called the second differential of f at x0, denoted
D2f(x0).

Let’s examine the second differential D2f(x0) at x0 more carefully. It is a linear transforma-
tion from X into L(X,Y ), so that D2f(x0)(v), where v ∈ X, is a linear function from X into Y .
Thus for w in X, D2f(x0)(v)(w) belongs to Y . What is the interpretation of this vector? I first
claim that if Df is differentiable at x0, then each directional derivative Dvf is differentiable at
x0. Moreover, the directional derivative of Dvf in the direction w at x0 is D2f(x0)(v)(w).

99 Lemma (Second differential and directional derivatives) If f is differentiable onL&S assume continuous
differentiability, but I
don’t see where it is
used.

the open set U and is twice differentiable at x0, then the mapping Dvf : x 7→ Dvf(x) from
U ⊂ X into Y is differentiable at x0 for each v ∈ X. Moreover, the directional derivative of
Dvf at x0 in the direction w is given by

Dw(Dvf)(x0) = D2f(x0)(v)(w).

Proof : (Loomis and Sternberg [100, Theorem 16.1, p. 186]) Observe that for each x, the direc-
tional derivative in direction v satisfies

Dvf(x) = Df(x)(v) = δv

(
Df(x)

)
,
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where δv is the evaluation mapping at v. That is,

x 7→ Dvf(x) = δv ◦Df : X → Y.

Now we have already seen that δv is differentiable on L(X,Y ) (Example 94), and Df is differ-
entiable by hypothesis. Therefore by the chain rule, x 7→ Dvf(x) is differentiable at x0 and its
differential is a linear function from X into Y that satisfies

D(Dvf)(x0) = (Dδv ◦D2f)(x) = D2f(x)(v) ∈ L(X,Y ),

as Dδv = δv. Thus
Dw(Dvf)(x0) = D2f(x)(v)(w) ∈ Y.

Note that (v, w) 7→ D2f(x)(v)(w) is bilinear. Thus the second differential of f at x can be
thought of as a bilinear functionD2f(x) : X×X → Y , and henceforth we may writeD2f(x)(v, w)
to economize on parentheses. In fact, D2f(x) is a symmetric bilinear function. To see this, we
start with the following lemma, which is of some independent interest.

Define the second difference function ∆2
v,wf of f by (v, w) by

∆2
v,wf(x) = ∆w

(
∆vf)(x) = ∆vf(x+w)−∆vf(x) = f(x+w+v)−f(x+w)−

(
f(x+v)−f(x)

)
.

Notice that this is symmetric in v and w.
The second difference is the discrete analogue of the second differential.

100 Lemma (Second difference and second differential) If f is differentiable at each
point of an open set U , and twice differentiable at x0 ∈ U , then the second differential D2f(x0)
approximates the second difference ∆2f(x0) in the following sense. For every ε > 0 there is
some δ > 0 such that ∥v∥, ∥w∥ < δ implies

∥∆2
v,wf(x0) −D2f(x0)(v, w)∥ ⩽ ε∥v∥ · ∥w∥.

Note that this implies that we may fix either v or w and let the other tend to zero, and the
difference above goes to zero.

Proof : (Loomis and Sternberg [100, p. 188]) Pick ε > 0. Since the mapping x 7→ Df(x) is
differentiable at x0, we see that there exists some δ > 0, such that if ∥v∥ < δ, then

∥Df(x0 + v)(·) −Df(x0)(·) −D2f(x0)(v, ·)∥ ⩽ ε∥v∥.

Now fix u with ∥u∥ < δ
3 . Then for any v with ∥v∥ < 2δ

3 , we ∥v + u∥ < δ have

∥Df(x0 + v + u)(·) −Df(x0)(·) −D2f(x0)(v + u, ·)∥ ⩽ ε∥v + u∥.

Thus the linear transformations Df(x0 + v) −D2f(x0)(v) and Df(x0 + v+u) −D2f(x0)(v+u)
are both close to Df(x0) in the operator norm, and hence close to each other. Indeed,∥∥(Df(x0 + v) −D2f(x0)(v)

)
−
(
Df(x0 + v + u) −D2f(x0)(v + u)

)∥∥ ⩽ ε
(
∥v∥ + ∥v + u∥

)
whenever ∥v∥ < 2δ

3 (since ∥u∥ < δ
3 ). Since D2f(x0) is bilinear this reduces to∥∥Df(x0 + v) −Df(x0 + v + u) −D2f(x0)(−u)

∥∥ ⩽ ε
(
∥v∥ + ∥v + u∥

)
⩽ 2ε

(
∥v∥ + ∥u∥

)
. (3.1)

Now the term Df(x0 + v) −Df(x0 + v + u) in the expression above is the differential of some
function g. Namely,

g(x) = f(x) − f(x+ u) = −∆uf(x).
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We can thus write (3.1) as∥∥Dg(x0 + v) −D2f(x0)(−u)
∥∥ ⩽ 2ε

(
∥v∥ + ∥u∥

)
provided ∥v∥ < 2δ

3 . The important thing to note is that this holds for all v sufficiently small
for some fixed linear transformation D2f(x0)(−u) : X → Y . This is exactly the situation dealt
with by Theorem 98.

So consider the ball B of radius 2δ
3 around x0. This is a convex set, so by Theorem 98, where

the role of T (·) is played by D2f(x0)(−u, ·), we see that (3.1) implies

∥∆wg(x0 + v) −D2f(x0)(−u,w)∥ ⩽ 2ε
(
∥v∥ + ∥u∥

)
∥w∥ (3.2)

whenever x0 + v and x0 + v + w belong to B. That is, whenever ∥v∥ < 2δ
3 and ∥v + w∥ < 2δ

3 .
This will certainly be satisfied if ∥v∥ < δ

3 and ∥w∥ < δ
3 .

Since u was an arbitrary vector with ∥u∥ < δ
3 , (3.2) holds whenever ∥u∥, ∥v∥, ∥w∥ < δ

3 . In
particular, it holds for u = −v. In this case,

∆wg(x0 + v) = g(x0 + v + w) − g(x0 + v)
= f(x0 + v + w) − f(x0 + v + w + u) −

(
f(x0 + v) − f(x0 + v + u)

)
= f(x0 + w + v) − f(x0 + w) −

(
f(x0 + v) − f(x0)

)
= ∆vf(x0 + w) − ∆vf(x0)
= ∆2

v,wf(x0).

Thus for all v, w with ∥v∥, ∥w∥ < δ
3 , (3.2) (with u = −v) implies

∥∆2
v,wf(x0) −D2f(x0)(v, w)∥ ⩽ 4ε∥v∥ · ∥w∥.

This completes the proof.

101 Corollary (Symmetry of the second differential) If f is differentiable at each point
of an open set U , and twice differentiable at x ∈ U , then the second differential D2f(x) is
symmetric. That is, for all v, w

D2f(x)(v, w) = D2f(x)(w, v).

Consequently the mixed directional derivatives satisfy

Dw(Dvf)(x) = Dv(Dwf)(x).

Proof : This follows readily from Lemma 100 and the fact that ∆v,wf(x) = ∆w,vf(x), but here
are the details.

Let ε > 0 be given. Applying Lemma 100 twice we see that there exist δ1 > 0 and δ2 > 0
such that for all v, w with ∥v∥, ∥w∥ < δ1, we have

∥∆2
v,wf(x0) −D2f(x0)(v, w)∥ ⩽ ε

2
∥v∥ · ∥w∥,

and for all v, w with ∥v∥, ∥w∥ < δ2, we have

∥∆2
w,vf(x0) −D2f(x0)(w, v)∥ ⩽ ε

2
∥v∥ · ∥w∥.

Setting δ = min δ1, δ2, and using the symmetry of the second difference function we see that for
all v, w with ∥v∥, ∥w∥ < δ, we have

∥D2f(x0)(v, w) −D2f(x0)(w, v)∥ ⩽ ε∥v∥ · ∥w∥. (3.3)
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But homogeneity of the norm and the second differential imply that this must hold for all v and
w regardless of norm. (For given any v and w, let the (possibly small) numbers α > 0 and λ > 0
satisfy ∥αv∥, ∥λw∥ < δ. Then (3.3) implies

∥D2f(x0)(αv, λw) −D2f(x0)(λw, αv)∥ ⩽ ε

2
∥αv∥ · ∥λw∥.

But by bilinearity D2f(x0)(αv, λw) = αλD2f(x0)(v, w), so we have

αλ∥D2f(x0)(v, w) −D2f(x0)(w, v)∥ ⩽ ε

2
αλ∥v∥ · ∥w∥,

and dividing by αλ > 0 gives the desired result.)
Since ε is an arbitrary positive number, we must have D2f(x0)(v, w) = D2f(x0)(w, v).

3.10 Higher yet differentials
We have already introduced the first difference ∆vf(x) and the second difference ∆2

v,wf(x)
defined by

∆vf(x) = f(x+ v) − f(x)

and

∆2
v,wf(x) = ∆w∆vf(x)

= ∆vf(x+ w) − ∆vf(x)
=

(
f(x+ v + w) − f(x+ w)

)
−
(
f(x+ v) − f(x)

)
= f(x+ v + w) − f(x+ w) − f(x+ v) + f(x).

More generally we can define higher order differences inductively by

∆n
v1,...,vn

f(x) = ∆vn∆n−1
v1,...,vn−1

f(x) = ∆n−1
v1,...,vn−1

f(x+ vn) − ∆n−1
v1,...,vn−1

f(x).

Out of pure laziness, I leave it to you as an exercise in induction to show that ∆n
v1,...,vn

f(x)
is a symmetric function of v1, . . . , vn, and that

∆n
v,...,vf(x) =

n∑
k=0

(−1)k

(
n

k

)
f(x+ kv).

Finish this.
Higher differentials are also defined inductively. Suppose U is an open subset of X and

f : U → Y is n−1 times differentiable at each point of U . More generally, the nth-order differ-
ential of f at x, if it exists, can be identified with a multilinear functionDnf(x) : X × · · · ×X︸ ︷︷ ︸

n copies

→

Y .

3.11 Matrix representations and partial derivatives
For Euclidean spaces the differentials have representations in terms of partial derivatives. I will
follow Spivak [145] and denote the matrix representation of f(x) by f ′(x). I will also follow
the relatively common usage of denoting the jth partial derivative of the real function f at the
point x by Djf(x). Also following Spivak, I denote the second order mixed partial derivative
Dj

(
Dif(x)

)
by Di,jf(x). Note the reversal of the order of i and j. (If f is differentiable, then

Di,jf(x) = Dj,if(x), so it hardly matters.)
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We have the following special cases. If f : Rn → R, the differential of f corresponds to the
gradient vector f ′(x) =

(
D1f(x), . . . , Dnf(x)

)
, via

Df(x)(v) = f ′(x) · v =
n∑

j=1
Djf(x)vj .

The second differential of f corresponds to the n× n Hessian matrix6

f ′′(x) =

D1,1f(x) · · · D1,nf(x)
...

...
Dn,1f(x) · · · Dn,nf(x)


via

D2f(x)(v, w) = w · f ′′(x)v =
n∑

i=1

n∑
j=1

Di,jf(x)wivj .

If f : Rn → Rm, the differential of Df(x) corresponds to the m× n Jacobian matrix

f ′(x) =

D1f
1(x) · · · Dnf

1(x)
...

...
D1f

m(x) · · · Dnf
m(x)

 ,
via

Df(x)(v) = f ′(x)v =

D1f
1(x) · · · Dnf

1(x)
...

...
D1f

m(x) · · · Dnf
m(x)

 v =


∑n

j=1 Djf
1(x)vj

...

...∑n
j=1 Djf

m(x)vj

 =


f1′(x) · v

...

...
fn′(x) · v

 .

3.11.1 A word on notation
In the three hundred or so years since the calculus was invented in the late seventeenth century,
many different notations have been developed for differentials and partial derivatives. Apostol [7,
§ 4.8, pp. 171–172] describes some of the history, and Spivak [145, pp. 44-45] discusses the
advantages and disadvantages of each. I have never been very consistent in my notation, but I
will try to be better in these notes, unless there are good reasons for using a variant notation.
Table 3.1 is a guide to the various usages in some of my sources.

While we’re on the subject of notation, if you try to read Loomis and Sternberg [100], they
use Hom (X,Y ) for L(X,Y ), the vector space of all continuous linear transformations from X
into Y when X and Y are normed spaces [100, p. 129], and also to denote the vector space of
all linear transformations from X into Y when X and Y are not normed spaces [100, p. 45].

3.12 Chain rule revisited
102 Proposition (Chain rule for second differentials) Let X, Y , and Z be normed
vector spaces, and let U be an open subset of X and V be an open subset of Y . Let f : U → V ,
and g : V → Z. If f is twice differentiable at x and g is twice differentiable at f(x), then g ◦ f
is twice differentiable at x and

D2(g ◦ f)(x)(v, w) = D2g
(
f(x)

)(
Df(x)(v), Df(x)(w)

)
+Dg(x)

(
D2f(x)(v, w)

)
.

6Note well that Marsden [107, p. 184] defines the Hessian matrix to be the negative of my definition. He
asserts that “the minus sign is purely conventional and is not of essential importance. The reader who is so
inclined can make the appropriate changes in the text…” One place where such a change needs to be made is in
the definition of the index of a critcal point [107, p. 223]. My usage follows Apostol [8].
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Table 3.1. A guide to notation.
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Proof : Define ψ : X → L(Y,Z) × L(X,Y ) by

ψ(x) =
(
Dg
(
f(x)

)
, Df(x)

)
.

Then the Chain Rule 92 can be restated as

D(g ◦ f) = c ◦ ψ,

where c is the composition operator. Applying the chain rule to this equation, we get

D2(g ◦ f)(x) = Dc
(
ψ(x)

)
◦Dψ(x).

Thus we may write

D2(g ◦ f)(x)(v) = Dc
(
Dg
(
f(x)

)
, Df(x)

)((
D2g

(
f(x)

)
◦Df(x)

)
(v), D2f(x)(v)

)
= c

(
Dg
(
f(x)

)
, D2f(x)(v)

)
+ c

((
D2g

(
f(x)

)
◦Df(x)

)
(v), Df(x)

)
= Dg

(
f(x)

)︸ ︷︷ ︸
∈L(Y,Z)

(
D2f(x)(v)︸ ︷︷ ︸

∈L(X,Y )

)
︸ ︷︷ ︸

∈L(X,Z)

+
(
D2g

(
f(x)

)︸ ︷︷ ︸
∈L

(
Y,L(Y,Z)

)
)(
Df(x)(v)

)︸ ︷︷ ︸
∈Y︸ ︷︷ ︸

∈L(Y,Z)

)
◦ Df(x)︸ ︷︷ ︸

∈L(X,Y )

)

︸ ︷︷ ︸
∈L(X,Z)

,

where the second equality is just the differential of the composition operator. Simplifying gives

D2(g ◦ f)(x)(v, w) = Dg
(
f(x)

)(
D2f(x)(v, w)

)
+D2g

(
f(x)

)(
Df(x)(v), Df(x)(w)

)
.

The following examples of the chain rule are quite useful.

103 Lemma Let U be an open convex subset of Rn and let f : U → R be continuous. Fix
x ∈ U and choose v so that x± v ∈ U . Define the function g : [−1, 1] → R by

g(λ) = f(x+ λv).

If f is differentiable at x, then g is differentiable at 0 and

g′(0) = f ′(x) · v =
n∑

j=1
Djf(x)vj .

If f is twice differentiable at x, then g is twice differentiable at 0, and

g′′(0) = D2f(x)(v, v) =
n∑

i=1

n∑
j=1

Di,jf(x)vivj = v · f ′′(x)v.

A path in a vector space X is a function p from an interval of R into X, usually assumed
to be continuous. The next result generalizes the previous.

104 Lemma (Second differential on a path) Let U be an open convex subset of Rn and
let f : U → R be continuous. Fix x ∈ U and let p : (−ε, ε) → U be a path with p(0) = x. Define
the function g : [−1, 1] → R by

g(λ) = f
(
p(λ)

)
.
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If f is differentiable at x and p is differentiable at 0, then g is differentiable at 0 and

g′(0) = f ′(x) · p′(0).

If f is twice differentiable at x and p is twice differentiable at 0, then g is twice differentiable
at 0, and

g′′(0) = p′(0) · f ′′(x)p′(0) + f ′(x) · p′′(0)

=
n∑

i=1

n∑
j=1

Di,jf(x)p′
i(0)p′

j(0) +
n∑

j=1
Djf(x)p′′

j (0).

3.13 Taylor’s Theorem
There are multivariable versions of Taylor’s Theorem that correspond to Theorems 73 and 74.
The first one is gotten from Theorems 73 by looking at the single variable function h(t) =
f(x+ tv).

105 Theorem (Multivariate Taylor’s Theorem) ********************

I will state and prove Young’s form of the multivariate Taylor Theorem for the case of second
differentials, since this is the most important for what follows, and the general case is essentially
the same, but notationally challenging. For more details see Loomis and Sternberg [100, p. 190ff].

106 Theorem (Young’s Form of Multivariate Taylor’s Theorem, n = 2) Let f be a
continuously differentiable real-valued function on an open subset U of Rn. Let x belong to U
and assume that f is twice differentiable at x.

Then for every v such that x+ v ∈ U ,

f(x+ v) = f(x) +Df(x)(v) + 1
2D

2f(x)(v, v) + r(v)
2 ∥v∥2,

where limv→0 r(v) = 0.

Proof : To ease notation, let Q denote the quadratic form defined by D2f(x), that is,

Q(v) = D2f(x)(v, v).

Since f is twice differentiable at x, applying the definition of differential to the first differential
Df , we see that for every ε > 0, there exists some δ > 0, such that if ∥v∥ < δ, then

∥Df(x+ v)(·) −Df(x)(·) −D2f(x)(v, ·)∥ ⩽ ε∥v∥.

Replacing v by λv for 0 ⩽ λ ⩽ 1 lets us rewrite this as

∥Df(x+ λv)(·) −Df(x)(·) − λD2f(x)(v, ·)∥ ⩽ ελ∥v∥.

Now evaluating at y, and recalling that for any p, y ∈ Rn, we have |p · y| ⩽ ∥p∥ · ∥y∥, so∣∣Df(x+ λv)(y) −Df(x)(y) − λD2f(x)(v, y)
∣∣ ⩽ ελ∥v∥ · ∥y∥.

Setting y = v, we get ∣∣Df(x+ λv)(v) −Df(x)(v) − λQ(v)
∣∣ ⩽ ελ∥v∥2,

or in other terms,

λ
(
Q(v) − ε∥v∥2) ⩽ Df(x+ λv)(v) −Df(x)(v) ⩽ λ

(
Q(v) + ε∥v∥2), (⋆)
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for ∥v∥ < δ and 0 ⩽ λ ⩽ 1. Now define h(λ) = f(x + λv), so that h′(λ) = Df(x + λv)(v).
Observe that h′ is continuous, so by the Second Fundamental Theorem of Calculus 82,

f(x+ v) − f(x) = h(1) − h(0) =
∫ 1

0
h′(λ) dλ =

∫ 1

0
Df(x+ λv)(v) dλ.

Thus integrating each term of (⋆) with respect to λ over the interval [0, 1] gives
1
2
(
Q(v) − ε∥v∥2) ⩽ f(x+ v) − f(x) −Df(x)(v) ⩽ 1

2
(
Q(v) + ε∥v∥2) (⋆⋆)

for all ∥v∥ ⩽ δ. Now rearrange (⋆⋆) above to produce the following version of Taylor’s formula:

f(x+ v) = f(x) +Df(x)(v) + 1
2D

2f(x)(v, v) + r(v)
2 ∥v∥2,

where |r(v)| ⩽ ε, which implies limv→0 r(v) = 0.

3.14 Extrema of functions of several variables
107 Theorem (Necessary First Order Conditions) If U is an open subset of a normed
space, and x∗ ∈ U is a local extremum of f , and f has directional derivatives at x∗, then for any
nonzero v, the directional derivative satisfies Dvf(x∗) = 0. In particular, if f is differentiable
at x∗, then Df(x∗) = 0.

Proof : If f has a local maximum at x∗, then f(x∗)−f(x) ⩾ 0 for every x in some neighborhood
of x∗. Fix some nonzero v. Since x∗ is an interior point of U , there is an ε > 0 such that
x+ λv ∈ U for any λ ∈ (−ε, ε).

f(x∗ + λv) − f(x∗)
λ

is
{

⩽ 0 for λ > 0
⩾ 0 for λ < 0.

Therefore Dvf(x∗) = limλ→0
f(x∗+λv)−f(x∗)

λ = 0, since the limit exists. A similar argument
applies if x∗ is a local minimizer.

It is also possible to derive first order conditions by reducing the multidimensional case to
the one-dimensional case by means of the chain rule.

Proof using one-dimensional case: Since x∗ is an interior point of U , there is an ε > 0 such that
x∗ + λv ∈ U for any λ ∈ (−ε, ε) and any v ∈ Rn with ∥v∥ = 1. Set gv(λ) = f(x∗ + λv). Then
gv has an extremum at λ = 0. Therefore g′

v(0) = 0. By the chain rule, g′
v(λ) = Df(x∗ + λv)(v).

Thus we see that Df(x∗)(v) = 0 for every v, so Df(x∗) = 0.

It might seem possible to derive sufficient second order conditions using the same method.
The problem is that looking only along segments of the form x + λv can be misleading, as the
next example shows.

108 Example (Maximum on lines is not a maximum) This is an example of a function
that achieves a maximum at zero along every line through the origin, yet nevertheless does
not achieve a local maximum at zero. Hancock [71, pp. 31–32] attributes this example to
Peano, as generalized by Goursat [63, vol. 1, p. 108]. It also appears in Apostol [6, p. 149] and
Sydsaeter [146]. Define f : R2 → R by

f(x, y) = −(y − x2)(y − 2x2).

This function is zero along the parabolas y = x2 and y = 2x2. For y > 2x2 or y < x2 we have
f(x, y) < 0. For x2 < y < 2x2 we have f(x, y) > 0. See Figure 3.5. Note that f(0, 0) = 0
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and f ′(0, 0) = (0, 0). Now in every neighborhood of the origin f assumes both positive and
negative values, so it is neither a local maximizer nor a local minimizer. On the other hand, for
every straight line through the origin there is a neighborhood of zero for which f(x, y) < 0 if
(x, y) ̸= (0, 0) on that line. Thus zero is a strict local maximizer along any straight line through
the origin. □

f < 0

f < 0

f > 0 f > 0

Figure 3.5. f(x, y) = −(y − x2)(y − 2x2).

Even considering higher order polynomials than straight lines is not sufficient, as the next
example, due to Hancock [71, p. 36] shows.

109 Example This is a modification of Example 108. This function achieves a maximum
at zero along polynomial curve through the origin, yet nevertheless does not achieve a local
maximum at zero. Define f : R2 → R by

f(x, y) = −
(
y − sin2(x)

)(
y − sin2(x) − e

−1
x2
)
,

where we adopt the convention that e
−1
x2 = 0 when x = 0. (The function is continuous and

differentiable this way.) This function is zero along the curves y = sin(x)2 and y = sin(x)2 +e
−1
x2 .

Unfortunately a picture cannot help here, since near the origin the e
−1
x2 term is smaller than the

width of the lines used to draw one. As in Example 108, for y > sin(x)2 + e
−1
x2 or y < sin(x)2

we have f(x, y) < 0. For sin(x)2 < y < sin(x)2 + e
−1
x2 we have f(x, y) > 0. Therefore every

neighborhood of (0, 0) has contains both positive and negative values of f , so again zero is
neither a local maximizer nor a local minimizer of f . Note that f(0, 0) = 0 and f ′(0, 0) = (0, 0).

Needs work.

************ □

Nevertheless, we can still derive sufficient second order conditions. The following theorem is
translated from Loomis and Sternberg [100, Theorem 16.4, p. 190]. It roughly corresponds to
Theorem 78.
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110 Theorem (Sufficient second order conditions) Let f be a continuously differentiable
real-valued function on an open subset U of Rn. Let x∗ belong to U and assume thatDf(x∗) = 0
and that f is twice differentiable at x∗.Define critical point

somewhere. What
about the
infinite-dimensional
case?

If the Hessian matrix f ′′(x∗) is positive definite, then x∗ is a strict local minimizer of f .
If the Hessian matrix f ′′(x∗) is negative definite, then x∗ is a strict local maximizer of f .

Use D2f(x). If the Hessian is nonsingular but indefinite, then x∗ is neither a local maximum, nor a local
minimum.

Figure out your
notation. Proof : By Young’s form of Taylor’s Theorem for many variables 106, recalling that Df(x∗) = 0,

we have
f(x∗ + v) = f(x∗) + 1

2D
2f(x∗)(v, v) + r(v)

2 ∥v∥2,

where limv→0 r(v) = 0. What this tells us is that the increment f(x∗ + v) − f(x∗) is bounded
between two quadratic forms that can be made arbitrarily close to Q(v) = D2f(x∗)(v, v). This
is the source of conclusions.

The quadratic form Q achieves its maximum M and minimum m values on the unit sphere
(and they are the maximal and minimal eigenvalues, see Proposition 304). If Q is positive
definite, then 0 < m ⩽ M , and homogeneity of degree 2 implies that m∥v∥2 ⩽ Q(v) ⩽ M∥v∥2

for all v. Choose 0 < ε < m. Then there exist δ > 0 such that ∥v∥ < δ implies |r(v)| < ε. The
first inequality in (⋆⋆) thus implies

0 < m− ε

2
∥v∥2 ⩽ f(x∗ + v) − f(x∗),

for ∥v∥ < δ, which shows that x∗ is a strict local minimizer. Similarly if Q is negative definite,
then x∗ is a strict local maximizer. If Q is nonsingular, but neither negative or positive definite,
then Rn decomposes into two orthogonal nontrivial subspaces, and is positive definite on one and
negative definite on the other. It follows then that x∗ is neither a maximizer nor a minimizer.

For one variable, the necessary second order conditions Corollary 79 followed from the suffi-
cient conditions Theorem 78, since if not f ′′(x) > 0, then f ′′(x) ⩽ 0. The multivariable case is
not quite so easy, since the negation of positive definiteness is not negative semidefiniteness.

111 Theorem (Necessary second order conditions) Let f be a continuously differen-
tiable real-valued function on an open subset U of Rn and assume that f is twice differentiable
at x∗, and define the quadratic form Q(v) = D2f(x∗)(v, v). If x∗ is a local maximizer, then Q
is negative semidefinite. If x∗ is a local minimizer, then Q is positive semidefinite.
Proof : Assume that x∗ is a local maximizer. By Theorem 107, we have Df(x∗) = 0, so as in
the proof of Theorem 110, we have

f(x∗ + v) = f(x∗) + 1
2D

2f(x∗)(v, v) + r(v)
2 ∥v∥2,

where limv→0 r(v) = 0. Suppose v is an eigenvector of Q corresponding to an eigenvalue λ > 0.
Then Q(αv, αv) = λα2∥v∥2, then again as in the proof of Theorem 110, for α small enough
|r(αv)| < λ, so

f(x∗ + αv) = f(x∗) + 1
2
(
λ+ r(αv)

)
α2∥v∥2 > f(x∗),

a contradiction. Thus all the eigenvalues of Q are nonpositive, so by Proposition 306 it is
negative semidefinite.

A similar argument (with appropriate sign changes) works when x∗ is a local minimizer.
We can also use the chain rule to reduce the problem to the one-dimensional case.

This seems to work for
the infinite dimensional
case. Proof using the chain rule: As in the proof of Theorem 107, define g(λ) = f(x∗ + λv). By

Corollary 79 g′′(0) ⩽ 0. So by Lemma 103, using Df(x∗) = 0,
g′′(0) = D2f(x∗)(v, v) ⩽ 0.

That is, Q is negative semidefinite.
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3.15 Implicit Function Theorems
The Implicit Function Theorem is a basic tool for analyzing extrema of differentiable functions.

112 Definition An equation of the form

f(x, p) = y (3.4)

implicitly defines x as a function of p on a domain P if there is a function ξ on P for which
f(ξ(p), p) = y for all p ∈ P . It is traditional to assume that y = 0, but not essential.

The use of zero in the above equation serves to simplify notation. The condition f(x, p) = y
is equivalent to g(x, p) = 0 where g(x, p) = f(x, p) − y, and this transformation of the problem
is common in practice.

The implicit function theorem gives conditions under which it is possible to solve for x as a
function of p in the neighborhood of a known solution (x̄, p̄). There are actually many implicit
function theorems. If you make stronger assumptions, you can derive stronger conclusions.
In each of the theorems that follows we are given a subset X of Rn, a metric space P (of
parameters), a function f from X × P into Rn, and a point (x̄, p̄) in the interior of X × P such
that Dxf(x̄, p̄) exists and is invertible. Each asserts the existence of neighborhoods U of x̄ and
W of p̄ and a function ξ : W → U such that f

(
ξ(p), p

)
= f(x̄, p̄) for all p ∈ W . They differ in

whether ξ is uniquely defined (in U) and how smooth it is. The following table serves as a guide
to the theorems. For ease of reference, each theorem is stated as a standalone result.

Theorem Hypotheses Conclusion
All f is continuous on X × P f

(
ξ(p), p

)
= f

(
x̄, p̄
)
for all p in W

Dxf(x̄, p̄) is invertible ξ(p̄) = x̄
113 ξ is continuous at p̄
114 Dxf is continuous on X × P ξ is unique in U

ξ is continuous on W
115 Df(x̄, p̄) (wrt x, p) exists ξ is differentiable at p̄
116 Df (wrt x, p) exists on X × P ξ is unique in U

Dxf is continuous on X × P ξ is differentiable on W
117 f is Ck on X × P ξ is unique in U

ξ is Ck on W

The first result is due to Halkin [68, Theorem B].

113 Theorem (Implicit Function Theorem 0) Let X be a subset of Rn, let P be a metric
space, and let f : X × P → Rn be continuous. Suppose the derivative Dxf of f with respect to
x exists at a point and that Dxf(x̄, p̄) is invertible. Let

ȳ = f(x̄, p̄).

Then for any neighborhood U of x̄, there is a neighborhoodW of p̄ and a function ξ : W → U
such that:

a. ξ(p̄) = x̄.

b. f
(
ξ(p), p

)
= ȳ for all p ∈ W .

c. ξ is continuous at the point p̄.
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However, it may be that ξ is neither continuous nor uniquely defined on any neighborhood
of p̄. There are two ways to strengthen the hypotheses and derive a stronger conclusion. One is
to assume the derivative with respect to x exists and is continuous on X × P . The other is to
make P a subset of a Euclidean space and assume that f has a derivative with respect to (x, p)
at the single point (x̄, p̄).

Taking the first approach allows us to conclude that the function ξ is uniquely defined
and moreover continuous. The following result is Theorem 9.3 in Loomis and Sternberg [100,
pp. 230–231].

114 Theorem (Implicit Function Theorem 1a) Let X be an open subset Rn, let P be
a metric space, and let f : X × P → Rn be continuous. Suppose the derivative Dxf of f with
respect to x exists at each point (x, p) and is continuous on X × P . Assume that Dxf(x̄, p̄) is
invertible. Let

ȳ = f(x̄, p̄).
Then there are neighborhoods U ⊂ X and W ⊂ P of x̄ and p̄, and a function ξ : W → U

such that:

a. f(ξ(p); p) = ȳ for all p ∈ W .

b. For each p ∈ W , ξ(p) is the unique solution to (3.4) lying in U . In particular, then

ξ(p̄) = x̄.

c. ξ is continuous on W .

The next result, also due to Halkin [68, Theorem E] takes the second approach. It concludes
that ξ is differentiable at a single point. Related results may be found in Hurwicz and Richter [83,
Theorem 1], Leach [98, 99], Nijenhuis [120], and Nikaidô [121, Theorem 5.6, p. 81].

115 Theorem (Implicit Function Theorem 1b) Let X be a subset of Rn, let P be an
open subset of Rm, and let f : X × P → Rn be continuous. Suppose the derivative Df of
f with respect to (x, p) exists at (x̄, p̄). Write Df(x̄, p̄) = (T, S), where T : Rn → Rn and
S : Rm → Rm, so that Df(x̄, p̄)(h, z) = Th+ Sz. Assume T is invertible. Let

ȳ = f(x̄, p̄).

Then there is a neighborhood W of p̄ and a function ξ : W → X satisfying

a. ξ(p̄) = x̄.

b. f
(
ξ(p), p

)
= ȳ for all p ∈ W .

c. ξ is differentiable (hence continuous) at p̄, and

Dξ(p̄) = −T−1 ◦ S.

The following result is Theorem 9.4 in Loomis and Sternberg [100, p. 231]. It strengthens
the hypotheses of both Theorems 114 and 115. In return we get differentiability of ξ on W .

116 Theorem (Semiclassical Implicit Function Theorem) Let X×P be an open subset
of Rn × Rm, and let f : X × P → Rn be differentiable. Suppose the derivative Dxf of f with
respect to x is continuous on X × P . Assume that Dxf(x̄, p̄) is invertible. Let

ȳ = f(x̄, p̄).

Then there are neighborhoods U ⊂ X and W ⊂ P of x̄ and p̄ on which equation (3.4)
uniquely defines x as a function of p. That is, there is a function ξ : W → U such that:
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a. f(ξ(p); p) = ȳ for all p ∈ W .

b. For each p ∈ W , ξ(p) is the unique solution to (3.4) lying in U . In particular, then

ξ(p̄) = x̄.

c. ξ is differentiable on W , and
∂ξ1

∂p1
· · · ∂ξ1

∂pm
...

...
∂ξn

∂p1
· · · ∂ξn

∂pm

 = −


∂f1

∂x1
· · · ∂f1

∂xn...
...

∂fn

∂x1
· · · ∂fn

∂xn


−1 

∂f1

∂p1
· · · ∂f1

∂pm
...

...
∂fn

∂p1
· · · ∂fn

∂pm

 .

The classical version maybe found, for instance, in Apostol [6, Theorem 7-6, p. 146], Rudin [134,
Theorem 9.28, p. 224], or Spivak [145, Theorem 2-12, p. 41]. Some of these have the weaker
statement that there is a unique function ξ within the class of continuous functions satisfying
both ξ(p̄) = x̄ and f(ξ(p); p) = 0 for all p. Dieudonné [43, Theorem 10.2.3, p. 272] points out
that the Ck case follows from the formula for Dξ and the fact that the mapping from invert-
ible linear transformations to their inverses, A 7→ A−1, is C∞. (See Marsden [107, Lemma 2,
p. 231].)

117 Classical Implicit Function Theorem Let X ×P be an open subset of Rn × Rm, and
let f : X × P → Rn be Ck, for k ⩾ 1. Assume that Dxf(x̄, p̄) is invertible. Let

ȳ = f(x̄, p̄).

Then there are neighborhoods U ⊂ X and W ⊂ P of x̄ and p̄ on which equation (3.4) uniquely
defines x as a function of p. That is, there is a function ξ : W → U such that:

a. f(ξ(p); p) = ȳ for all p ∈ W .

b. For each p ∈ W , ξ(p) is the unique solution to (3.4) lying in U . In particular, then

ξ(p̄) = x̄.

c. ξ is Ck on W , and
∂ξ1

∂p1
· · · ∂ξ1

∂pm
...

...
∂ξn

∂p1
· · · ∂ξn

∂pm

 = −


∂f1

∂x1
· · · ∂f1

∂xn...
...

∂fn

∂x1
· · · ∂fn

∂xn


−1 

∂f1

∂p1
· · · ∂f1

∂pm
...

...
∂fn

∂p1
· · · ∂fn

∂pm

 .

As a bonus, let me throw in the following result, which is inspired by Apostol [8, Theo-
rem 7.21].

118 Theorem (Lipschitz Implicit Function Theorem) Let P be a compact metric space
and let f : R ×P → R be continuous and assume that there are real numbers 0 < m < M such
that for each p

m ⩽ f(x, p) − f(y, p)
x− y

⩽M.

Then there is a unique function ξ : P → R satisfying f
(
ξ(p), p

)
= 0. Moreover, ξ is continuous.

An interesting extension of this result to Banach spaces and functions with compact range
may be found in Warga [159].
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3.15.1 Proofs of Implicit Function Theorems
The proofs given here are based on fixed point arguments and are adapted from Halkin [67, 68],
Rudin [134, pp. 220–227], Loomis and Sternberg [100, pp. 229–231], Marsden [107, pp. 230–237],
and Dieudonné [43, pp. 265—273]. Another sort of proof, which is explicitly finite dimensional,
of the classical case may be found in Apostol [6, p. 146] or Spivak [145, p. 41].

The first step is to show that for each p (at least in a neighborhood of p̄) there is a zero of
the function f(x, p) − ȳ, where ȳ = f(x̄, p̄). As is often the case, the problem of finding a zero
of f − ȳ is best converted to the problem of finding a fixed point of some other function. The
obvious choice is to find a fixed point of πX − (f − ȳ) (where πX(x, p) = x), but the obvious
choice is not clever enough in this case. Let

T = Dxf(x̄, p̄).

Define φ : X × P → Rn by φ = πX − T−1(f − ȳ
)
. That is,

φ(x, p) = x− T−1(f(x, p) − ȳ
)
. (3.5)

Note that φ(x, p) = x if and only if T−1(f(x, p)− ȳ
)

= 0. But the invertibility of T−1 guarantees
that this happens if and only if f(x, p) = ȳ. Thus the problem of finding a zero of f(·, p) − ȳ is
equivalent to that of finding a fixed point of φ(·, p). Note also that

φ(x̄, p̄) = x̄. (3.6)

Observe that φ is continuous and also has a derivative Dxφ with respect to x whenever f does.
In fact,

Dxφ(x, p) = I − T−1Dxf(x, p).
In particular, at (x̄, p̄), we get

Dxφ(x̄, p̄) = I − T−1T = 0. (3.7)

That is, Dxφ(x̄, p̄) is the zero transformation.
Recall that for a linear transformation A, its operator norm ∥A∥ is defined by ∥A∥ =

sup|x|⩽1 |Ax|, and satisfies |Ax| ⩽ ∥A∥ · |x| for all x. If A is invertible, then ∥A−1∥ > 0.

Proof of Theorem 113: Let X, P , and f : X×P → Rn be as in the hypotheses of Theorem 113.
In order to apply a fixed point argument, we must first find a subset of X that is mapped

into itself. By the definition of differentiability and (3.7) we can choose r > 0 so that∣∣φ(x, p̄) − φ(x̄, p̄)
∣∣

|x− x̄|
⩽ 1

2
for all x ∈ B̄r(x̄).

Noting that φ(x̄, p̄) = x̄ and rearranging, it follows that∣∣φ(x, p̄) − x̄
∣∣ ⩽ r

2
for all x ∈ B̄r(x̄).

For each p set m(p) = maxx

∣∣φ(x, p) −φ(x, p̄)
∣∣ as x runs over the compact set B̄r(x̄). Since φ

is continuous (and B̄r(x̄) is a fixed set), the Maximum Theorem 62 implies that m is continuous.
Since m(p̄) = 0, there is some ε > 0 such that |m(p)| < r

2 for all p ∈ Bε(p̄). That is,∣∣φ(x, p) − φ(x, p̄)
∣∣ < r

2
for all x ∈ B̄r(x̄), p ∈ Bε(p̄).

For each p ∈ Bε(p̄), the function φ maps B̄r(x̄) into itself, for∣∣φ(x, p) − x̄
∣∣ ⩽

∣∣φ(x, p) − φ(x, p̄)
∣∣+
∣∣φ(x, p̄) − x̄

∣∣
<

r

2
+ r

2
= r.
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That is, φ(x, p) ∈ B̄r(x̄). Since φ is continuous and B̄r(x̄) is compact and convex, by the
Brouwer Fixed Point Theorem (e.g., [30, Corollary 6.6, p. 29]), there is some x ∈ B̄r(x̄) satisfying
φ(x, p) = x, or in other words f(x, p) = 0.

We have just proven parts (a) and (b) of Theorem 113. That is, for every neighborhood X
of x̄, there is a neighborhood W = B̄ε(r)(p̄) of p̄ and a function ξ from B̄ε(r)(p̄) into B̄r(x̄) ⊂ X

satisfying ξ(p̄) = x̄ and f
(
ξ(p), p

)
= 0 for all p ∈ W . (Halkin actually breaks this part out as

Theorem A.)
We can use the above result to construct a ξ that is continuous at p̄. Start with a given

neighborhood U of x̄. Construct a sequence of r1 > r2 > · · · > 0 satisfying lim rn = 0 and
for each n consider the neighborhood Un = U ∩ Brn(x̄). From the argument above there is
a neighborhood Wn of p̄ and a function ξn from Wn into Un ⊂ U satisfying ξn(p̄) = x̄ and
f
(
ξn(p), p

)
= 0 for all p ∈ Wn. Without loss of generality we may assume Wn ⊃ Wn+1

(otherwise replace Wn+1 with Wn ∩Wn+1), so set W = W1. Define ξ : W → U by ξ(p) = ξn(p)
for p ∈ Wn \ Wn+1. Then ξ is continuous at p̄, satisfies ξ(p̄) = x̄, and f

(
ξ(p), p

)
= 0 for all

p ∈ W .

Note that the above proof used in an essential way the compactness of B̄r(x̄), which relies
on the finite dimensionality of Rn. The compactness was used first to show that m(p) is finite,
and second to apply the Brouwer fixed point theorem.

Theorem 114 adds to the hypotheses of Theorem 113. It assumes that Dxf exists everywhere
on X×P and is continuous. The conclusion is that there are some neighborhoods U of x̄ andW
of p̄ and a continuous function ξ : W → U such that ξ(p) is the unique solution to f

(
ξ(p), p

)
= 0

lying in U . It is the uniqueness of ξ(p) that puts a restriction on U . If U is too large, say
U = X, then the solution need not be unique. (On the other hand, it is easy to show, as does
Dieudonné [43, pp. 270–271], there is at most one continuous ξ, provided U is connected.) The
argument we use here, which resembles that of Loomis and Sternberg, duplicates some of the
proof of Theorem 113, but we do not actually need to assume that the domain of f lies in the
finite dimensional space Rn × Rm, any Banach spaces will do, and the proof need not change.
This means that we cannot use Brouwer’s theorem, since closed balls are not compact in general
Banach spaces. Instead, we will be able to use the Mean Value Theorem and the Contraction
Mapping Theorem.

Proof of Theorem 114: Let X, P , and let f : X×P → Rn obey the hypotheses of Theorem 114.
Set T = Dxf(x̄, p̄), and recall that T is invertible.

Again we must find a suitable subset of X so that each φ(·, p) maps this set into itself. Now
we use the hypothesis that Dxf (and hence Dxφ) exists and is continuous on X × P to deduce
that there is a neighborhood B̄r(x̄) ×W1 of (x̄, p̄) on which the operator norm ∥Dxφ∥ is strictly
less than 1

2 . Set U = B̄r(x̄). Since φ(x̄, p̄) = x̄ and since φ is continuous (as f is), we can now
choose W so that p̄ ∈ W , W ⊂ W1, and p ∈ W implies∣∣φ(x̄, p) − x̄

∣∣ < r

2
.

We now show that for each p ∈ W , the mapping x 7→ φ(x, p) is a contraction that maps
B̄r(x̄) into itself. To see this, note that the Mean Value Theorem (or Taylor’s Theorem) implies

φ(x, p) − φ(y, p) = Dxφ(z, p)(x− y),

for some z lying on the segment between x and y. If x and y lie in B̄r(x̄), then z too must lie
in B̄r(x̄), so ∥Dxφ(z, p)∥ < 1

2 . It follows that∣∣φ(x, p) − φ(y, p)
∣∣ < 1

2
|x− y| for all x, y ∈ B̄r(x̄), p ∈ Bε(p̄), (3.8)

so φ(·, p) is a contraction on B̄r(x̄) with contraction constant 1
2 .
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To see that B̄r(x̄) is mapped into itself, let (x, p) belong to B̄r(x̄) ×W and observe that∣∣φ(x, p) − x̄
∣∣ ⩽

∣∣φ(x, p) − φ(x̄, p)
∣∣+
∣∣φ(x̄, p) − x̄

∣∣
<

1
2
∣∣x− x̄

∣∣+ r

2
< r.

Thus φ(x, p) ∈ B̄r(x̄).
Since B̄r(x̄) is a closed subset of the complete metric space Rn, it is complete itself, so the

Contraction Mapping Theorem guarantees that there is a unique fixed point of φ(·, p) in B̄r(x̄).
In other words, for each p ∈ W there is a unique point ξ(p) lying in U = B̄r(x̄) satisfying
f(ξ(p), p) = 0.

It remains to show that ξ must be continuous on W . This follows from a general result on
parametric contraction mappings, presented as Lemma 119 below, which also appears in [100,
Corollary 4, p. 230].

Note that the above proof nowhere uses the finite dimensionality of Rm, so the theorem
actually applies to a general Banach space.

Proof of Theorem 115: For this theorem, in addition to the hypotheses of Theorem 113, we need
P to be a subset of a Euclidean space (or more generally a Banach space), so that it makes
sense to partially differentiate with respect to p. Now assume f is differentiable with respect to
(x, p) at the point (x̄, p̄).

There is a neighborhood W of p̄ and a function ξ : W → X satisfying the conclusions of
Theorem 113. It turns out that under the added hypotheses, such a function ξ is differentiable
at p̄.

We start by showing that ξ is locally Lipschitz continuous at p̄. First set

∆(x, p) = f(x, p) − f(x̄, p̄) − T (x− x̄) − S(p− p̄).

Since Df exists at (x̄, p̄), there exists r > 0 such that Br(x̄) ×Br(p̄) ⊂ X×W and if |x− x̄| < r
and |p− p̄| < r, then ∣∣∆(x, p)

∣∣
|x− x̄| + |p− p̄|

<
1

2 ∥T−1∥
,

which in turn implies ∣∣T−1∆(x, p)
∣∣ < 1

2
|x− x̄| + 1

2
|p− p̄|.

Since ξ is continuous at p̄ and ξ(p̄) = x̄, there is some r ⩾ δ > 0 such that |p − p̄| < δ implies
|ξ(p) − x̄| < r. Thus∣∣T−1∆

(
ξ(p), p

)∣∣ < 1
2
∣∣ξ(p) − x̄

∣∣+ 1
2

|p− p̄| for all p ∈ Bδ(p̄). (3.9)

But f
(
ξ(p), p

)
− f(x̄, p̄) = 0 implies∣∣T−1∆

(
ξ(p), p

)∣∣ =
∣∣(ξ(p) − x̄

)
+ T−1S(p− p̄)

∣∣. (3.10)

Therefore, from the facts that |a + b| < c implies |a| < |b| + c, and ξ(p̄) = x̄, equations (3.9)
and (3.10) imply∣∣ξ(p) − ξ(p̄)

∣∣ < ∣∣T−1S(p− p̄)
∣∣+ 1

2
∣∣ξ(p) − ξ(p̄)

∣∣+ 1
2

|p− p̄| for all p ∈ Bδ(p̄)

or, ∣∣ξ(p) − ξ(p̄)
∣∣ < (2∥T−1S∥ + 1

)
|p− p̄| for all p ∈ Bδ(p̄).
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That is, ξ satisfies a local Lipschitz condition at p̄. For future use set M = 2∥T−1S∥ + 1.
Now we are in a position to prove that −T−1S is the differential of ξ at p̄. Let ε > 0 be

given. Choose 0 < r < δ so that |x− x̄| < r and |p− p̄| < r implies∣∣∆(x, p)
∣∣

|x− x̄| + |p− p̄|
<

ε

(M + 1) ∥T−1∥
,

so∣∣(ξ(p) − ξ(p̄)
)

+ T−1S(p− p̄)
∣∣ =

∣∣T−1∆
(
ξ(p), p

)∣∣ < ε

(M + 1)
(
|ξ(p) − ξ(p̄)| + |p− p̄|

)
⩽ ε|p− p̄|,

for |p− p̄| < r, which shows that indeed −T−1S is the differential of ξ at p̄.

Proof of Theorem 116: ************

Proof of Theorem 117: ************

Proof of Theorem 118: Let f satisfy the hypotheses of the theorem. Let C(P ) denote the set
of continuous real functions on P . Then C(P ) is complete under the uniform norm metric,
∥f − g∥ = supp |f(p) − g(p)| [3, Lemma 3.97, p. 124]. For each p define the function ψp : R → R
by

ψp(x) = (x) − 1
M
f(x, p).

Note that ψp(x) = x if and only if f(x, p) = 0. If ψp has a unique fixed point, then we shall
have shown that there is a unique function ξ satisfying f

(
ξ(p), p

)
= 0. It suffices to show that

ψp is a contraction.
To see this, write

ψp(x) − ψp(y) = x− y − f(x, p) − f(y, p)
M

=
(

1 − 1
M

f(x, p) − f(y, p)
x− y

)
(x− y).

By hypothesis

0 < m ⩽ f(x, p) − f(y, p)
x− y

⩽M,

so
|ψp(x) − ψp(y)| ⩽

(
1 − m

M

)
|x− y|.

This shows that ψp is a contraction with constant 1 − m
M < 1.

To see that ξ is actually continuous, define the function ψ : C(P ) → C(P ) via

ψg(p) = g(p) − 1
M
f
(
g(p), p

)
.

(Since f is continuous, ψg is continuous whenever g is continuous.) The pointwise argument
above is independent of p, so it also shows that |ψg(p) − ψh(p)| ⩽

(
1 − m

M

)
|g(p) − h(p)| for any

functions g and h. Thus
∥ψg − ψh∥ ⩽

(
1 − m

M

)
∥g − h∥.

In other words ψ is a contraction on C(P ), so it has a unique fixed point ḡ in C(P ), so ḡ is
continuous. But ḡ also satisfies f

(
ḡ(p), p

)
, but since ξ(p) is unique we have ξ = ḡ is continuous.

KC Border src: implicit v. 2015.11.20::14.58



KC Border Notes on Optimization, etc. 60

f(x, p) = 0

p

x
f(x, p) > 0

f(x, p) < 0

(x1, p1)

(x2, p2) (x3, p3)f ′

Figure 3.6. Looking for implicit functions.

119 Lemma (Continuity of fixed points) Let φ : X × P → X be continuous in p for each
x, where X is a complete metric space under the metric d and P is a metrizable space. Suppose
that φ is a uniform contraction in x. That is, there is some 0 ⩽ α < 1 such that

d
(
φ(x, p) − φ(y, p)

)
⩽ αd(x, y)

for all x and y in X and all p in P . Then the mapping ξ : P → X from p to the unique fixed
point of φ(·, p), defined by φ

(
ξ(p), p

)
= ξ(p), is continuous.

Proof : Fix a point p in P and let ε > 0 be given. Let ρ be a compatible metric on P and using
the continuity of φ(x, ·) on P , choose δ > 0 so that ρ(p, q) < δ implies that

d
(
φ
(
ξ(p), p

)
, φ
(
ξ(p), q

))
< (1 − α)ε.

So if ρ(p, q) < δ, then

d
(
ξ(p), ξ(q)

)
= d

(
φ
(
ξ(p), p

)
, φ
(
ξ(q), q

))
⩽ d

(
φ
(
ξ(p), p

)
, φ
(
ξ(p), q

))
+ d
(
φ
(
ξ(p), q

)
, φ
(
ξ(q), q

))
< (1 − α)ε+ αd

(
ξ(p), ξ(q)

)
so

(1 − α)d
(
ξ(p), ξ(q)

)
< (1 − α)ε

or
d
(
ξ(p), ξ(q)

)
< ε,

which proves that ξ is continuous at p.

3.15.2 Examples
Figure 3.6 illustrates the Implicit Function Theorem for the special case n = m = 1, which is
the only one I can draw. The figure is drawn sideways since we are looking for x as a function
of p. In this case, the requirement that the differential with respect to x be invertible reduces to
∂f
∂x ̸= 0. That is, in the diagram the gradient of f may not be horizontal. In the figure, you can
see that the points, (x1, p1), (x2, p2), and (x3, p3), the differentials Dxf are zero. At (x1, p1) and
(x2, p2) there is no way to define x as a continuous function of p locally. (Note however, that if
we allowed a discontinuous function, we could define x as a function of p in a neighborhood of
p1 or p2, but not uniquely.) At the point (x3, p3), we can uniquely define x as a function of p
near p3, but this function is not differentiable.

Another example of the failure of the conclusion of the Classical Implicit Function Theorem
is provided by the function from Example 108.

120 Example (Differential not invertible) Define f : R × R → R by

f(x, p) = −(x− p2)(x− 2p2).
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Consider the function implicitly defined by f(x, p) = 0. The function f is zero along the
parabolas x = p2 and x = 2p2, and in particular f(0, 0) = 0. See Figure 3.5 on page 51. The
hypothesis of the Implicit Function Theorem is not satisfied since ∂f(0,0)

∂x = 0. The conclusion
also fails. The problem here is not that a smooth implicit function through (x, p) = (0, 0) fails
to exist. The problem is that it is not unique. There are four distinct continuously differentiable
implicitly defined functions. □

121 Example (Lack of continuous differentiability) Consider again the function h(x) =
x + 2x2 sin 1

x2 from Example 70. Recall that h is differentiable everywhere, but not continu-
ously differentiable at zero. Furthermore, h(0) = 0, h′(0) = 1, but h is not monotone on any
neighborhood of zero. Now consider the function f(x, p) = h(x) − p. It satisfies f(0, 0) = 0 and
∂f(0,0)

∂x ̸= 0, but it there is no unique implicitly defined function on any neighborhood, nor is
there any continuous implicitly defined function.

To see this, note that f(x, p) = 0 if and only if h(x) = p. So a unique implicitly defined
function exists only if h is invertible on some neighborhood of zero. But this is not so, for
given any ε > 0, there is some 0 < p < ε

2 for which there are 0 < x < x′ < ε satisfying
h(x) = h(x′) = p. It is also easy to see that no continuous function satisfies h

(
ξ(p)

)
= p either.

□

If X is more than one-dimensional there are subtler ways in which Dxf may fail to be
continuous. The next example is taken from Dieudonné [43, Problem 10.2.1, p. 273].

122 Example Define f : R2 → R2 by

f1(x, y) = x

and

f2(x, y) =



y − x2 0 ⩽ x2 ⩽ y

y2 − x2y

x2 0 ⩽ y ⩽ x2

−f2(x,−y) y ⩽ 0.

Then f is everywhere differentiable on R2, and Df(0, 0) is the identity mapping, but Df is Work out the details.

not continuous at the origin. Furthermore in every neighborhood of the origin there are distinct
points (x, y) and (x′, y′) with f(x, y) = f(x′, y′). Thus f has no local inverse, so the equation
f(x, y) − p = f(0, 0) does not uniquely define a function. □

3.15.3 Implicit vs. inverse function theorems
In this section we discuss the relationship between the existence of a unique implicitly defined
function and the existence of an inverse function. These results are quite standard and may be
found, for instance, in Marsden [107, p. 234].

First we show how the implicit function theorem can be used to prove an inverse function
theorem. Suppose X ⊂ Rn and g : X → Rn. Let P be a neighborhood of p̄ = g(x̄). Consider
f : X × P → Rn defined by

f(x, p) = g(x) − p.

Then f(x, p) = 0 if and only if p = g(x). Thus if there is a unique implicitly defined function
ξ : P → X implicitly defined by f

(
ξ(p), p

)
= 0, it follows that g is invertible and ξ = g−1. Now

compare the Jacobian matrix of f with respect to x and observe that it is just the Jacobian
matrix of g. Thus each of the implicit function theorems has a corresponding inverse function
theorem.
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We could also proceed in the other direction, as is usually the case in textbooks. Let X ×P
be a subset of Rn × Rm, and let f : X × P → Rn, and suppose f(x̄, p̄) = 0. Define a function
g : X × P → Rn × P by

g(x, p) =
(
f(x, p), p

)
.

Suppose g is invertible, that is, it is one-to-one and onto. Define ξ : P → X by

ξ(p) = πx

(
g−1(0, p)

)
.

Then ξ is the unique function implicitly defined by(
f
(
ξ(p), p

)
, p
)

= 0

for all p ∈ P . Now let’s compare hypotheses. The standard Inverse Function Theorem, e.g. [107,
Theorem 7.1.1, p. 206], says that if g is continuously differentiable and has a nonsingular Jacobian
matrix at some point, then there is a neighborhood of the point where g is invertible. The
Jacobian matrix for g(x, p) =

(
f(x, p), p

)
above is

∂f1

∂x1
· · · ∂f1

∂xn

∂f1

∂p1
· · · ∂f1

∂pm
...

...
...

...
∂fn

∂x1
· · · ∂fn

∂xn

∂fn

∂p1
· · · ∂fn

∂pm

0 · · · 0 1 0
...

... . . .
0 · · · 0 0 1


.

Since this is block diagonal, it is easy to see that this Jacobian matrix is nonsingular at (x̄, p̄) if
and only if the derivative Dxf(x̄, p̄), is invertible.

3.15.4 Global inversion
The inverse function theorems proven above are local results. Even if the Jacobian matrix of a
function never vanishes, it may be that the function does not have an inverse everywhere. The
following example is well known, see e.g., [107, Example 7.1.2, p. 208].Add a section on the

Gale–Nikaidô Theorem.

123 Example (A function without a global inverse) Define f : R2 → R2 via

f(x, y) = (ex cos y, ex sin y).

Then the Jacobian matrix is (
ex cos y −ex sin y
ex sin y ex cos y

)
which has determinant e2x(cos2 y+sin2 y) = e2x > 0 everywhere. Nonetheless, f is not invertible
since f(x, y) = f(x, y + 2π) for every x and y. □

3.16 Applications of the Implicit Function Theorem
3.16.1 A fundamental lemma
A curve in Rn is simply a function from an interval of R into Rn, usually assumed to be
continuous.
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124 Fundamental Lemma on Curves Let U be an open set in Rn and let g : U → Rm. Let
x∗ ∈ U satisfy g(x∗) = 0, and suppose g is differentiable at x∗. Assume that g1

′(x∗), . . . , gm
′(x∗)

are linearly independent. Let v ∈ Rn satisfy

gi
′(x∗) · v = 0, i = 1, . . . ,m.

Then there exists δ > 0 and a curve x̂ : (−δ, δ) → U satisfying:

1. x̂(0) = x∗.

2. g
(
x̂(α)

)
= 0 for all α ∈ (−δ, δ).

3. x̂ is differentiable at 0. Moreover, if g is Ck on U , then x̂ is Ck on (−δ, δ).

4. x̂′(0) = v.

Proof : Since the gi
′(x∗)s are linearly independent, n ⩾ m, and without loss of generality, we

may assume the coordinates are numbered so that the m×m matrix
∂g1

∂x1
· · · ∂g1

∂xm...
...

∂gm

∂x1
· · · ∂gm

∂xm


is invertible at x∗.

Fix v satisfying gi
′(x∗) · v = 0 for all i = 1, . . . ,m. Rearranging terms we have
m∑

j=1

∂gi(x∗)
∂xj

· vj = −
n∑

j=m+1

∂gi(x∗)
∂xj

· vj i = 1, . . . ,m,

or in matrix terms
∂g1

∂x1
· · · ∂g1

∂xm...
...

∂gm

∂x1
· · · ∂gm

∂xm


 v1

...
vm

 = −


∂g1

∂xm+1
. . .

∂g1

∂xn
...

...
∂gm

∂xm+1
. . .

∂gm

∂xn


vm+1

...
vn

 ,
so  v1

...
vm

 = −


∂g1

∂x1
· · · ∂g1

∂xm...
...

∂gm

∂x1
· · · ∂gm

∂xm


−1 

∂g1

∂xm+1
. . .

∂g1

∂xn
...

...
∂gm

∂xm+1
. . .

∂gm

∂xn


vm+1

...
vn

 .
Observe that these conditions completely characterize v. That is, for any y ∈ Rn,(

gi
′(x∗) · y = 0, i = 1, . . . ,m, and yj = vj , j = m+1, . . . , n

)
=⇒ y = v. (3.11)

Define the C∞ function f : Rm × R → Rn by

f(z, α) = (z1, . . . , zm, x
∗
m+1 + αvm+1, . . . , x

∗
n + αvn).

Set z∗ = (x∗
1, . . . , x

∗
m) and note that f(z∗, 0) = x∗. Since x∗ is an interior point of U , there is a

neighborhood W of z∗ and an interval (−η, η) in R so that for every z ∈ W and α ∈ (−η, η),
the point f(z, α) belongs to U ⊂ Rn. Finally, define h : W × (−η, η) → Rm by

h(z, α) = g
(
f(z, α)

)
= g(z1, . . . , zm, x

∗
m+1 + αvm+1, . . . , x

∗
n + αvn).
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Observe that h possesses the same degree of differentiability as g, since h is the composition of
g with the C∞ function f .

Then for j = 1, . . . ,m, we have = ∂hi

∂zj
(z, 0) = ∂gi

∂xj
(x), where z = (x1, . . . , xm). Therefore the

m-vectors 
∂hi(z∗; 0)

∂z1...
∂hi(z∗; 0)
∂zm

 , i = 1, . . . ,m

are linearly independent.
But h(z∗, 0) = 0, so by the Implicit Function Theorem 115 there is an interval (−δ, δ) ⊂

(−η, η) about 0, a neighborhood V ⊂ W of z∗ and a function ζ : (−δ, δ) → V such that

ζ(0) = z∗,

h
(
ζ(α), α

)
= 0, for all α ∈ (−δ, δ),

and ζ is differentiable at 0. Moreover, by Implicit Function Theorem 117, if g is Ck on U , then
h is Ck, so ζ is Ck on (−δ, δ).

Define the curve x̂ : (−δ, δ) → U by

x̂(α) = f
(
ζ(α), α

)
=
(
ζ1(α), . . . , ζm(α), x∗

m+1 + αvm+1, . . . , x
∗
n + αvn

)
. (3.12)

Then x̂(0) = x∗,
g
(
x̂(α)

)
= 0 for all α ∈ (−δ, δ),

and x̂ is differentiable at 0, and if g is Ck, then x̂ is Ck. So by the Chain Rule,

gi
′(x∗) · x̂′(0) = 0, i = 1, . . . ,m.

Now by construction (3.12), x̂′
j(0) = vj , for j = m+1, . . . , n. Thus (3.11) implies x̂′(0) = v.

3.16.2 A note on comparative statics
“Comparative statics” analysis tells us how equilibrium values of endogenous variables x1, . . . , xn

(the things we want to solve for) change as a function of the exogenous parameters p1, . . . , pm.
(As such it is hardly unique to economics.) Typically we can write the equilibrium conditions of
our model as the zero of a system of equations in the endogenous variables and the exogenous
parameters:

F 1(x1, . . . , xn; p1, . . . , pm) = 0
...

Fn(x1, . . . , xn; p1, . . . , pm) = 0
(3.13)

This implicitly defines x as a function of p, which we will explicitly denote x = ξ(p), or

(x1, . . . , xn) =
(
ξ1(p1, . . . , pm), . . . , ξn(p1, . . . , pm)

)
.

This explicit function, if it exists, satisfies the implicit definition

F
(
ξ(p); p

)
= 0 (3.14)

for at least a rectangle of values of p. The Implicit Function Theorem tells that such an explicit
function exists whenever it is possible to solve for all its partial derivatives.
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Setting G(p) = F
(
ξ(p); p

)
, and differentiating Gi with respect to pj , yields, by equation

(3.14), ∑
k

∂F i

∂xk

∂ξk

∂pj
+ ∂F i

∂pj
= 0 (3.15)

for each i = 1, . . . , n, j = 1, . . . ,m. In matrix terms we have
∂F 1

∂x1
· · · ∂F 1

∂xn...
...

∂Fn

∂x1
· · · ∂Fn

∂xn




∂ξ1

∂p1
· · · ∂ξ1

∂pm
...

...
∂ξn

∂p1
· · · ∂ξn

∂pm

+


∂F 1

∂p1
· · · ∂F 1

∂pm
...

...
∂Fn

∂p1
· · · ∂Fn

∂pm

 = 0. (3.16)

Provided


∂F 1

∂x1
· · · ∂F 1

∂xn...
...

∂Fn

∂x1
· · · ∂Fn

∂xn

 has an inverse (the hypothesis of the Implicit Function Theo-

rem) we can solve this:
∂ξ1

∂p1
· · · ∂ξ1

∂pm
...

...
∂ξn

∂p1
· · · ∂ξn

∂pm

 = −


∂F 1

∂x1
· · · ∂F 1

∂xn...
...

∂Fn

∂x1
· · · ∂Fn

∂xn


−1 

∂F 1

∂p1
· · · ∂F 1

∂pm
...

...
∂Fn

∂p1
· · · ∂Fn

∂pm

 (3.17)

The old-fashioned derivation (see, e.g., Samuelson [136, pp. 10–14]) of this same result runs
like this: “Totally differentiate” the ith row of equation (3.13) to get

∑
k

∂F i

∂xk
dxk +

∑
ℓ

∂F i

∂pℓ
dpℓ = 0 (3.18)

for all i. Now set all dpℓs equal to zero except pj , and divide by dpj to get

∑
k

∂F i

∂xk

dxk

dpj
+ ∂F i

∂pj
= 0 (3.19)

for all i and j, which is equivalent to equation (3.15). For further information on total differen-
tials and how to manipulate them, see [6, Chapter 6].

Using Cramer’s Rule (e.g. [8, pp. 93–94]), we see then that

dxi

dpj
= ∂ξi

∂pj
= −

∣∣∣∣∣∣∣∣∣∣∣

∂F 1

∂x1
· · · ∂F 1

∂xi−1

∂F 1

∂pj

∂F 1

∂xi+1
· · · ∂F 1

∂xn
...

...
...

...
...

∂Fn

∂x1
· · · ∂Fn

∂xi−1

∂Fn

∂pj

∂Fn

∂xi+1
· · · ∂Fn

∂xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂F 1

∂x1
· · · ∂F 1

∂xn...
...

∂Fn

∂x1
· · · ∂Fn

∂xn

∣∣∣∣∣∣∣∣∣∣

. (3.20)
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Or, letting ∆ denote the determinant of


∂F 1

∂x1
· · · ∂F 1

∂xn...
...

∂Fn

∂x1
· · · ∂Fn

∂xn

, and letting ∆i,j denote the

determinant of the matrix formed by deleting its i-th row and j-th column, we have

∂ξi

∂pj
= −

n∑
k=1

(−1)i+k ∂F
k

∂pj

∆k,i

∆
. (3.21)
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Section 4

Convex analysis

4.1 Convex sets
125 Definition A subset of a vector space is convex if it includes the line segment joining any
two of its points. That is, C is convex if for each pair x, y of points in C, the line segment

{λx+ (1 − λ)y : λ ∈ [0, 1]}

is included in C.
Picture.

By induction, if a set C is convex, then for every finite subset {x1, . . . , xn} and nonnegative
scalars {λ1, . . . , λn} with

∑n
i=1 λi = 1, the linear combination

∑n
i=1 λixi lies in C. Such a linear

combination is called a convex combination, and the coefficients λi are frequently called
weights.

126 Definition The convex hull coA of a set A is the intersection of all convex sets that
include A.

Picture.

The convex hull of a set A is the smallest convex set including A, in the sense that coA is
convex, includes A, and if C is a convex set that includes A, then C includes coA. The convex
hull of A consists precisely of all convex combinations from A. (These claims are actually
lemmas, and you are asked to prove them in the next exercise.)

127 Exercise (Properties of convex sets) Prove the following.

1. If a set C is convex, then for every finite subset {x1, . . . , xn} and nonnegative scalars
{λ1, . . . , λn} with

∑n
i=1 λi = 1, the linear combination

∑n
i=1 λixi lies in C.

2. The sum of two convex sets is convex.

3. Scalar multiples of convex sets are convex.

4. A set C is convex if and only if

αC + βC = (α+ β)C

for all nonnegative scalars α and β.

5. The intersection of an arbitrary family of convex sets is convex.

6. The convex hull of a set A is the set of all convex of elements of A. That is,

coA = {
n∑

i=1
λixi :

n∑
i=1

λi = 1, λi > 0, xi ∈ A, i = 1, . . . , n.
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star The interior and closure of a convex set are also convex.

□

While the sum of two convex sets is necessarily convex, the sum of two non-convex sets may
also be convex. For example, let A be the set of rationals in R and B be the union of 0 and the
irrationals. Neither set is convex, but their sum is the set of all real numbers, which is of course
convex.

128 Definition A set C in a vector space is a cone if whenever x belongs to C so does λx for
every λ ⩾ 0. The cone C is pointed if for any nonzero x belonging to C, the point −x does not
belong to C. A cone is nondegenerate if it contains a nonzero vector. A cone less 0 is called
a deleted cone.

Picture.

Every linear subspace is a cone by this definition, but not a pointed cone. The origin by
itself is a degenerate cone. A cone is pointed if and only if it includes no linear subspace other
than {0}. Under this definition, a cone C always contains 0, but we may have occasion to call
a set of the form x+ C a cone with vertex at x.

Given a set A, the cone generated by A is {λx : λ ⩾ 0, x ∈ A}. It is truly a cone,
and is the intersection of all the cones that include A. A cone generated by a single nonzero
point is called a ray. A finite cone is a cone generated by the convex hull of a finite set. A
nondegenerate finite cone is the sum of finitely many rays.Picture.

129 Exercise (Properties of cones) Prove the following.

1. Scalar multiples of cones are cones.

2. The intersection of an arbitrary family of cones is a cone.

3. The sum of two cones is a cone.

4. The cone generated by A is the smallest (with respect to inclusion) cone that includes A.

5. A cone is convex if and only if it is closed under addition.

6. The cone generated by a convex set is convex.

7. A nondegenerate finite cone is the sum of finitely many rays.

8. The finite cone generated by the finite set {x1, . . . , xn} is the set of nonnegative linear
combinations of the xis. That is,{ n∑

i=1
λixi : λi ⩾ 0, i = 1, . . . , n

}
.

□

4.2 Affine sets and functions
Recall that a linear subspace M of a vector space X is a nonempty set closed under linear
combinations. That is, x, y ∈ M and α, β ∈ R imply that αx + βy ∈ M . Well an affine
subspace (sometimes called a flat) is a nonempty set that is closed under affine combinations,
that is, linear combinations of the form αx+ βy satisfying α+ β = 1. Another way to say this
is that if two point x and y belong to M , then the line

{λx+ (1 − λ)y : λ ∈ R}
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also belongs to M . An affine combination differs from a convex combination in that one of the
scalars is allowed to be negative in affine combination. We can take more than two points in an
affine combination, as the next exercise asks you to prove. (It’s not hard, but not trivial either.)

Picture.

130 Exercise (Affine combinations) Let A be an affine subspace. Prove that if x1, . . . , xn

belong to A and λ1, . . . , λn are scalars that sum to one, then λ1x1 + · · · + λnxn also belongs to
A. □

Every affine set is a translate of a unique linear subspace. The next exercise asks you to
prove this. If two affine subspaces are translates of the same linear subspace, then they are said
to be parallel. The dimension of the linear subspace is also called the dimension of the affine
subspace. Picture.

131 Exercise (Affine subspaces) Let X be a vector space. Prove the following.

1. LetM be a linear subspace of X and let a be a vector in X. ThenM+a = {x+a : x ∈ M}
is an affine subspace of X.

2. Let A be an affine subspace of X, and let a and b belong to A.

(a) The set A− a = {x− a : x ∈ A} is a linear subspace of X.
(b) A− a = A− b.

3. Consequently, for every affine subspace A, there is a linear subspace M such that A =
M + a.

4. IfM and N are linear subspaces such A = M+x = N+y for some x, y ∈ A, thenM = N .
This subspace is called the linear subspace parallel to A.

5. If M is a linear subspace

6. An affine subspace is a linear subspace if and only it contains 0.

7. Let M denote the unique linear subspace parallel to A. For x ∈ M and y ∈ A together
imply that x+ y ∈ A.

□

Given a set A, the affine hull aff A of A is the intersection of all affine subspaces that include
A. It is the smallest affine subspace that includes A and consists of all affine combinations of
points in A. (Prove this to yourself.)1

Recall that a real linear function on a vector space X is a function f that satisfies

f(αx+ βy) = αf(x) + βf(y) for all x, y ∈ X, α, β ∈ R.

When X = Rn, if f is linear, there is a unique p ∈ Rn satisfying

f(x) = p · x

for all x, namely pi = f(ei), i = 1, . . . , n.

132 Definition Let A be an affine subspace of the vector space X. A real function f : X → R
is affine if for every x, y ∈ A and scalar λ,

f
(
λx+ (1 − λ)y

)
= λf(x) + (1 − λ)f(y).

1We could call the intersection of all linear subspaces that include A the linear hull of A. It is the smallest
linear subspace that includes A and consists of all linear combinations of points in A. But instead, we traditionally
call this set the span of A.
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133 Exercise (Affine functions) Let A be an affine subspace of the vector space X. A real
function f on A is affine if and only it is of the form f(x) = g(x− a) − γ, where a belongs to A
and g is linear on the linear subspace A− a. Moreover, g is independent of the choice of a in A,
and γ = −f(a).

In particular, when A = X, then an affine function f on X can be written as f(x) = g(x)−γ,
where g is linear on X and γ = −f(0). □

4.3 Convex and concave functions
Interpret geometrically.

134 Definition A function f : C → R on a convex subset C of a vector space is:

concave if f
(
λx+ (1 − λ)y

)
⩾ λf(x) + (1 − λ)f(y)

strictly concave if f
(
λx+ (1 − λ)y

)
> λf(x) + (1 − λ)f(y)

convex if f
(
λx+ (1 − λ)y

)
≤ λf(x) + (1 − λ)f(y)

strictly convex if f
(
λx+ (1 − λ)y

)
< λf(x) + (1 − λ)f(y)

for all x, y in C with x ̸= y and all 0 < λ < 1.

It is easy to show that a function f is concave if and only if

f
( n∑

i=1
λixi

)
⩾

n∑
i=1

λif(xi)

for every convex combination
∑n

i=1 λixi.

135 Exercise Prove the following.

1. The sum of concave functions is concave.

2. A nonnegative multiple of a concave function is concave.

3. The pointwise limit of a sequence of concave functions is concave.

4. The pointwise infimum of a family of concave functions is concave.

5. A function is both concave and convex if and only if it is affine.

□

4.4 Talking convex analysis
Mathematicians who specialize in convex analysis use a different terminology from what you
are likely to encounter in a calculus or real analysis text. In particular, the excellent books by
Rockafellar [130] and Castaing and Valadier [36] can be incomprehensible if you pick one up
and start reading in the middle. In this section I explain some of their terminology and how it
relates to mine, which I shall call the conventional terminology.

First off, in convex analysis, concave functions are almost always taken to be defined every-
where on Rn (or some general vector space), and are allowed to assume the extended values
+∞ and −∞. (Actually convex analysts talk mostly about convex functions, not concave func-
tions.) Let us use R♯ to denote the extended real numbers, R♯ = R ∪ {+∞,−∞}. Given
an extended real-valued function f : Rn → R♯, the hypograph of f is the subset of Rn × R
defined by

{(x, α) ∈ Rn × R : α ⩽ f(x)}.
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The epigraph is defined by reversing the inequality. Note well that the hypograph or epigraph
of f is a subset of Rn × R, not of Rn × R♯. That is, each α in the definition of hypograph
or epigraph is a real number, not an extended real. For example, the epigraph of the constant
function +∞ is the empty set.

To a convex analyst, an extended real-valued function is concave if its hypograph is a convex
subset of Rn × R. Given a concave function f : Rn → R♯, its effective domain, dom f , is the
projection of its hypograph on Rn, that is,

dom f = {x ∈ Rn : f(x) > −∞}.

The effective domain of a concave function is a (possibly empty) convex set.
Similarly, an extended real-valued function is convex if its epigraph is a convex subset of

Rn × R. Given a convex function f : Rn → R♯, its effective domain is

dom f = {x ∈ Rn : f(x) < ∞}.

This terminology leaves the question of what is the effective domain of a function that is
neither concave nor convex unanswered. However in convex analysis, the question never arises.

We can extend a conventional real-valued concave function f defined on a subset C of Rn

to an extended real-valued function f̂ defined on all of Rn by setting

f̂(x) =

{
f(x) x ∈ C

−∞ x /∈ C.

Note that f̂ is concave in the convex analyst’s sense if and only if f is concave in the conventional
sense, in which case we also have that dom f̂ = C. (We can similarly extend conventionally
defined convex functions to Rn by setting them equal to +∞ where conventionally undefined.)

Proper functions
In the language of convex analysis, a concave function is proper if its effective domain is
nonempty and its hypograph contains no vertical lines. (A vertical line in Rn × R is a set of
the form {x} × R for some x ∈ Rn.) That is, f is proper if f(x) > −∞ for at least one x and
f(x) < ∞ for every x. Every proper concave function is gotten by taking a finite-valued concave
function defined on some nonempty convex set and extending it to all of Rn as above.

Thus every concave function in the conventional terminology corresponds to a
proper concave function in the terminology of convex analysis.

A convex function is proper if its effective domain is nonempty and its epigraph contains no
vertical lines. A convex function f is proper if −f is a proper concave function.

As an example of a nontrivial improper concave function, consider this one taken from
Rockafellar [130, p. 24].

136 Example (A nontrivial improper concave function) The function f : R → R♯

defined by

f(x) =


+∞ |x| < 1

0 |x| = 1

−∞ |x| > 1
is an improper concave function that is not constant. □

Some authors, in paticular, Hiriart-Urruty and Lemaréchal [76] do not permit convex func-
tions to assume the value −∞, so for them, properness is equivalent to nonemptyness of the
effective domain.

KC Border src: convexity v. 2015.11.20::14.58



KC Border Notes on Optimization, etc. 72

Indicator functions
Another deviation from conventional terminology is the convex analysts’ definition of the indi-
cator function. The indicator function of the set C, denoted δ(· | C), is defined by

δ(x | C) =

{
0 x ∈ C

+∞ x /∈ C.

The indicator of C is a convex function if and only if C is a convex set. This is not to be
confused with the probabilists’ indicator function 1C defined by

1C(x) =

{
1 x ∈ C

0 x /∈ C.

4.5 Affine sets and the relative interior of a convex set
An important difference between convex analysts and the rest of us is the use of the term
“relative interior”. When a convex analyst refers to the relative interior of a convex set, she does
not mean the interior relative to the entire ambient vector space, but to explain it we need a
few more definitions.

Recall that a set E in a vector space is affine if it includes all the lines (not just line segments)
generated by its points. Every set E is included in a smallest affine set aff E, called its affine
hull. A set A is affine if and only if for each x ∈ A, the set A− x is a linear subspace. In Rn,
every linear subspace and so every affine subspace is closed, so as a result, in Rn, a subset E
and its closure E have the same affine hull. This need not be true in an infinite dimensional
topological vector space.

137 Definition The relative interior of a convex set C in a topological vector space, denoted
riC, is defined to be its topological interior relative to its affine hull aff C.

In other words, x ∈ riC if and only if there is some open neighborhood U of x such that
y ∈ U ∩ aff C implies y ∈ riC.

Even a one point set has a nonempty relative interior in this sense, namely itself. The only
convex set with an empty relative interior is the empty set. Similarly, the relative boundary
of a convex set is the boundary relative to the affine hull. This turns out to be the closure minus
the relative interior.

Note well that this is not the same relative interior that a topologist would mean. In particu-
lar, it is not true that A ⊂ B implies riA ⊂ riB. For instance, consider a closed interval and one
of its endpoints. The relative interior of the interval is the open interval and the relative interior
of the singleton endpoint is itself, which is disjoint from the relative interior of the interval.

The most important property of the relative interior of a convex set for our purposes is the
following simple proposition.

138 Proposition Let C be a convex subset of a topological vector space. If x ∈ riC and y ∈ C,
then for |ε| small enough, we have x+ ε(x− y) ∈ riC.

Proof : Let A be the affine hull of C. Then riC is a relatively open subset of A in the topological
sense. Define h : R → A by h(λ) = x+ λ(x− y). (To verify that h(λ) actually belongs to A =
aff C, note that both x and y belong to C and h(λ) is the affine combination (1 +λ)x+ (−λ)y.)
Then h is continuous since scalar multiplication and vector addition are continuous functions.
Moreover, h(0) = x ∈ riC. So by continuity, the inverse image U = h−1(riC) of the open
subset riC of A is an open set in R that includes 0. That is, there is some η > 0 such that
d(ε, 0) = |ε| < η implies that ε ∈ U , so h(ε) ∈ riC.
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We may use this fact without any special mention. Indeed it is the key to the proof of the next
theorem.

139 Theorem If f is an improper concave function, then f(x) = ∞ for every x ∈ ri dom f . If
f is an improper convex function, then f(x) = −∞ for every x ∈ ri dom f .

Proof : There are two ways a concave function f can be improper. The first is that dom f is
empty, in which case, the conclusion holds vacuously. The second case is that f(x) = +∞ for
some x ∈ dom f . Let y belong to ri dom f . Then by the remark above, y is proper convex
combination λx+ (1 − λ)z (0 < λ < 1), where z = x+ ε(y − x) for some ε < 0 and z ∈ dom f
(so that f(z) > −∞). Then f(y) ⩾ λ∞ + (1 − λ)f(z) = +∞.

4.6 Topological properties of convex sets
140 Lemma In a topological vector space, both the interior and the closure of a convex set are
convex.

Proof : Let C be a convex subset of a topological vector space, let 0 ⩽ λ ⩽ 1. Observe that for
any x, y ∈ intC ⊂ C, convexity of C implies that λx+ (1 − λ)y ∈ C. In other words,

λ(intC) + (1 − λ)(intC) ⊂ C.

Since intC is open, λ(intC) + (1 − λ)(intC) is open (Corollary 44). But the interior of a set
includes every open subset, so λ(intC) + (1 − λ)(intC) is a subset of intC. This shows that
intC is convex.

To see that C is convex, we will deal with the case where M is a metric space.2 Let x and
y belong to C and let 0 ⩽ λ ⩽ 1. Then there are sequences in C such that xn → x and yn → y.
Since C is convex, λxn + (1 − λ)yn ∈ C. Since λxn + (1 − λ)yn → λx + (1 − λ)y, we have
λx+ (1 − λ)y ∈ C. Thus C is convex.

141 Lemma If C is a convex subset of a topological vector space, and if x belongs to the
interior of C and y belongs to the closure of C, then for 0 < λ ⩽ 1 the convex combination
λx+ (1 − λ)y belongs to the interior of C.

Proof : This is obviously true for λ = 1, and is vacuously true if intC is empty, so assume that
intC is nonempty, and let x ∈ intC, y ∈ C, and 0 < λ < 1.

Since x ∈ intC, there is an open neighborhood U of zero such that x + U ⊂ C. Then for
any point z ∈ C, the set V (z) =

∪
0<α⩽1

α(x + U) + (1 − α)z of convex combinations of z and

points in x + U is an open set and lies in C, so it is a subset of the interior of X. This region
is shaded in Figure 4.1. (The figure is drawn for the case where z /∈ x + U , and λ = 1/3. For
ease of drawing U is shown as a disk, but it need not be circular or even convex.) It seems clear
from the picture that if z is close enough to y, then λx+ (1 − λ)y belongs to the shaded region.
We now express this intuition algebraically.

Since y ∈ C, there is a point z ∈ C that also belongs to the open neighborhood y − λ
1−λU .

Thus (1 − λ)(y − z) belongs to λU , so λx+ (1 − λ)y = λx+ (1 − λ)z + (1 − λ)(y − z) belongs
to λx+ (1 − λ)z + λU ⊂ V (z) ⊂ intC.

142 Corollary If C is a convex subset of a topological vector space with nonempty interior,
then:

1. intC is dense in C, so C = intC.
2The same proof applies to general topological vector spaces when sequences are replaced by nets, if you know

what that means.
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x

x+ U

y

y + λ
1−λU

z

λx+ (1 − λ)y

λx+ (1 − λ)z

λx+ (1 − λ)z + λU

Figure 4.1. The open set V (z) (shaded) contains λx+ (1 − λ)y if z is close to y.

2. intC = intC.

Proof : (1) Let y belong to C. Pick x ∈ intC. Then for 0 < λ ⩽ 1, the point λx + (1 − λy
belongs to intC and converges to y as λ → 0. Thus intC is dense in C, that is, C ⊂ intC. But
C ⊃ intC, so we have equality.

(2) Fix x ∈ intC and y ∈ intC. Pick a neighborhood W of zero satisfying y + W ⊂ C.
Then for 0 < ε < 1 small enough, ε(y − x) ∈ W , so y + ε(y − x) ∈ C. By Lemma 141, we
have y − ε(y − x) = εy + (1 − ε)y ∈ intC. But then, using Lemma 141 once more, we obtain
y = 1

2 [y−ε(y−x)]+ 1
2 [y+ε(y−x)] ∈ intC. Therefore, intC ⊂ intC ⊂ intC, so intC = intC.

Note that a convex set with an empty interior may have a closure with a nonempty interior.
For instance, any dense (proper) vector subspace has this property.

143 Proposition In Rn, the relative interior of a nonempty convex set is nonempty.

Proof : If C is a singleton {x}, then {x} is its relative interior, so assume C has at least two
elements. Also, if x ∈ C, then riC = x+ ri(C − x), so we may assume that C contains 0, so its
affine hull is actually a (finite dimensional) linear subspace M of Rn. In this case, riC is just
the interior of C relative to M .Tighten this up.

Since C has more than one element, it has a nonempty maximal linearly independent subset,
b1, . . . , bk. This set is also a basis for M . Define a norm on M by ∥x∥ = maxi |αi| where
x =

∑k
i=1 αibi. (This generates the topology on M . Why?)

Now any point of the form
∑k

i=1 αibi with each αi ⩾ 0 and
∑k

i=1 αi ⩽ 1 belongs to C, as a
convex combination 0 and the bis. In particular, e =

∑k
i=1

1
2k bi belongs to C. In fact, it is an

interior point of C. To see this, consider the open ball (in the norm defined above) centered at
e with radius 1

2k . Let x =
∑k

i=1 αibi with maxi |αi − 1
2k | < 1

2k . Then 0 <
∑k

i=1 αi < 1, so x
belongs to C. Thus e belongs to the interior of C relative to M , and so to riC.

I now state without proof some additional properties of relative interiors in Rn.Add proofs

144 Proposition (Rockafellar [130, Theorem 6.3, p. 46]) For a convex subset C of Rn,

riC = C, and ri(riC) = riC.

A consequence of this is that the affine hull of riC and of C coincide.
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145 Proposition (Rockafellar [130, Theorem 6.5, p. 47]) Let {Ci}i∈I be a family of
convex subsets of Rn, and assume

∩
i riCi ̸= ∅. Then∩

i

Ci =
∩

i

Ci, and for finite I, ri
∩

i

Ci =
∩

i

riCi.

146 Proposition (Rockafellar [130, Corollaries 6.6.1, 6.6.2, pp. 48–49]) For convex
subsets C, C1, C2 of Rn, and λ ∈ R,

ri(λC) = λ riC, ri(C1 + C2) = riC1 + riC2, and C1 + C2 ⊃ C1 + C2.

147 Proposition (Rockafellar [130, Lemma 7.3, p. 54]) For any concave function f ,

ri hypo f = {(x, α) ∈ Rn × R : x ∈ ri dom f, α < f(x)}.

For a convex function f the corresponding result is

ri epi f = {(x, α) ∈ Rn × R : x ∈ ri dom f, α > f(x)}.

4.7 Closed functions
If we adopt the convex analyst’s approach that a concave function assumes the value −∞ outside
its effective domain, then we are sure to have discontinuities at the boundary of the domain.
Thus continuity is too much to expect as a global property of concave or convex functions.
However, we shall see below that proper convex and concave functions are Lipschitz continuous
on the relative interiors of their effective domains. However, a concave or convex function can
be very badly behaved on the boundary of its domain.

148 Example (Bad behavior, Rockafellar [130, p. 53]) Let D be the open unit disk in
R2, and let S be the unit circle. Define f to be zero on the disk D, and let f assume any values
in [0,∞] on S. Then f is convex. Note that f can have both types of discontinuities along
S, so convexity or concavity places virtually no restrictions on the boundary behavior. In fact,
by taking f to be the indicator of a non-Borel subset of S, convexity by itself does not even
guarantee measurability. □

Given that global continuity on Rn cannot be reasonably be imposed, it seems that global
semicontinuity may be an appropriate regularity condition. And for proper functions it is. How-
ever, for possibly improper functions, a slightly different condition has proven to be appropriate,
namely closedness.

149 Definition A concave function on Rn is closed if one of the following conditions holds.

1. The function is identically +∞.

2. The function is identically −∞.

3. The function is proper and its hypograph is closed in Rn × R.

A convex function is closed if (1), or (2), or

3′. The function is proper and its epigraph is closed in Rn × R.

In light of Theorem 29, it is obvious that:

150 Lemma A proper (extended real-valued) concave function on Rn is closed if and only if
it is upper semicontinuous. A proper convex function on Rn is closed if and only if it is lower
semicontinuous.
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That is, closedness and semicontinuity are equivalent for proper functions. The next example
clarifies the difference between closed and semicontinuous improper functions.

151 Example (Closedness vs. semicontinuity for improper functions) Let C be a
nonempty closed convex set, and define the improper concave function f by

f(x) =

{
+∞ x ∈ C

−∞ x /∈ C.

Then the hypograph of f is a nonempty closed convex set and f is upper semicontinuous, but
f does meet the definition of a closed function (unless C = Rn). □

In fact this is the only kind of upper semicontinuous improper function.

152 Proposition An upper semicontinuous improper concave function has no finite values.
Ditto for a lower semicontinuous improper convex function.

Proof : By Theorem 139, if a concave f has f(x) = +∞, then f(y) = +∞ for all ∈ ri dom f . By
upper semicontinuity, f(y) = +∞ for all y ∈ ri dom f ⊃ dom f . By definition of the effective
domain, f(y) = −∞ for y /∈ dom f . (This shows that dom f is closed.)

There are some subtleties in dealing with closed functions, particularly if you are used to the
conventional approach. For instance, if C is nonempty convex subset of Rn that is not closed,
the conventional approach allows us to define a concave or convex function with domain C,
and undefined elsewhere. Consider the constant function zero on C. It is not a closed function
in the sense I have defined, because its hypograph is not closed. It is closed in C × R, but
not closed in Rn × R. Regarded as a conventional function on C, it is both upper and lower
semicontinuous on C, but regarded as a concave extended real-valued function on Rn, it is not
upper semicontinuous. This is because at a boundary point x, we have lim supy→x = 0 > f(x) =
−∞.

This is not really subtle, but I should point out that a function can be closed without having
a closed effective domain. For example, the logarithm function (extended to be an extended
real-valued concave function) is closed, but has (0,∞) as its effective domain.

You might ask why we don’t want improper semicontinuous functions with nonempty do-
mains to be called closed functions. That is a good question. The answer has to do in part
with another way of defining closed functions. Rockafellar [130, p 52, pp. 307–308] makes
the following definition. Recall from Definition 32 that the upper envelope of f is defined by
f(x) = infε>0 supd(y,x)<ε f(y), and that the upper envelope is real-valued if f is locally bounded,
and is upper semicontinuous.

153 Definition The closure cl f of a concave function f on Rn is defined by

1. cl f(x) = +∞ for all x ∈ Rn if f(y) = +∞ for some y.

2. cl f(x) = −∞ for all x ∈ Rn if f(x) = −∞ for all x.

3. cl f is the upper envelope of f , if f is a proper concave function.

The closure cl f of a convex function f on Rn is defined by

1′. cl f(x) = −∞ for all x ∈ Rn if f(y) = −∞ for some y.

2′. cl f(x) = +∞ for all x ∈ Rn if f(x) = +∞ for all x.

3′. cl f is the lower envelope of f , if f is a proper convex function.
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The next result is a definition in Rockafellar, but a (trivial) theorem using my definition.

154 Proposition A concave (or convex) function is closed if and only if f = cl f .

These contorted definitions are required to make the Proposition 223 (that cl f = f∗∗) hold
for improper as well as proper concave functions.

It is obvious that cl f = − cl(−f). A little less trivial is the following.

155 Proposition If f : Rn → R♯ is concave, then cl f is concave. If f is convex, then cl f is
convex.

Proof : I shall just prove the concave case. If f is concave and does not assume the value +∞,
Theorem 33 asserts that the hypograph of the closure of f is the closure of the hypograph of f ,
which is convex. If f does assume the value +∞, then cl f is identically +∞, so its hypograph
is Rn × R, which is convex. Either way, the hypograph of cl f is convex.

According to Rockafellar [130, p. 53], “the closure operation is a reasonable normalization
which [sic] makes convex functions more regular by redefining their values at certain points
where there are unnatural discontinuities. This is the secret of the great usefulness of the
operation in theory and in applications.” A more useful characterization of the closure is given
in Theorem 170 below. It asserts that for any concave function, its closure is the infimum of all
the continuous affine functions that dominate it. (In finite dimensional spaces, every real linear
functional, and hence every affine function, is automatically continuous.) That is,

cl f(x) = inf{h(x) : h ⩾ f and h is affine and continuous}.

For if f(x) = ∞ for some x, then no affine function dominates f , so cl f(x) = inf ∅ = ∞
everywhere. If f(x) = −∞ everywhere, then cl f(x) = −∞ everywhere as well. The closure of
a convex function is the supremum of the continuous affine functions it dominates,

cl f(x) = inf{h(x) : f ⩾ h and h is affine and continuous}.

If it had been up to me, I would have made this the definition of the closure and closedness of
concave functions.

Implicit in Rockafellar’s remark is that the closure operation only deals with bad behavior
on the boundary of the domain. Indeed we have the following result.

156 Theorem Let f be a proper concave function on Rn. Then cl f is a proper closed concave
function, and f and cl f agree on ri dom f .

See [130, Theorem 7.4, p. 56].

157 Corollary If f is a proper concave or convex function and dom f is affine, then f is closed.

See [130, Corollary 7.4.2, p. 56].

4.8 Separation Theorems
Separating hyperplane theorems are the heart and soul of convex analysis.

Given p ∈ Rn and α ∈ R, let [p ⩾ α] denote the set {x ∈ Rn : p · x ⩾ α}. The sets [p = α],
etc., are defined similarly. A hyperplane in Rn is a set of the form [p = α], where p ̸= 0.3

3In more general linear spaces, a hyperplane is a level set [f = α] of a nonzero real-valued linear function
(or functional, as they are more commonly called). If the linear functional is not continuous, the hyperplane is
dense. If the function is continuous, then the hyperplane is closed. Open and closed half spaces are topologically
open and closed if and only if the functional is continuous.
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The vector p can be thought of as a real-valued linear function on Rn, or as a vector normal
(orthogonal) to the hyperplane at each point. My multiplying p and α by the same nonzero
scalar does not change the hyperplane. Note that a hyperplane is an affine subspace.

A closed half space is a set of the form [p ⩾ α] or [p ⩽ α], while an open open half space
is of the from [p > α] or [p < α]. We say that nonzero p, or the hyperplane [p = α], separates
A and B if either A ⊂ [p ⩾ α] and B ⊂ [p ⩽ α], or B ⊂ [p ⩾ α] and A ⊂ [p ⩽ α]. Let us agree
to write p ·A ⩾ p ·B to mean p · x ⩾ p · y for all x in A and y in B.

Note that if a set A belongs to the hyperplane [p = α], then the half spaces [p ⩽ α] and
[p ⩾ α] separate A from A, so separation by itself is not very interesting. A better notion is
porper separation. Say that nonzero p, or the hyperplane [p = α] properly separates A and
B if it separates them and it is not the case that A ∪ B ⊂ [p = α], that is, if there exists some
x in A and y in B such that p · x ̸= p · y.

Figure 4.2. Strong separation. Figure 4.3. These sets cannot be sep-
arated by a hyperplane.

There are stronger notions of separation. The hyperplane [p = α] strictly separates A and
B if A and B are in disjoint open half spaces, that is, A ⊂ [p > α] and B ⊂ [p < α] (or vice
versa). It strongly separates A and B if A and B are in disjoint closed half spaces. That is,
there is some ε > 0 such that A ⊂ [p ⩾ α+ ε] and B ⊂ [p ⩽ α] (or vice versa). Another way to
state strong separation is that infx∈A p · x > supy∈B p · y (or swap A and B).

158 Lemma Let A and B be nonempty convex subsets of a topological vector space, and let
p be a continuous linear functional. If p properly separates A and B, then it properly separates
riA and riB.

Proof : By Proposition 144, we know that A ⊂ riA and B ⊂ riB and x 7→ p · x is continuous, if
p does not properly separate the relative interiors, that is, if p · riA = p · riB, then p ·A = p ·B,
and the separation of A and B is not proper.

Here are some simple results that are used so commonly that they are worth noting.

159 Exercise Let A and B be disjoint nonempty convex subsets of Rn and suppose nonzero p
in Rn properly separates A and B with p ·A ⩾ p ·B.

1. If A is a linear subspace, then p annihilates A. That is, p · x = 0 for every x in A.

2. If A is a cone, then p · x ⩾ 0 for every x in A.

3. If B is a cone, then p · x ⩽ 0 for every x in B.

4. If A includes a set of the form x+ Rn
++, then p > 0.

5. If B includes a set of the form x− Rn
++, then p > 0.
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□

We now come to what I think of as the main result on separation of convex sets. I prove the
result for Hilbert spaces of arbitrary dimension, since the proof is not much different from the
proof for Rn, although it is true in general locally convex spaces.

Recall that a Hilbert space is a vector space with an inner product that induces a complete
metric via d(x, y) =

√
(x− y) · (x− y) and a norm defined by ∥x∥ = (x · x)1/2, called the

Euclidean metric and norm. Balls in the Euclidean metric are convex. Any vector p defines a
continuous real-valued linear function defined by x 7→ p · x, and conversely: For any continuous
real-valued linear function g on a Hilbert space, there is vector p satisfying g(x) = p · x. The
space Rn is a Hilbert space under its usual inner product. The space ℓ2 of square summable
sequences is an infinite dimensional Hilbert space.

160 Strong Separating Hyperplane Theorem Let K and C be disjoint nonempty convex
subsets of a Hilbert space. Suppose K is compact and C is closed. Then there exists a nonzero
p that strongly separates K and C.

Proof : Define f : K → R by
f(x) = inf{d(x, y) : y ∈ C},

that is f(x) is the distance from x to C. The function f is continuous. To see this, observe
that for any y, the distance d(x′, y) ⩽ d(x′, x) + d(x, y), and d(x, y) ⩽ d(x, x′) + d(x′, y). Thus
|d(x, y) − d(x′, y)| ⩽ d(x, x′), so |f(x)−f(x′)| ⩽ d(x, x′). Thus f is actually Lipschitz continuous.

Since K is compact, f achieves a minimum on K at some point x̄.
I next claim that there is some point ȳ in C such that d(x̄, ȳ) = f(x̄) = inf{d(x̄, y : y ∈ C}.

That is, ȳ achieves the infimum in the definition of f , so the infimum is actually a minimum.
The proof of this is subtler than you might imagine (particularly in an arbitrary Hilbert space).
To see that such a ȳ exists, for each n, let Cn = {y ∈ C : d(x̄, y) ⩽ f(x̄) + 1/n}. Then
each Cn is a nonempty, closed, and convex subset of C, and Cn+1 ⊂ Cn for each n. Moreover
inf{d(x̄, y) : y ∈ Cn} = inf{d(x̄, y) : y ∈ C} = f(x̄), that is, if such a ȳ exists, it must belong to
Cn for every n. I now claim that diamCn = sup{d(y1, y2) : y1, y2 ∈ Cn} → 0 as n → ∞. To see
this, start with the parallelogram identity4

∥x1 + x2∥2 = 2∥x1∥2 − ∥x1 − x2∥2 + 2∥x2∥2.

Now let y1, y2 belong to Cn. The distance from x̄ to the midpoint of the segment joining y1, y2
is given by d(x̄, 1

2y1 + 1
2y2) = ∥ 1

2 (y1 − x̄) + 1
2 (y2 − x̄)∥. Evaluate the parallelogram identity for

xi = 1
2 (yi − x̄) to get

d(x̄, 1
2y1 + 1

2y2)2 = 1
2d(y1, x̄)2 + 1

2d(y2, x̄)2 − 1
4d(y1, y2)2.

so rearranging gives

d(y1, y2)2 = 2
[
d(y1, x̄)2 − d(x̄, 1

2y1 + 1
2y2)2]+ 2

[
d(y2, x̄)2 − d(x̄, 1

2y1 + 1
2y2)2]. (4.1)

4This says that the sum of the squares of the lengths of the diagonals of a parallelogram is equal to the sum of
the squares of the lengths of the sides. (Consider the parallelogram with vertices 0, x1, x2, x1 + x2. Its diagonals
are the segments [0, x1 + x2] and [x1, x2], and their lengths are ∥x1 + x2∥ and ∥x1 − x2∥. It has two sides of
length ∥x1∥ and two of length ∥x2∥.) To prove this, note that

(x1 + x2) · (x1 + x2) = x1 · x1 + 2x1 · x2 + x2 · x2

(x1 − x2) · (x1 − x2) = x1 · x1 − 2x1 · x2 + x2 · x2.

Add these two equations and restate in terms of norms.
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K

C

x̄

ȳ

p = x̄− ȳ

Figure 4.4. Minimum distance and separating hyperplanes.

Now for any point y ∈ Cn, we have f(x̄) ⩽ d(x̄, y) ⩽ f(x̄) + 1/n, so d(x̄, y)2 − f(x̄)2 ⩽(
f(x̄) + 1/n

)2 − f(x̄)2 = 2f(x̄)/n+ 1/n2. Now both y1 and 1
2y1 + 1

2y2 belong to Cn, so∣∣d(y1, x̄)2 − d(x̄, 1
2y1 + 1

2y2)2∣∣ =
∣∣d(y1, x̄)2 − f(x̄)2 −

(
d(x̄, 1

2y1 + 1
2y2)2 − f(x̄)2)∣∣

⩽
∣∣d(y1, x̄)2 − f(x̄)2∣∣+

∣∣d(x̄, 1
2y1 + 1

2y2)2 − f(x̄)2∣∣
⩽ 2

( 2
nf(x̄) + 1

n2

)
,

and similarly for y2. Substituting this in (4.1) gives

d(y1, y2)2 ⩽ 8
( 2

nf(x̄) + 1
n2

)
→ 0 as n → ∞,

so diamCn → 0. In any Hilbert space the Euclidean metric is complete, so by the Cantor
Intersection Theorem 22, the intersection

∩∞
n=1 Cn is a singleton {ȳ}. This ȳ has the desired

property. Whew! (It also follows that ȳ is the unique point satisfying f(x̄) = d(x̄, ȳ), but we
don’t need to know that.) Maybe I should make this a separate lemma.

Put p = x̄ − ȳ. See Figure 4.4. Since K and C are disjoint, we must have p ̸= 0. Then
0 < ∥p∥2 = p · p = p · (x̄− ȳ), so p · x̄ > p · ȳ. What remains to be shown is that p · ȳ ⩾ p · y for
all y ∈ C and p · x̄ ⩽ p · x for all x ∈ K:

So let y belong to C. Since ȳ minimizes the distance (and hence the square of the distance)
to x̄ over C, for any point z = ȳ+ λ(y− ȳ) (with 0 < λ ⩽ 1) on the line segment between y and
ȳ we have

(x̄− z) · (x̄− z) ⩾ (x̄− ȳ) · (x̄− ȳ).

Rewrite this as

0 ⩾ (x̄− ȳ) · (x̄− ȳ) − (x̄− z) · (x̄− z)
= (x̄− ȳ) · (x̄− ȳ) −

(
x̄− ȳ − λ(y − ȳ)

)
·
(
x̄− ȳ − λ(y − ȳ)

)
= (x̄− ȳ) · (x̄− ȳ) − (x̄− ȳ) · (x̄− ȳ) + 2λ(x̄− ȳ) · (y − ȳ) − λ2(y − ȳ) · (y − ȳ)
= 2λ(x̄− ȳ) · (y − ȳ) − λ2(y − ȳ) · (y − ȳ)
= 2λp · (y − ȳ) − λ2(y − ȳ) · (y − ȳ).

Divide by λ > 0 to get
2p · (y − ȳ) − λ(y − ȳ) · (y − ȳ) ⩽ 0.
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Letting λ ↓ 0, we conclude p · ȳ ⩾ p · y.
A similar argument for x ∈ K completes the proof.

This proof is a hybrid of several others. The manipulation in the last series of inequalities
appears in von Neumann and Morgenstern [158, Theorem 16.3, pp. 134–38], and is probably
older. The role of the parallelogram identity in related problems is well known, see for instance,
Hiriart-Urruty and Lemaréchal [76, pp. 41, 46] or Rudin [133, Theorem 12.3, p. 293]. A different
proof for Rn appears in Rockafellar [130, Corollary 11.4.2, p. 99].

Theorem 160 is true in general locally convex spaces, where p is interpreted as a continuous
linear functional and p ·x is replaced by p(x). (But remember, compact sets can be rare in such
spaces.) Roko and I give a proof of the general case in [3, Theorem 5.79, p. 207], or see Dunford
and Schwartz [46, Theorem V.2.10, p. 417].

161 Corollary Let C be a nonempty closed convex subset of a Hilbert space. Assume that the
point x does not belong to C. Then there exists a nonzero p that strongly separates x and C.

162 Definition Let C be a set in a topological vector space and x a point belonging to C. The
nonzero real-valued linear function p supports C at x from below if p ·y ⩾ p ·x for all y ∈ C,
and we may write p ·C ⩾ p · x. We say that p supports C at x from above if p · y ⩽ p · x for
all y ∈ C, and we may write p · x ⩾ p · C. The hyperplane {y : p · y = p · x} is a supporting
hyperplane for C at x. The support is proper if p · y ̸= p · x for some y in C. We may also
say that the half-space {z : p · z ⩾ p · x} supports C at x if p supports C at from below, etc.

163 Lemma If p properly supports the convex set C at x, then the relative interior of C does
not meet the supporting hyperplane. That is, if p · C ⩾ p · x, then p · y > p · x for all y ∈ riC.

Proof : Geometrically, this says that if z is in the hyperplane, and y is on one side, the line
through y and z must go through to the other side. Algebraically, let p properly support C
at x, say p · C ⩾ p · x. Then there exists y ∈ C with p · y > p · x. Let z belong to riC.
By separation p · z ⩾ p · x, so suppose by way of contradiction that p · z = p · x. Since z is
in the relative interior of C, there is some ε > 0 such that z + ε(z − y) belongs to C. Then
p ·
(
z + ε(z − y)

)
= p · x− εp · (x− y) < p · x, a contradiction.

164 Finite Dimensional Supporting Hyperplane Theorem Let C be a convex subset of
Rn and let x̄ belong to C. Then there is a hyperplane properly supporting C at x̄ if and ony if
x̄ /∈ riC.

Proof of Theorem 164: ( =⇒ ) This is just Lemma 163.
(⇐=) Without loss of generality, we can translate C by −x̄, and thus assume x̄ = 0.
Assume 0 /∈ riC. (This implies that C is not a singleton, and also that C ̸= Rn.) Define

A =
∪
λ>0

λ riC.

Clearly ∅ ̸= riC ⊂ A, 0 /∈ A but 0 ∈ A, and A is a deleted cone. More importantly, A is convex
(cf. Exercise 129), and A lies in the span of riC (cf. Proposition 144).

Since Rn is finite dimensional there exists a finite maximal collection of linearly independent
vectors v1, . . . , vk that lie in riC. Since riC contains at least one nonzero point, we have k ⩾ 1.
Let v =

∑k
i=1 vi, and note that (1/k)v belongs to riC. I claim that −v /∈ A.

To see this, assume by way of contradiction that −v belongs to A. Thus, there exists a
sequence {xn} in A satisfying xn → −v. Since v1, . . . , vk is a maximal independent set, we must
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be able to write xn =
∑k

i=1 λ
n
i vi. By Corollary 49, λn

i −−−−→
n→∞

−1 for each i. In particular, for
some n we have λn

i < 0 for each i. Now if for this n we let λ =
∑p

i=1 λ
n
i < 0, then

0 = 1
1−λxn +

m∑
i=1

(
− λn

i

1−λ

)
vi ∈ A, as A is convex,

which is a contradiction. Hence −v /∈ A.
Now by Corollary 161 there exists some nonzero p strongly separating −v from A. That is,

p · (−v) < p · y for all y ∈ A. Moreover, since A is a cone, p · y ⩾ 0 = p · 0 for all y ∈ A, and
p · (−v) < 0 (Exercise 159). Thus p supports A ⊃ C at 0. Moreover, p · (1/k)v > 0, so p properly
supports C at 0.

The next theorem yields only proper separation but requires only that the sets in question
have disjoint relative interiors. In particular it applies whenever the sets themselves are disjoint.
It is a strictly finite-dimensional result.

165 Finite Dimensional Separating Hyperplane Theorem Two nonempty convex sub-
sets of Rn can be properly separated by a hyperplane if and only their relative interiors are
disjoint.

Proof : (⇐=) Let A and B be nonempty convex subsets of Rn with riA ∩ riB = ∅. Put
C = A − B. By Proposition 146 riC = riA − riB, so 0 /∈ riC. It suffices to show that there
exists some nonzero p ∈ Rn satisfying p · x ⩾ 0 for all x ∈ C, and p · y > 0 for some y ∈ C. If
0 /∈ C, this follows from Corollary 161. If 0 ∈ C, it follows from Theorem 164.

( =⇒ ) If p properly separates A and B, then the same argument used in the proof of
Theorem 164 shows that riA ∩ riB = ∅.

Now I’ll state without proof some general theorems that apply in infinite dimensional spaces.

166 Infinite Dimensional Supporting Hyperplane Theorem If C is a convex set with
nonempty interior in a topological vector space, and x is a boundary point of C, then there is a
nonzero continuous linear functional properly supporting C at x.

For a proof see [3, Lemma 7.7, p. 259]. Properness of the support is not shown there, but
it isi easy to verify. If the set has an empty interior, then it may fail to have supporting closed
hyperplanes at boundary points. For example, in ℓ1, the positive cone cannot be supported by
a continuous linear functional at any strictly positive sequence, see [3, Example 7.8, p. 259]. In
Banach spaces however we have the following result, the proof of which is in [3, Theorem 7.43,
p. 284].

167 Bishop–Phelps Theorem Let C be a nonempty closed convex subset of a Banach space.
Then the set of points at which C is supported by a nonzero continuous linear functional is dense
in the boundary of C.

Finally, Theorem 166 can be used to prove the following.

168 Infinite Dimensional Separating Hyperplane Theorem Two disjoint nonempty
convex subsets of a topological vector space can be properly separated by a closed hyperplane (or
continuous linear functional) if one of them has a nonempty interior.

As an application we have the following result due to Fan, Glicksberg, and Hoffman [50].
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169 Concave Alternative Theorem Let C be a nonempty convex subset of a vector space,
and let f1, . . . , fm : C → R be concave. Letting f = (f1, . . . , fm) : C → Rm, exactly one of the
following is true.

∃x̄ ∈ C f(x̄) ≫ 0. (4.2)

Or (exclusive),
∃p > 0 ∀x ∈ C p · f(x) ⩽ 0. (4.3)

Proof : Clearly both cannot be true. Suppose (4.2) fails. Set

H = {f(x) : x ∈ C} and set Ĥ = {y ∈ Rm : ∃x ∈ C y ≦ f(x)}.

Since (4.2) fails, we see that H and Rm
++ are disjoint. Consequently Ĥ and Rm

++ are disjoint.
Now observe that Ĥ is convex. To see this, suppose y1, y2 ∈ Ĥ. Then yi ≦ f(xi), i = 1, 2.
Therefore, for any λ ∈ (0, 1),

λy1 + (1 − λ)y2 ≦ λf(x1) + (1 − λ)f(x2) ≦ f
(
λx1 + (1 − λ)x2),

since each f j is concave. Therefore λy1 + (1 − λ)y2 ∈ Ĥ.
Thus, by the Separating Hyperplane Theorem 165, there is a nonzero vector p ∈ Rm properly

separating Ĥ and Rm
++. We may assume

p · Ĥ ⩽ p · Rm
++. (4.4)

By Exercise 159, p > 0. Evaluating (4.4) at z = ε1 for ε > 0, we get p · y ⩽ εp · 1. Since ε may
be taken arbitrarily small, we conclude that p · y ⩽ 0 for all y in Ĥ. In particular, p · f(x) ⩽ 0
for all x in C.

4.9 Hyperplanes in Rn × R and affine functions
Sometimes it is useful to think of the Euclidean space Rn+1 as the product Rn×R. For instance,
if f : Rn → R, it is natural to view the graph as a subset of the domain × range, Rn × R. I
will refer to a typical element in Rn × R as a point (x, α) where x ∈ Rn and α ∈ R. I may
call x the “vector component” and α the “real component,” even when n = 1. A hyperplane in
Rn × R is defined in terms of its normal vector (p, λ). If the real component λ = 0, we say the
hyperplane is vertical. If the hyperplane is not vertical, by homogeneity we can arrange for λ
to be −1 (you will see why in just a moment).

Non-vertical hyperplanes in Rn × R are precisely the graphs of affine functions on Rn. That
is,

gr
(
x 7→ p · x− β

)
= the non-vertical hyperplane

{
(x, α) ∈ Rn × R : (p,−1) · (x, α) = β

}
.

And the non-vertical hyperplane{
(x, α) ∈ Rn × R : (p, λ) · (x, α) = β

}
where λ ̸= 0 = gr

(
x 7→ −(1/λ)p · x+ β/λ

)
.

4.10 Closed functions revisited
In this section, we give a more useful characterization of the closure of a concave (or convex)
function. Recall that the real-valued function g dominates the real-valued function f on X,
written g ⩾ f , if for every x ∈ X we have g(x) ⩾ f(x).
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170 Theorem Let f : Rn → R♯ be concave (not necessarily proper). Then for every x ∈ Rn,

cl f(x) = inf{h(x) : h ⩾ f and h is affine and continuous}.

If f : Rn → R♯ is convex, then for every x ∈ Rn,

cl f(x) = sup{h(x) : f ⩾ h and h is affine and continuous}.

Proof : I shall prove the concave case. There are three subcases. If f is improper and assumes
the value +∞, then by definition cl f is the constant function +∞. In this case, no affine
function, which is (finite) real-valued, dominates f so the infimum is over the empty set, and
thus +∞. The second subcase is that f is the improper constant function −∞. In this case
every affine function dominates f , so the infimum is −∞.

So assume we are in the third subcase, namely that f is proper. That is, f(x) < ∞ for all
x ∈ Rn, and dom f is nonempty. Then by definition cl f is the upper envelope of f . That is,

cl f(x) = inf
ε>0

sup
d(y,x)<ε

f(y).

Define g(x) = inf{h(x) : h ⩾ f and h is affine and continuous}. If h is affine, continuous, and
dominates f , then by Theorem 33, h dominates cl f , so g dominates cl f .

We now show that cl f ⩾ g. It suffices to show that for any (x, α) with α > cl f(x), there is
an affine function h dominating f with h(x) ⩽ α. Now α > cl f(x) = lim supy→x f(y) implies
that (x, α) does not belong to the closure of the hypograph of f .

There are two cases to consider. The simpler case is that x belongs to dom f . So assume
now that x ∈ dom f . Since f is concave, its hypograph and the closure thereof are convex,
and since f is proper, its hypograph is nonempty. So by Corollary 161 there is a nonzero
(p, λ) ∈ Rn ×R strongly separating (x, α) from the closure of the hypograph of f . In particular,
for each y ∈ dom f the point

(
y, f(y)

)
belongs to the hypograph of f . Thus strong separation

implies that for some ε > 0, for any y ∈ dom f ,

p · x+ λα > p · y + λf(y) + ε. (4.5)

The same argument as that in the proof of Theorem 186 shows that λ ⩾ 0. Moreover, takingTheorem 186 comes
later!

y = x (since x ∈ dom f) shows that λ ̸= 0. So dividing by λ gives

(1/λ)p · (x− y) + α > f(y) + (ε/λ)

for all y ∈ dom f . Define
h(y) = (1/λ)p · (x− y) + α.

Then h is a continuous affine function satisfying

h(y) > f(y) + η for all y ∈ dom f,

where η = (ε/λ) > 0 and h(x) = α, as desired.
The case where (x, α) satisfies α > cl f(x), but x /∈ dom f is more subtle. The reason the

above argument does not work is that the hyperplane may be vertical (λ = 0), and hence not
the graph of any affine function. So assume that λ = 0. Then (4.5) becomes

p · x > p · y + ε

for all y ∈ dom f . Define the continuous affine function g by

g(y) = p · (x− y) − ε/2,

and note that g(x) < 0, and g(y) > 0 for all y ∈ dom f .
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But we still have (from the above argument) a continuous affine function h satisfying

h(y) > f(y) for all y ∈ dom f.

Now for any γ > 0, we have

γg(y) + h(y) > f(y) for all y ∈ dom f,

and for y /∈ dom f , f(y) = −∞, so the inequality holds for all y in Rn. But since g(x) < 0, for
γ large enough, γg(x) + h(x) < α, so this is the affine function we wanted.

I think that covers all the bases (and cases).
The case of a convex function is dealt with by replacing the epigraph with the hypograph

and reversing inequalities.

In light of Lemma 150, we have the following.

171 Corollary An upper semicontinuous proper concave function is the pointwise infimum of
the continuous affine functions that dominate it.

A lower semicontinuous proper convex function is the pointwise supremum of the continuous
affine functions that it dominates.

4.11 Sublinear functions
172 Definition A function f from a (possibly deleted) convex cone C in a real vector space
into R♯ is

positively homogeneous (of degree 1) if for every vector x ∈ C and every real λ > 0,

f(λx) = λf(x).

subadditive if for all vectors x and y in C,

f(x+ y) ⩽ f(x) + f(y).

superadditive if for all vectors x and y in C,

f(x+ y) ⩾ f(x) + f(y).

sublinear if it is both positively homogeneous and subadditive.

By these definitions we ought to say that f is superlinear if it is both positively homogeneous
and superadditive, but no one does. Note that for a positively homogeneous fuction, since λ0 = 0
for all real λ we must have f(0) = 0 or f(0) is infinite.

173 Exercise A positively homogeneous function is subadditive if and only it is convex. It is
superadditive if and only if it concave.

The hypograph of a positively homogeneous concave function is (possibly deleted) convex
cone. The epigraph of a sublinear (positively homogeneous convex) function is (possibly deleted)
convex cone. □
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4.12 Support functions
The Separating Hyperplane Theorem 160 is the basis for a number of results concerning closed
convex sets. Given any set A in Rn its closed convex hull, denoted coA, is the intersection
of all closed convex sets that include A. That is,

coA =
∩

{C : A ⊂ C and C is closed and convex}.

It is of course the smallest closed convex set that includes A. If A is empty, then it is closed and
convex, so coA is empty. If A is nonempty, then coA is nonempty since Rn itself is closed and
convex. Less obvious is the following.

174 Theorem Let A be a subset of Rn. Then

coA =
∩

{H : A ⊂ H and H is a closed half space}.

In particular, a closed convex set is the intersection of all the closed half spaces that include it.

Proof : Clearly coA is included in the intersection since every closed half space is also a closed
convex set. It is also clear that the result is true for A = ∅. So assume A, and hence coA, is
nonempty.

It suffices to show that if x /∈ coA, then there is a closed half space that includes coA
but does not contain x. By the Separating Hyperplane Theorem 160 there is a nonzero p that
strongly separates the closed convex set coA from the compact convex set {x}. But this clearly
implies that there is a closed half space of the form [p ⩾ α] that includes coA, but doesn’t
contain x.

The support function µA of a set A is a handy way to summarize all the closed half spaces
that included A. It is defined by5

µA(p) = inf{p · x : x ∈ A}.

We allow for the case that µA(p) = −∞. Note that µ∅ is the improper concave function +∞.
Also note that the infimum may not actually be attained even if it is finite. For instance,
consider the closed convex set A = {(x, y) ∈ R2

++ : xy ⩾ 1}, and let p = (0, 1). Then µA(p) = 0
even though p · (x, y) = y > 0 for all (x, y) ∈ A. If A is compact, then of course µA is always
finite, and there is some point in A where the infimum is actually a minimum.

Theorem 174 immediately implies yields the following description of coA in terms of µA.

175 Theorem For any set A in Rn,

coA = {x ∈ Rn : ∀p ∈ Rn p · x ⩾ µA(p)}.

Moreover, µA = µco A.

Proof : Observe that

C := {x ∈ Rn : ∀p ∈ Rn p · x ⩾ µA(p)} =
∩{

[p ⩾ µA(p)] : p ∈ Rn}
is an intersection of closed half spaces. By definition, if x ∈ A, then p · x ⩾ µA(p), that is,
A ⊂ [p ⩾ µA(p)]. Thus by Theorem 174, coA ⊂ C.

For the reverse inclusion, suppose x /∈ coA. By the Separating Hyperplane Theorem 160
there is a nonzero p such coA ⊂ [p ⩾ α] and p ·x < α. Since A ⊂ coA we have µA(p) = inf{p ·x :
x ∈ A} > p · x, so x /∈ C.

To see that µA = µco A first note that µA ⩾ µco A since A ⊂ coA. The first part of the
theorem implies µco A ⩾ µA.

5Fenchel [51] and Roko and I [3, p. 288] define hA(p) = sup{p · x : x ∈ A}, which makes it convex rather than
concave, and hA(p) = −µA(−p). The definition in these notes follows Mas-Colell, Whinston, and Green [108],
and may be more useful to economists.
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176 Lemma The support function µA is concave and positively homogeneous of degree 1, that
is, µA(λp) = λµA(p) for all p and all λ ⩾ 0.

Proof : Each x defines a linear (and therefore concave) function ℓx via ℓx : p 7→ p · x. Thus by
Exercise 135 (4), µA = infx∈A ℓx is concave. Homogeneity is obvious.

The next result is the concave version of Rockafellar’s [130, p. 114] Corollary 13.2.1.

177 Theorem Let f be a positively homogeneous concave function on Rn. Then the closure
of f is the support function µC of the closed convex set C = {p : ∀y p · y ⩾ f(y)}.

Proof : If f(x) = ∞ for some x, then cl f is identically ∞, and so is µC , as C is empty. If f is
identically −∞, so is cl f , and so is µC as C = Rn. This leaves the case where f is proper, so
f(x) is finite for some x.

By Theorem 170, cl f(x) = inf{g(x) : g ⩾ f, g affine}, and by definition, µC(x) = inf{p · x :
∀y p · y ⩾ f(y)}. Since p : y 7→ p · y is affine, it suffices to prove that if the affine function
g : y 7→ p · y + α dominates f , then the linear function p : y 7→ p · y satisfies g ⩾ p ⩾ f .

Since g dominates f , and f(x) is finite, we have g(λx) ⩾ f(λx) = λf(x) for all λ > 0. Letting
λ ↓ 0 we have α = limλ↓0 g(λx) ⩾ limλ↓0 λf(x) = 0, so α ⩾ 0. That is g ⩾ p. Moreover, for all
y we have λp · y + α = g(λy) ⩾ f(λy) = λf(y), so dividing by λ > 0 gives p · x+ (α/λ) ⩾ f(x),
for all y. Letting λ → ∞, we must have p · y ⩾ f(y) for all y. That is, p ⩾ f .

This shows that cl f = µC .

4.13 The superdifferential of a concave function
There is a useful way to characterize the concavity of differentiable functions.

178 Theorem (Concave functions lie below tangent lines) Suppose f is concave on a
convex neighborhood C ⊂ Rn of x, and differentiable at x. Then for every y in C,

f(x) + f ′(x) · (y − x) ⩾ f(y). (4.6)

Proof : Let y ∈ C. Rewrite the definition of concavity as

f
(
x+ λ(y − x)

)
⩾ f(x) + λ

(
f(y) − f(x)

)
.

Rearranging and dividing by λ > 0,

f
(
x+ λ(y − x)

)
− f(x)

λ
⩾ f(y) − f(x).

Letting λ ↓ 0, the left hand side converges to f ′(x) · (y − x).

The converse is true as the following clever argument shows.

179 Theorem Let f be differentiable on a convex open set U ⊂ Rn. Suppose that for every x
and y in C, we have f(x) + f ′(x) · (y − x) ⩾ f(y). Then f is concave.

Proof : For each x ∈ C, define the function hx by hx(y) = f(x) + f ′(x) · (y − x). Each hx is
concave, f ⩽ hx for each x, and f(x) = hx(x). Thus

f = inf
x∈C

hx,

so by Exercise 135 (4), f is concave.
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Theorem 237 below provides a powerful generalization of this result.

180 Definition Let f : Rn → R be concave. A vector p is a supergradient of f at the point
x if for every y it satisfies the supergradient inequality,

f(x) + p · (y − x) ⩾ f(y).

Similarly, if f is convex, then p is a subgradient of f at x if

f(x) + p · (y − x) ⩽ f(y)

for every y.
For concave f , the set of all supergradients of f at x is called the superdifferential of

f at x, and is denoted ∂f(x). If the superdifferential is nonempty at x, we say that f is
superdifferentiable at x. For convex f the same symbol ∂f(x) denotes the set of subgradients
and is called the subdifferential. If it is nonempty we say that f is subdifferentiable.6

There is an equivalent geometric interpretation of the super/subgradients.

181 Lemma If f is concave and f(x) is finite, the vector p is a supergradient of f at x if and
only if (p,−1) supports the hypograph of f at

(
x, f(x)

)
from below, that is

(p,−1) ·
(
x, f(x)

)
⩽ (p,−1)(y, α) for all (y, α) ∈ hypo f.

The vector p is a subgradient of the convex function f at x if and only if (p,−1) supports
the epigraph of f at

(
x, f(x)

)
from above, that is

(p,−1) ·
(
x, f(x)

)
⩾ (p,−1)(y, α) for all (y, α) ∈ epi f.

N.B. If (p,−1) supports the hypograph of f from below, the supporting hyperplane lies
above the hypograph in the usual sense. The word “below” refers to the fact that the number
(p,−1)·

(
x, f(x)

)
lies below the numbers (p,−1)(y, α). Similarly, if (p,−1) supports the epigraph

of f from above, the supporting hyperplane lies below the epigraph.

Proof : I demonstrate only the concave case.
( =⇒ ) Assume that p is a supergradient and let α ⩽ f(y). Then f(x)+p·(y−x) ⩾ f(y) ⩾ α.

Multiplying by −1 and rearranging this yields

p · x− f(x) ⩽ p · y − α,

or
(p,−1) ·

(
x, f(x)

)
⩽ (p,−1) · (y, α) whenever f(y) ⩾ α.

That is, (p,−1) supports the hypograph of f at
(
x, f(x)

)
from below.

(⇐=) This follows by reversing the steps above.

Here are some simple results.

182 Lemma If a concave function f is superdifferentiable at a point x with f(x) finite, then f
is proper.

Proof : If f(x) is finite and f is superdifferentiable at x, the supergraient inequality implies that
f does not assume the value +∞. The effective domain contains x, so f is indeed proper.

6Rockafellar [130, p. 308] suggests this terminology as being more appropriate than the terminology he ac-
tually uses, so I shall use it. He uses the term subgradient to mean both subgradient and supergradient, and
subdifferential to mean both subdifferential and superdifferential.
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183 Lemma For a proper concave function f , if x does not belong to dom f , then f is not
superdifferentiable at x.

Proof : If x /∈ dom f , so that f(x) = −∞ and y ∈ dom f , then no p can satisfy the supergradient
inequality.

The definition is potentially inconsistent for affine functions, which are both concave and
convex, but it isn’t thanks to the following result.

184 Lemma The affine function f(x) = p · x+α satisfies ∂f(x) = {p}, whether f is viewed as
concave or convex.

Proof : Clearly p satisfies both the supergradient and subgradient inequalities. Now suppose q
satisfies the supergradient inequality p · x+ α+ q · (y − x) ⩾ p · y + α for all y. Pick any v and
set y = x+ v and conclude q · v ⩾ p · v, and do the same for −v. This shows that (p− q) · v = 0
for all v, so q = p. Thus p is the unique solution of the supergradient inequality. Ditto for the
subgradient inequality.

It is clear that if f is either concave or convex, then

∂(−f)(x) = −∂f(x),

where ∂ indicates the superdifferential when preceding a concave function and the subdifferential
when preceding a convex function.

Theorem 178 clearly implies that the gradient of a concave function at a point of differen-
tiability is also a supergradient. The gradient of a convex function at a point of differentia-
bility is also a subgradient. In fact, if ∂f(x) is a singleton, then f is differentiable at x and
∂f(x) = {f ′(x)}, see Theorem 219 below.

185 Lemma The superdifferential of a concave function (or the subdifferential of a convex
function) at a point is a (possibly empty) closed convex set.

Proof : This is immediate since it is the set of solutions to a system of weak linear inequalities,
one for each y.

Concave functions are superdifferentiable at relative interior points.

186 Theorem (Superdifferentiability) A proper concave (or convex) function on Rn is
superdifferentiable at each point of the relative interior of its effective domain.

Proof : Let f be a proper concave function, and let x belong to ri dom f . Observe that
(
x, f(x)

)
belongs to the hypograph of f , but not to its relative interior. Since the hypograph is convex, the
Supporting Hyperplane Theorem 164 asserts that there is a nonzero (p, λ) ∈ Rn × R properly
supporting the hypograph at

(
x, f(x)

)
from below. That is,

p · x+ λf(x) ⩽ p · y + λα for all y ∈ dom f and all α ⩽ f(y). (4.7)

I claim that λ < 0: By considering very negative values of α, we conclude that λ ⩽ 0. Suppose
momentarily that λ = 0. Since x belongs to the relative interior of dom f , for any z in dom f
there is some ε > 0 such that x± ε(x− z) belong to dom f . Then (4.7) (with y = x± ε(x− z))
implies p · (x − z) = 0. Thus (p, 0) · (z, α) = (p, 0) ·

(
x, f(x)

)
for all (z, α) ∈ hypo f . But this

contradicts the properness of the support at
(
x, f(x)

)
. Therefore λ < 0.

Dividing (p, λ) by −λ > 0 implies that
(
(−1/λ)p,−1

)
also supports the hypograph from

below, so (−1/λ)p is a supergradient by Lemma 181.
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Non-superdifferentiability can however occur on the boundary of the domain.

187 Example (A non-superdifferentiable point) Define f : [0, 1] → [0, 1] by f(x) = x
1
2 .

Then f is clearly concave, but ∂f(0) = ∅, since the supergradient inequality implies p · x ⩾
f(x) − f(0) = x

1
2 , so p ⩾ ( 1

x ) 1
2 for all 0 < x ⩽ 1. Clearly no real number p fills the bill. □

Following Fenchel [51] and Rockafellar [130], define the one-sided directional derivative

f ′(x; v) = lim
λ↓0

f(x+ λv) − f(x)
λ

,

allowing the values ∞ and −∞. (Phelps [125] uses the notation d+(x)(v).)
In Example 187, f ′(0, 1) = ∞, that is, the graph of the function becomes arbitrarily steep

as we approach the boundary. This is the only way superdifferentiability fails. I prove it in
Corollary 216 below.

4.14 Maxima of concave functions
Talk about minima as
well. An interior
minimum implies
constancy.

Concave functions have two important properties. One is that any local maximum is a global
maximum. The other is that first order conditions are sufficient as well as necessary for a
maximum.

188 Theorem (Concave local maxima are global) Let f : C → R be a concave function
(C convex). If x∗ is a local maximizer of f , then it is a global maximizer of f over C.

Proof : Let x belong to C. Then for small λ > 0, f(x∗) ⩾ f
(
λx + (1 − λ)x∗). (Why?) By the

definition of concavity,

f
(
λx+ (1 − λ)x∗) ⩾ λf(x) + (1 − λ)f(x∗).

Thus f(x∗) ⩾ λf(x) + (1 − λ)f(x∗), which implies f(x∗) ⩾ f(x).

189 Corollary If f is strictly concave, a local maximum is a strict global maximum.

190 Theorem (First order conditions for concave functions) Suppose f is concave on
a convex set C ⊂ Rn. A point x∗ in C is a global maximum point of f if and only 0 belongs to
the superdifferential ∂f(x∗).

Proof : Note that x∗ is a global maximum point of f if and only if

f(x∗) + 0 · (y − x∗) ⩾ f(y)

for all y in C, but this is just the supergradient inequality for 0.

In particular, this result shows that f is superdifferentiable at any maximum point, even if
it is not an interior point. The next result is immediate.

191 Corollary Suppose f is concave on a convex neighborhood C ⊂ Rn of x∗, and differen-
tiable at x∗. If f ′(x∗) = 0, then f has a global maximum over C at x∗.

Note that the conclusion of Theorem 188 does not hold for quasiconcave functions. For
instance,

f(x) =

{
0 x ⩽ 0

x x ⩾ 0,
has a local maximum at −1, but it is not a global maximum over R. However, if f is explicitly
quasiconcave, then we have the following.Oops! explicit

quasiconcavity is
defined later.
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192 Theorem (Local maxima of explicitly quasiconcave functions) Let f : C → R be
an explicitly quasiconcave function (C convex). If x∗ is a local maximizer of f , then it is a global
maximizer of f over C.

Proof : Let x belong to C and suppose f(x) > f(x∗). Then by the definition of explicit quasi-
concavity, for any 1 > λ > 0, f

(
λx+ (1 − λ)x∗) > f(x∗). Since λx+ (1 − λ)x∗ → x∗ as λ → 0

this contradicts the fact that f has a local maximum at x∗.

4.15 Supergradient of a support function
**************

If the infimum of p is actually achieved at a point in A, we can say more. By Theorem 175
we might as well assume that A is closed and convex.

193 Theorem Let C be a closed convex set. Then x is a supergradient of the support function
µC at p if and only if x belongs to C and minimizes p over C. In other words,

∂µC(p) = {x ∈ C : p · x = µC(p)}.

Proof : Recall that the supergradient inequality for this case is

µC(p) + x · (q − p) ⩾ µC(q) for all q.

(=⇒) I first claim that if x does not belong to C, it is not a supergradient of µC at p.
For if x /∈ C, then by Theorem 175 there is some q for which q · x < µC(q). Thus for λ > 0
large enough, λq · x < µC(λq) +

(
p · x − µC(p)

)
. Rearranging terms violates the supergradient

inequality applied to λq. Therefore, by contraposition, if x is a supergradient of the support
function µC at p, then x belongs to C.

So let x be a supergradient of µC at p. Setting q = 0 in the supergradient inequality, we
conclude that µC(p) ⩾ p · x. But x belongs to C, so x minimizes p over C, and µC(p) = p · x.

In other words, ∂µC(p) ⊂ {x ∈ C : p · x = µC(p)}
(⇐=) Suppose now that x belongs to C and p ·x = µC(p), that is, x minimizes p over C. By

the definition of µC , for any q ∈ Rn, q · x ⩾ µC(q). Now add µC(p) − p · x = 0 to the left-hand
side of the inequality to obtain the supergradient inequality.

Thus {x ∈ C : p · x = µC(p)} ⊂ ∂µC(p), completing the proof.

194 Corollary Let C be a closed convex set. Suppose x belongs to C and strictly minimizes p
over C. Then µC is differentiable at p and

µ′
C(p) = x.

Proof : This follows from Theorem 193 and Theorem 219.

195 Example Let’s look at C = {(x1, x2) ∈ R2
++ : x1x2 ⩾ 1}. This is a closed convex set and

its support function is easily calculated. If p /∈ R2
+, then µC(p) = −∞. For p ≧ 0, it not hard

to see that µC(p) = 2√
p1p2, which has no supergradient when p1 = 0 or p2 = 0.

(To see this, consider first the case p ≧ 0. The Lagrangean for the minimization problem is
p1x1 + p2x2 + λ(1 − x1x2). By the Lagrange Multiplier Theorem 270, the first order conditions
are p1 − λx∗

1 = 0 and p2 − λx∗
2 = 0. Thus x∗

1x
∗
2 = p1p2

λ2 , so λ = √
p1p2. Thus x∗

1 =
√

p1
p2

and

x∗
2 =

√
p2
p1

and µC(p) = p1x
∗
1 + p2x

∗
2 = 2√

p1p2.
Now suppose some pi < 0. For instance, suppose p2 < 0. Then p · (ε, 1

ε ) → −∞ as ε → 0, so
µC(p) = −∞.) □
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4.16 Concavity and continuity
We shall see in a moment that concave functions on Rn are continuous at interior points. The
only discontinuities can be jumps downward at the boundary of the domain. This is not true
for infinite dimensional domains, as witnessed by Example 52. However the next result is true
in general topological vector spaces.

196 Theorem (Local continuity of convex functions) If a convex function is defined
and bounded above on a neighborhood of some point in a topological vector space, then it is
continuous at that point.

Proof : Let C be a convex set in a tvs, and let f : C → R be convex. We begin by noting the
following consequences of convexity. Fix x ∈ C and suppose z satisfies x+ z ∈ C and x− z ∈ C.
Let δ ∈ [0, 1]. Then x + δz = (1 − δ)x + δ(x + z), so f(x + δz) ⩽ (1 − δ)f(x) + δf(x + z).
Rearranging terms yields

f(x+ δz) − f(x) ⩽ δ [f(x+ z) − f(x)] , (4.8)

and replacing z by −z gives

f(x− δz) − f(x) ⩽ δ [f(x− z) − f(x)] . (4.9)

Also, since x = 1
2 (x+ δz) + 1

2 (x− δz), we have f(x) ⩽ 1
2f(x+ δz) + 1

2f(x− δz). Multiplying by
two and rearranging terms we obtain

f(x) − f(x+ δz) ⩽ f(x− δz) − f(x). (4.10)

Combining (4.9) and (4.10) yields

f(x) − f(x+ δz) ⩽ f(x− δz) − f(x) ⩽ δ [f(x− z) − f(x)] .

This combined with (4.8) implies∣∣f(x+ δz) − f(x)
∣∣ ⩽ δmax

{
f(x+ z) − f(x), f(x− z) − f(x)

}
. (4.11)

Now let ε > 0 be given. Since f is bounded above on an open neighborhood of x, there
is a neighborhood V of zero, and a constant M ⩾ 0 such that x + V ⊂ C and if y ∈ x + V ,
then f(y) < f(x) + M . Choosing 0 < δ ⩽ 1 so that δM < ε, equation (4.11) implies that if
y ∈ x+ δV , then |f(y) − f(x)| < ε. Thus f is continuous at x.

197 Theorem (Global continuity of convex functions) Let f be a convex function on
an open convex set C in a topological vector space. The following are equivalent.

1. f is continuous on C.

2. f is upper semicontinuous on C.

3. f is bounded above on a neighborhood of some point in C.

4. f is continuous at some point in C.

Proof : (1) =⇒ (2) Obvious.
(2) =⇒ (3) If f is upper semicontinuous and convex, then {y ∈ C : f(y) < f(x) + 1} is a

convex open neighborhood of x on which f is bounded.
(3) =⇒ (4) This is Theorem 196.
(4) =⇒ (1) Suppose f is continuous at x, and let y be any other point in C. Since scalar

multiplication is continuous, {β ∈ R : x + β(y − x) ∈ C} includes an open neighborhood of 1.
This implies that there is some point z in C such that y = λx+ (1 − λ)z with 0 < λ < 1.
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xy
z x+ V

y + λV

Figure 4.5. (4) =⇒ (1).

Also, since f is continuous at x, there is a circled neighborhood V of zero such that x+V ⊂ C
and f is bounded above on x+ V , say by M . We claim that f is bounded above on y+ λV . To
see this, let v ∈ V . Then y + λv = λ(x+ v) + (1 − λ)z ∈ C. The convexity of f thus implies

f(y + λv) ⩽ λf(x+ v) + (1 − λ)f(z) ⩽ λM + (1 − λ)f(z).

That is, f is bounded above by λM + (1 − λ)f(z) on y+ λV . By Theorem 196, f is continuous
at y.

198 Theorem In a finite dimensional vector space, every convex function is continuous on the
relative interior of its domain.

Proof : Without loss of generality, we may translate the domain so its affine hull is a linear
space, say Rn. Let f : C → R be a convex function defined on a convex subset C of Rn, and
let x be an relative interior point of C. Then there exist a, b ∈ C with a < b such that the box
[a, b] = {y ∈ Rn : a ≤ y ≤ b} is a neighborhood of x and satisfies [a, b] ⊂ C. Now [a, b] is the
convex hull of the 2n vertexes v of the form vi ∈ {ai, bi}, i = 1, . . . , n. Any point y ∈ [a, b] can be
written as a convex combination y =

∑2n

j=1 λjv
j , where the vjs are vertexes. The convexity of f

implies that f(y) ⩽
∑2n

j=1 λjf(vj), which is bounded above by maxj f(vj). So by Theorem 197,
f is continuous at x.

4.17 Concavity and differentiability in one variable
We now examine the differentiability of concave functions. We start with the following simple,
but fundamental, result for concave functions of one variable, cf. Fenchel [51, 2.16, p. 69],
Phelps [125, Theorem 1.16, pp. 9–11], or Royden [132, Proposition 5.17, p. 113].

199 Lemma Let f be a real-valued function defined on some interval I of R. If f is concave,
then for every x < y < z in I,

f(y) − f(x)
y − x

⩾ f(z) − f(x)
z − x

⩾ f(z) − f(y)
z − y

.

Conversely, if one of the (three) inequalities is satisfied for every x < y < z in I, then f is
concave.

Equivalently,

f(z) − f(x)
z − x

is decreasing in both x and z over {(x, z) : x < z} if and only f is concave.

200 Exercise Prove Lemma 199. □
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You may find this written in the following form:

201 Corollary Let f be a real-valued function defined on some interval I of R. Then f is
concave if and only if for every x1 < y1 and x2 < y2 in I, with x1 ⩽ x1 and y1 ⩽ y2 (that is, the
interval [x2, y2] lies to the right of [x1, y1]),

f(y1) − f(x1)
y1 − x1

⩾ f(y2) − f(x1)
y2 − x1

⩾ f(y2) − f(x2)
y2 − x2

.

Proof : Apply Lemma 199 to the case x1 < y1 < y2 and x1 < x2 < y2. (The cases x1 = x2 or
y1 = y2 are trivial.)

202 Corollary Let f be a real-valued function defined on some interval I of R. If f is concave,
then the second difference function satisfies

∆2
v,wf(x)vw ⩽ 0

whenever it is defined.

203 Exercise Prove Corollary 202. □

Lemma 199 has a number of consequences.Moreover the converse
is also true.
Finally a consequence is
that f is twice
differentiable a.e., as a
decreasing function is
differentiable almost
everywhere.

204 Corollary Let f be a concave function defined on some interval I of R. Then at every
interior point x, f is continuous, and has a (finite) left-hand derivative f ′(x−) and (finite)
right-hand derivative f ′(x+). Moreover, f ′(x−) ⩾ f ′(x+), and both f ′(x−) and f ′(x+) are
nonincreasing functions. Consequently, there are at most countably many points where f ′(x−) >
f ′(x+), that is, where f is nondifferentiable. Furthermore f ′(x+) is lower semicontinuous and
f ′(x−) is upper semicontinuous, so on the set where f ′(x) exists it is continuous.

Proof : ********************************

4.18 A digression on mid-concavity
A function f is called mid-concave if f( 1

2 x + 1
2 y) ⩾ 1

2 f(x) + 1
2 f(y) for all points x and y in its domain.

Mid-concavity does not imply concavity.

205 Example (Concavity vs. mid-concavity) Let D be the set of dyadic rational numbers, that
is, rationals of the form k/2m for some integer k and some natural number m. These form a scalar field
(closed under addition and multiplication, etc.), and we can view the real numbers R as a vector space
over the field D. (Honest, we can—if x is a vector [that is, a real number] and d is a scalar, [that is,��
a dyadic rational], then dx is a real number, and hence a vector, etc.) Now every vector space has a
(Hamel) basis (see, e.g., [3]), so let B be a basis for R.

*********
□

But if f is continuous, then mid-concavity does imply concavity.

206 Fact Let C ⊂ Rn be an open convex set. If f : C → R is continuous and mid-concave, then f is
concave.

This allows the following partial converse to Corollary 202.

207 Proposition Let C ⊂ Rn be an open convex set, and let f : C → R. If the second difference
function satisfies

∆2
v,vf(x)vv ⩽ 0

whenever it is defined, then f is mid-concave. Consequently, if f is also continuous, then it is concave.

v. 2015.11.20::14.58 src: convexity KC Border



KC Border Notes on Optimization, etc. 95

Proof : Assume ∆2
v,vf(x)vv ⩽ 0 whenever defined. Let x < y and set v = w = (y − x)/2 > 0, so

∆2
v,vf(x) = f(x + y) − 2f

(
(x + y)/2

)
+ f(x) ⩽ 0,

so rearranging yields f
(
(x + y)/2

)
⩾
(
f(x) + f(y)

)
/2. So f is mid-concave.

4.19 Concavity and differentiability in more than one vari-
able

The one-dimensional case has implications for the many dimensional case. The next results may
be found in Fenchel [51, Theorems 33–34, pp. 86–87].

208 Theorem Let f be a concave function on the open convex set C. For each direction v,
f ′(x; v) is a lower semicontinuous function of x, and {x : f ′(x; v) + f ′(x; −v) < 0} has Lebesgue
measure zero. Thus f ′(x; v)+f ′(x; −v) = 0 almost everywhere, so f has a directional derivative
in the direction v almost everywhere. Moreover, the directional derivative Df(·; v) is continuous
on the set on the set on which it exists.

Proof : Since f is concave, it is continuous (Theorem 198). Fix v and choose λn ↓ 0. Then
gn(x) := f(x+λnv)−f(x)

λn
is continuous and by Lemma 199, gn(x) ↑ f ′(x; v) for each x. Thus

Proposition 31 implies that f ′(x; v) is lower semicontinuous in x for any v.
Now f ′(x; v) + f ′(x; −v) ⩽ 0 by concavity, so let

A = {x : f ′(x; v) + f ′(x; −v) < 0}.

Note that since f ′(·; v) and f ′(·; −v) are lower semicontinuous, then A is a Borel subset of Rn.
If x ∈ Ac, that is, if f ′(x; v) + f ′(x; −v) = 0, then f ′(x; v) = −f ′(x; −v), so f has a directional
derivative Dv(x) in the direction v. And since f ′(·; −v) is lower semicontinuous, the function
−f(·; −v) is upper semicontinuous, f ′(·; v) is actually continuous on Ac.

Thus we want to show that A = {x : f ′(x; v) + f ′(x; −v) < 0} has Lebesgue measure zero.
If v = 0, then f ′(x; 0) = −f ′(x; −0) = 0, so assume v ̸= 0. Consider a line Ly = {y+λv : λ ∈

R} parallel to v. By Corollary 204, Ly ∩ A = {x ∈ Ly : f ′(x; v) + f ′(x; −v) < 0} is countable,
and hence of one-dimensional Lebesgue measure zero. Let M be the subspace orthogonal to v,
soM×L = Rn, where L = L0 is the one-dimensional subspace spanned by v. Every x ∈ Rn can
be uniquely written as x = (xM , xv), where xM ∈ M and xv ∈ L. Then by Fubini’s theorem,∫

1A(x) dλn(x) =
∫

M

∫
L

1A(xM , xv) dλ(xv) dλn−1(xM ) =
∫

M

0 dλn−1(xM ) = 0.

209 Lemma Let f be a concave function on the open convex set C ⊂ Rn. If all n partial
derivatives of f exist at x, then f has a Gâteaux derivative at x. That is, all the directional
derivatives exist and the mapping v 7→ Dvf(x) is linear.

Proof : The mapping v 7→ f ′(x; v) is itself concave, and since f has an ith partial derivative, there
is δi > 0 so that v 7→ f ′(x; v) is linear on the segment Li = (−δie

i, δie
i). Indeed λei 7→ ∂f(x)

∂xi
λ.

So by Lemma 212 below, the mapping v 7→ f ′(x; v) is linear on co
∪m

i=1 Li. This makes it the
Gâteaux derivative of f at x.

210 Lemma Let f be a concave function on the open convex set C ⊂ Rn. If f has a Gâteaux
derivative at x, then it is a Fréchet derivative. (Cf. Fenchel [51, Property 32, p. 86], or Hiriart-
Urruty–Lemaréchal [76, Proposition 4.2.1, p. 114].)
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Proof : Let v 7→ f ′(x; v) be the Gâteaux derivative of f . We need to show that

∀ε > 0 ∃δ > 0 ∀ 0 < λ < δ ∀v∥v∥=1 ∥f(x+ λv) − f(x) − λf ′(x; v)∥ ⩽ ελ.

Fix ε > 0. By definition, f ′(x; v) = limλ↓0
(
f(x + λv) − f(x)

)
/λ, so for each v, there is a

δv > 0 such that for 0 < λ ⩽ δv,∣∣∣∣f(x+ λv) − f(x)
λ

− f ′(x; v)
∣∣∣∣ < ε,

or multiplying by λ,
|f(x+ λv) − f(x) − λf ′(x; v)| < ελ,

By Lemma 215 and the homogeneity of f ′(x; ·), for λ > 0 we have

f(x) + λf ′(x; v) − f(x+ λv) ⩾ 0.

Combining these two inequalities, for 0 < λ ⩽ δv, we have

0 ⩽ λf ′(x; v) − f(x+ λv) + f(x) < ελ. (∗)

Once again consider the 2n vectors u1, . . . , u2n with coordinates ±1, and let δ = minj δuj . Then
(∗) holds with v = uj for any 0 < λ < δ.

Let U = co{u1, . . . , u2n}, which is a convex neighborhood of zero that includes all the vectors
v with ∥v∥ = 1. Fixing λ, the function hλ(v) = λf ′(x; v) − f(x+ λv) + f(x) is convex in v, and
any v in U can be written as a convex combination v =

∑2n

j=1 αju
j , so for any 0 < λ ⩽ δ,

0 ⩽ λf ′(x; v) − f(x+ λv) + f(x) = hλ(v) ⩽
2n∑

j=1
αjhλ(uj) ⩽ max

j
hλ(uj) < ελ.

Since this is true for every vector v of norm one, we are finished.

211 Theorem Let f be a concave function on the open convex set C ⊂ Rn. Then f is
differentiable almost everywhere on C.

Proof : By Theorem 208 for each i, the ith partial derivative exists for almost every x. Therefore
all n partial derivatives exist for almost every x. The result now follows from Lemma 209
and 210.

This lemma is used in the proof of Theorem 211.

212 Lemma Let g be concave on C and let x ∈ riC. Let v1, . . . , vm be linearly independent
and assume that g is affine on each of the segments Li = {x+ λvi : |λ| ⩽ δi} ⊂ C, i = 1, . . . ,m.
Then g is affine on A = co

∪m
i=1 Li.

Proof : By hypothesis, there is an αi satisfying

g(x+ λvi) = g(x) + αiλ on Li, i = 1, . . . ,m.

Define ℓ on the span of v1, . . . , vm by ℓ(λ1v
1 + · · · + λmv

m) = α1λ1 + · · · + αmλm. Then ℓ is
linear, so the function h on A defined by h(y) = g(x) + ℓ(y − x) is affine. Moreover h agrees
with g on each segment Li. In particular g(x) − h(x) = 0.

Now any point y in A can be written as a convex combination of points x+ λiv
i belonging

to Li. Since g is concave, for a convex combination
∑

i αi(x+ λiv
i) we have

g
(∑

i

αi(x+ λiv
i)
)
⩾
∑

i

αig(x+ λiv
i) =

∑
i

αih(x+ λiv
i) = h

(∑
i

αi(x+ λiv
i)
)
,
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where the final equality follows from the affinity of h. Therefore g − h ⩾ 0 on A. But g − h
is concave, x belongs to riA, and (g − h)(x) = 0. Therefore g − h = 0 on A. (To see this,
let y belong to A. Since x in riA, for some z ∈ A and some 0 < λ < 1, we may write
x = λy + (1 − λ)z, so 0 = (g − h)(x) ⩾ λ(g − h)(y) + (1 − λ)(g − h)(z) ⩾ 0, which can only
happen if (g − h)(y) = (g − h)(z) = 0.)

Thus g is the affine function h on A.

This result depends on the fact that x belongs to riC, and can fail otherwise. For instance,
let C = R2

+ and f(x, y) = xy. Then f is linear (indeed zero) on the nonnegative x and y axes,
which intersect at the origin, but f is not linear on the convex hull of the axes. Of course, the
origin is not in the relative interior.

The next fact may be found in Fenchel [51, Theorem 35, p. 87ff], or Katzner [91, Theo-
rems B.5-1 and B.5-2].

213 Fact If f : C ⊂ Rn → R is twice differentiable, then the Hessian Hf is everywhere negative
semidefinite if and only if f is concave. If Hf is everywhere negative definite, then f is strictly
concave.

************ There are many ways to see this. One way is to look at the second difference
∆2

v,wf = f(x+ w + v) − f(x+ w) −
(
f(x+ v) − f(x)

)
. By

************

4.20 Directional derivatives and supergradients
Given a point x in a convex set C, the set of directions v into C at x is

PC(x) = {v ∈ Rn : ∃ε > 0 x+ εv ∈ C}

is a convex cone, but not necessarily a closed cone. (Think of this set for a point on the boundary
of a disk—it is an open half space together with zero.) The set x + PC(x), a cone with vertex
x, is what Fenchel [51, p. 41] calls the projecting cone of C from x.

The following is a simple consequence of Corollary 204.

214 Theorem Let f be a concave function on Rn, and let f be finite at the point x. Then the
difference quotient

f(x+ λv) − f(x)
λ

0 < λ ⩽ 1,

is a nonincreasing function of λ. Thus the possibly infinite directional derivative f ′(x; v) exists
and

f ′(x; v) = sup
0<λ⩽1

f(x+ λv) − f(x)
λ

.

Moreover, f ′(x; v) is a positively homogeneous and concave function of v satisfying f ′(x; 0) = 0,
and

dom f ′(x; v) = Pdom f (x).

Proof : From
f(x+ αλv) − f(x)

λ
= α

f(x+ αλv) − f(x)
αλ

,

we see that f ′(x;αv) = αf ′(x; v) for all α ⩾ 0. That is, f ′(x; v) is positively homogeneous of
degree one in v. Note that f ′(x, 0) = 0, as the difference quotients are all zero. Furthermore, if
f is concave, then

f
(
x+ αλu+ (1 − α)λv

)
−f(x) ⩾ α

(
f(x+ λu) − f(x)

)
+ (1 − α)

(
f(x+ λv) − f(x)

)
,
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so dividing by λ and taking limits shows that f ′(x; ·) is concave.
If v ∈ Pdom f (x), that is, x + εv ∈ dom f for ε > 0 small enough, then f(x + εv) > −∞, so

f ′(x; v) > −∞.

There is an intimate relation between one-sided directional derivatives and the superdiffer-
ential, cf. Fenchel [51, Property 29, p. 81] or Rockafellar [130, Theorem 23.2, p. 216]. We start
with the following extension of Theorem 178.

215 Lemma Let f be a concave function on Rn and let f be finite at x. Then for every y ∈ Rn,

f(x) + f ′(x; y − x) ⩾ f(y).

(If f is convex the inequality is reversed.)

Proof : If y /∈ dom f , then f(y) = −∞, so the conclusion follows. If y belongs to the effective
domain, then by concavity

f
(
x+ λ(y − x)

)
− f(x)

λ
⩾ f(y) − f(x).

Letting λ ↓ 0, the left hand side converges to f ′(x; y − x), which may be +∞.

Geometrically, this says that the hypograph of y 7→ f(x)+f ′(x; y−x) includes the hypograph
of f . We can use this to complete the description of subdifferentiability of f . The following result
may be partially found in Fenchel [51, Property 31, p. 84] and more explicitly in Rockafellar [130,
Theorem 23.3, p. 216] (which are stated for convex functions).

216 Corollary Let f be a proper concave function on Rn, and let x ∈ dom f . If f ′(x; v) < ∞
for some v such that x+ v ∈ ri dom f , then f is superdifferentiable at x.

Proof : Let v satisfy x+ v ∈ ri dom f and f ′(x; v) < ∞. Then, as in the proof of Theorem 186,
there is (p,−1) supporting the hypograph of f ′(x; ·) at the point

(
v, f ′(x; v)

)
. That is,

p · v − f ′(x; v) ⩽ p · u− f ′(x, u) for all u ∈ dom f ′(x; ·). (4.12)

Taking u = 0 implies p ·v−f ′(x; v) ⩽ 0. Taking u = λv for λ > 0 large implies p ·v−f ′(x; v) ⩾ 0.
Thus f ′(x; v) = p · v. Then (4.12) becomes

p · u ⩾ f ′(x, u) for all u ∈ dom f ′(x; ·).

Adding f(x) to both sides and applying Lemma 215, we get the supergradient inequality

f(x) + p · u ⩾ f(x) + f ′(x, u) ⩾ f(x+ u)

for u ∈ dom f ′(x; ·) = Pdom f (x). For any u not in this set, f(x+ λu) = −∞ for λ > 0 and the
supergradient inequality holds trivially. Thus p is a supergradient of f at x.

217 Lemma (The directional derivative is the support function of the superdifferential)
Let f be a concave function on Rn, and let f(x) be finite. Then

p ∈ ∂f(x) ⇐⇒ ∀v ∈ Rn p · v ⩾ f ′(x; v).

Proof : (=⇒) Let p ∈ ∂f(x). By the supergradient inequality, for any v ∈ Rn,

f(x) + p · (λv) ⩾ f(x+ λv))
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We may subtract the finite value f(x) from the right hand side, even if x+ λv /∈ dom f . Thus

p · (λv) ⩾ f(x+ λv) − f(x).

Dividing by λ > 0 and letting λ ↓ 0 gives

p · v ⩾ f ′(x; v)

.
(⇐=) If p /∈ ∂f(x), then there is some v such that the supergradient inequality is violated,

that is,
f(x) + p · v < f(x+ v). (4.13)

Since f(x+ v) = −∞ if x+ v /∈ dom f , we conclude x+ v ∈ dom f . By concavity, for 0 < λ ⩽ 1,

f(x+ λv) ⩾ f(x) + λ
[
f(x+ v) − f(x)

]
or

f(x+ λv) − f(x)
λ

⩾ f(x+ v) − f(x),

so by (4.13)
f(x+ λv) − f(x)

λ
⩾ f(x+ v) − f(x) > p · v,

so taking limits gives f ′(x; v) > p · v. The conclusion now follows by contraposition.

The next result may be found in Rockafellar [130, Theorem 23.2, p. 216].

218 Corollary Let f be a concave function on Rn, and let f(x) be finite. Then the closure of
the directional derivative at x (as a concave function of the direction) is the support function of
the superdifferential at x. That is,

cl f ′(x; ·) = µ∂f(x)(·).

Proof : Since h : v 7→ f ′(x; v) is concave and homogeneous, by Theorem 177, clh = µC , where
C = {p : ∀v p · v ⩾ h(v)}. By Lemma 217, C = ∂f(x).

The next result may be found in Rockafellar [130, Theorem 25.1, p. 242].

219 Theorem Let f be a concave function defined on the convex set C ⊂ Rn. Then f is
differentiable at the interior point x ∈ C if and only if the superdifferential ∂f(x) is a singleton,
in which case ∂f(x) = {f ′(x)}.

Proof : (=⇒) Suppose f is differentiable at the interior point x. The for any v, f ′(x; v) = f ′(x)·v.
Moreover there is an ε > 0 such that for any v, x + εv ∈ C. Now the superdifferential f ′(x) is
nonempty, since f ′(x) ∈ ∂f(x), so by Lemma 217, if p ∈ ∂f(x), then

p · εv ⩾ f ′(x; εv) = f ′(x) · εv.

But this also holds for −v, so
p · v = f ′(x) · v.

Since this holds for all v, we have p = f ′(x).
(⇐=) Suppose ∂f(x) = {p}. Since x is interior there is an α > 0 such that if v ∈ αB, then

x+ v ∈ C, where B is the unit ball in Rn. Define g : αB → R by

g(v) = f(x+ v) − f(x) − p · v.
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Note that f is differentiable at x if and only if g is differentiable at 0, in which case g′(0) =
f ′(x) − p.

Now the supergradient inequality asserts that f(x)+p ·v ⩾ f(x+v), so g ⩽ 0. But g(0) = 0,
that is, 0 maximizes g over αB, so by Theorem 190, 0 ∈ ∂g(0).

In fact, ∂g(0) = {0}. For if q ∈ ∂g(0), we have

g(0) + q · v ⩾ g(v)
0 + q · v ⩾ f(x+ v) − f(x) − p · v

f(x) + (p+ q) · v ⩾ f(x+ v),

which implies p+ q ∈ ∂f(x), so q = 0.
By Lemma 218, the closure of g′(x; ·) is the support function ∂g(0) = {0}, so cl g′(x; ·) = 0.

But this implies that g′(x; ·) is itself closed, and so identically zero. But zero is a linear function,Why is it closed? See
Rockafellar 23.4. so by Lemma 210, g is differentiable at zero.

4.21 Fenchel’s conjugate duality
We saw in Section 4.12 that every closed convex set is the intersection of all the closed half
spaces that include it, so the support function embodies all the information about the set. Now
the hypograph of an upper semicontinuous concave function f is a closed convex set, so its
support function embodies all the information about f . But the supporting hyperplanes to
the hypograph of f are the graphs of affine functions that dominate f . Well, not quite. A
hyperplane in Rn × R of the form {(x, α) : (p,−1) · (x, α) = β}, is the graph of the affine
function h(x) = p · x − β, but if the supporting hyperplane is vertical, then it does not define
the graph of a function.

Let f be a convex function defined on Rn as a convex analyst would define it. That is, the
values ±∞ are allowed, and the effective domain dom f is defined to be the set where f is (finite)
real-valued. It is proper if the effective domain is nonempty and doesn’t take on the value −∞.
(That means it assumes the value ∞ outside the effective domain.) Regardless of whether f is
proper, we may still enquire whether the affine function h(x) = p · x− α is dominated by f .

220 Definition For a convex function f , the Fenchel (convex) conjugate, or simply con-
jugate, f∗ of f is defined by

f∗(p) = inf{α : f(x) ⩾ p · x− α for all x ∈ Rn}. (4.14)

Note that if there is no α for which f dominates the affine function, then we have an infimum
over the empty set, so f∗(p) = ∞. I always get confused working with suprema and infima, so
it helps me to write out a number of equivalent statements.

α ⩾ f∗(p) ⇐⇒ p · x− α ⩽ f(x) for every x. (4.15)

α ⩾ f∗(p) ⇐⇒ p · x− f(x) ⩽ α for every x.
f∗(p) = sup

x∈Rn
p · x− f(x). (4.16)

f∗(p) = sup{p · x− β : β ⩾ f(x)} = sup{p · x− β : (x, β) ∈ epi f}. (4.17)
In fact, (4.16) is usually taken to be the definition.

Following Rockafellar [130, p. 308], for a concave function g, we define its (concave) con-
jugate by

g∗(p) = sup{α : p · x− α ⩾ g(x) for all x ∈ Rn}.

Equivalently,
α ⩽ g∗(p) ⇐⇒ p · x− α ⩾ g(x) for every x. (4.18)
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α ⩽ g∗(p) ⇐⇒ p · x− g(x) ⩾ α for every x.
g∗(p) = inf

x∈Rn
p · x− g(x). (4.19)

g∗(p) = inf{p · x− β : β ⩽ g(x)} = sup{p · x− β : (x, β) ∈ hypograph g}. (4.20)

221 Example Since an affine function f is both concave and convex, we have a problem, albeit
a minor problem. The concave conjugate and the convex conjugate do not agree, but only differ
outside their common effective domain. To see this, consider the affine function

f(x) = p · x− α.

For any affine function g(x) = q · x − β, if q ̸= p, then neither f nor g dominates the other.7
Therefore, for q ̸= p,

f∗(q) = inf{α : f(x) ⩾ q · x− α for all x ∈ Rn} = inf ∅ = ∞ treating f as convex,

f∗(q) = sup{α : f(x) ⩾ q · x− α for all x ∈ Rn} = sup∅ = −∞ treating f as concave,
but

f∗(p) = α either way.
So f∗ on its effective domain does not depend on whether f is treated as concave or convex. □

From the definitions, when f is convex, then for any p, we have f(x) ⩾ p ·x−f∗(p) for every
x. That is,

f(x) + f∗(p) ⩾ p · x for all x, p. (Fenchel’s Inequality)
This result is known as Fenchel’s inequality. Moreover, it is also clear that f∗ = (cl f)∗. In
the concave case, Fenchel’s inequality becomes

p · x ⩾ g(x) + g∗(p) for all x, p.

If f is concave or convex, then −f is convex or concave respectively, and it is easy to see that
their conjugates satisfy

(−f)∗(p) = −(f∗)(−p). (4.21)

222 Lemma The convex conjugate of a convex function is a closed convex function. The
concave conjugate of a concave function is a closed concave function.

Proof : Note that the function x 7→ p · x− f(x) is an affine function of p. The convex conjugate
f∗ of a convex function f is the pointwise supremum of this family and so closed and convex,
and the concave conjugate f∗ of a concave function f is the pointwise infimum and so closed
and concave.

Note that f∗ then has a conjugate (f∗)∗, usually written as just f∗∗.

223 Proposition If f is concave or convex, then cl f = f∗∗.

Proof : I will discuss only the convex case. Using (4.15) and Theorem 170,

cl f(y) = sup{h(y) : f ⩾ h and h is affine and continuous}
= sup{p · y − α : for all x, p · x− α ⩽ f(x)}
= sup{p · y − α : α ⩾ f∗(p)}
= sup

p
p · y − f∗(p)

= f∗∗(y)

where the last equality follows from (4.16) applied to f∗.
7To see this, note that if q ̸= p, then for some x, we have (p − q) · x = γ ̸= 0. Then yδ = δ

γ
x satisfies

p · yδ − q · yδ = δ. By choosing δ appropriately we can obtain either f(yδ) > g(yδ) or vice-versa.
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224 Lemma The convex conjugate of a convex function f is proper if and only if f is proper.
The concave conjugate of a concave function g is proper if and only if g is proper.

Proof : The improper constant functions +∞ and −∞ are clearly conjugate to each other. It
follows from Proposition 223 that otherwise the conjugate is proper.

An economic interpretation of the conjugate
Consider a multiproduct firm that can produce n different outputs. Let the convex function f : Rn

+ → R
be its cost function. That is, f(x) is the cost of producing the output vector x ∈ Rn

+. Convexity of
the cost function captures the property of decreasing returns to scale in production. Let p the vector
of output prices. Then p · x − f(x) is the firm’s profit from choosing the output vector x. The convex
conjugate f∗ is just the firm’s profit function, that is, f∗(p) is the maximum profit the firm can make
at prices p.

Or consider a firm that produces one good from n inputs, where the price of the outputs has
been normalized to unity. Let the concave function g be its production function, so that g(x) is the
quantity (and value) of output from the input vector x ∈ Rn

+. Concavity of the production function
again captures the property of decreasing returns to scale in production. Let p the vector of input
prices. Then g(x) − p · x is the firm’s profit from choosing the input vector x. The concave conjugate
g∗(p) = infx p · x − g(x) = − supx g(x) − p · x is just the negative of the firm’s profit function, that is,
−g∗(p) is the maximum profit the firm can make at input prices p.

4.22 Subgradients and conjugates
The convex conjugate is defined as a supremum, f∗(p) = supx p·x−f(x). Suppose this supremum
is actually a maximum, that is, there is some x for which f∗(p) = p·x−f(x). Rearranging we see
that Fenchel’s inequality holds as an equality, f∗(p) + f(x) = p · x. In fact, Fenchel’s inequality
holds as an equality if and only if the supremum is attained. This equality also characterizes
subgradients.

Recall that p is a subgradient of the convex function f at x, written p ∈ ∂f(x), if it satisfies
the subgradient inequality:

f(y) ⩾ f(x) + p · (y − x)

for every y. The right hand side is an affine function h of y, namely h(y) = p · y−
(
p · x− f(x)

)
dominated by f and agreeing with f at the point x, (h(x) = f(x)). Thus the conjugate f∗

evaluated at p satisfies
f∗(p) = p · x− f(x),

so Fenchel’s inequality is satisfied as an equality.

225 Lemma If f is a proper convex function, then

f(x) + f∗(p) = p · x ⇐⇒
(
f is subdifferentiable at x and p ∈ ∂f(x)

)
,

where f∗ is the convex conjugate of f .
If g is a proper concave function, then

g(x) + g∗(p) = p · x ⇐⇒
(
f is superdifferentiable at x and p ∈ ∂g(x)

)
,

where g∗ is the concave conjugate of g.

Proof : I’ll discuss only the convex case. We have already observed the (⇐=) implication, so
assume Fenchel’s inequality holds as an equality, f(x) +f∗(p) = p ·x. Then f∗(p) = p ·x−f(x).
By definition of f∗ this means the affine function h(y) = p · y −

(
p · x− f(x)

)
is dominated by

f , which is just the subgradient inequality for p.
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When f satisfies the additional property that it is closed, then we have the next result.

226 Corollary If f is a proper closed convex (or concave) function, then p ∈ ∂f(x) if and only
if x ∈ ∂f∗(p).

Proof : By Lemma 225, p ∈ ∂f(x) if and only if the Fenchel inequality holds with equality, that
is, f(x) + f∗(p) = p · x. But since f is a proper closed convex function, f = cl f = f∗∗ by
Proposition 223, so this is equivalent to f∗∗(x) + f∗(p) = p · x, which by Lemma 225 applied to
the proper convex function f∗ holds if and only if x ∈ ∂f∗(p).

Using the fact that f∗∗ = f for closed functions (Proposition 223), we have the following.

227 Corollary If f is a proper closed convex function, then the following are equivalent.

1. f(x) + f∗(p) = p · x.

2. p ∈ ∂f(x).

3. x ∈ ∂f∗(p).

4. p · x− f(x) = maxy p · y − f(y).

5. p · x− f∗(p) = maxq q · x− f∗(q).

If f is a proper closed concave function, then the following are equivalent.

1. f(x) + f∗(p) = p · x.

2. p ∈ ∂f(x).

3. x ∈ ∂f∗(p).

4. p · x− f(x) = miny p · y − f(y).

5. p · x− f∗(p) = minq q · x− f∗(q).

(The conjugate is the concave conjugate in case f is concave.)

4.23 Support functions and conjugates
Recall that the convex analyst’s indicator function is defined by

δ(x | C) =

{
0 x ∈ C

+∞ x /∈ C.

The indicator of C is a convex function if and only if C is a convex set, and is a proper closed
convex function if and only C is a nonempty closed convex set.

Now

p · x− δ(x | C) =

{
−∞ x /∈ C

p · x x ∈ C

so the conjugate δ∗(p | C) satisfies

δ∗(p | C) = sup
x
p · x− δ(x | C) = sup

x∈C
p · x,

so
δ∗(p | C) = πC(p),
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where πC is the economist’s profit function. On the other hand if we look at the concave
indicator function −δ(x | C), we get

(−δ)∗(p | C) = −(δ∗)(−p | C) = µC(p).

There is another relation between conjugates and support functions. For a proper convex
function f , (4.17) implies

δ∗((p,−1) | epi f
)

= f∗(p).

This justifies the remarks at the beginning of Section 4.21.

4.24 Conjugate functions and maximization:
Fenchel’s Duality Theorem

Let f : C → R be a proper closed concave function on a convex subset of R. Assume x∗

maximizes f over C. If we extend f to be concave on all of Rn by setting f(x) = −∞ for x
not in C, then x∗ still maximizes f over Rn. Now by Theorem 190 we have 0 ∈ ∂f(x∗), so
by Corollary 227, it follows that x∗ ∈ ∂f∗(0) and f(x∗) = −f∗(0), where f∗ is the (concave)
conjugate of f . This (fortunately) agrees with the definition f∗(p) = sup{α : f(x) ⩾ p · x −
α for all x ∈ Rn}, which reduces to f∗(0) = − supx f(x).

But there is a more interesting relationship between conjugates and maximization. The
next result is due to Fenchel [51, § 47–48, pp. 105–109]. It also appears in Rockafellar [130,
Theorem 31.1, p. 327–329], who also provides a number of variations. It states that every
concave maximization problem has a dual convex minimization problem, and the solutions to
the two coincide.

228 Fenchel’s Duality Theorem (Concave version) Let f be a proper convex function
and g be a proper concave function on Rn. If ri dom f ∩ ri dom g ̸= ∅, then

sup
x
g(x) − f(x) = inf

p
f∗(p) − g∗(p),

where f∗ is the convex conjugate of f and g∗ is the concave conjugate of g. Moreover, the
infimum is attained for some p̄ ∈ Rn.

If in addition f and g are closed and if ri dom f∗ ∩ ri dom g∗ ̸= ∅, then the supremum is
attained at some x̄ ∈ dom f ∩ dom g, and is finite.

Interchanging f and g and sup and inf gives the following.

229 Fenchel’s Duality Theorem (Convex version) Let f be a proper convex function and
g be a proper concave function on Rn. If ri dom f ∩ ri dom g ̸= ∅, then

inf
x
f(x) − g(x) = sup

p
g∗(p) − f∗(p),

where f∗ is the convex conjugate of f and g∗ is the concave conjugate of g. Moreover, the
supremum is attained for some p̄ ∈ Rn. (Note that since the functions are extended real-valued,
the supremum may be attained yet be infinite.)

If in addition, f and g are closed and if ri dom f∗ ∩ ri dom g∗ ̸= ∅, then the infimum is
attained at some x̄ ∈ dom f ∩ dom g, and is finite.

Proof of concave version: From Fenchel’s Inequality, for every x and p,

f(x) + f∗(x) ⩾ p · x ⩾ g(x) + g∗(p), (4.22)
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so
f∗(p) − g∗(p) ⩾ g(x) − f(x) for all x, p.

(Since we are subtracting extended real-valued functions, we should make sure that the mean-
ingless expression ∞−∞ does not occur. Now f and g are proper convex and concave functions
respectively, so f(x) > −∞ and g(x) < ∞ for all x, so g(x) − f(x) is a well defined extended
real number. By Fenchel’s inequality, g∗(p) ⩽ p · x − g(x) < ∞ for any x ∈ dom f ∩ dom g.
Similarly, we have f∗(p) > −∞ for every p. Thus f∗(p) − g∗(p) is a well defined extended real
number.)

Therefore taking the infimum on the right and the supremum on the left,

inf
p
f∗(p) − g∗(p) ⩾ sup

x
g(x) − f(x). (4.23)

We need now to show that there is no “duality gap,” that is, the reverse inequality also holds.
Consider first the case where the right hand side of this inequality is ∞. Then the left hand side
is also ∞ and the infimum is attained for every p.

So assume α = supx∈C g(x) − f(x) < ∞. Then in fact, α is not −∞ (look at any x ∈
ri dom f ∩ ri dom g), and so finite. Moreover α satisfies

α = sup
x
g(x) − f(x)

= inf{β : ∀x β ⩾ g(x) − f(x)}
= inf{β : ∀x f(x) + β ⩾ g(x)}.

Now consider the epigraph A of f + α

A = {(x, β) ∈ Rn × R : β ⩾ f(x) + α}

and the strict hypograph B of g,

B = {(x, β) ∈ Rn × R : β < g(x)}.

Then A and B are disjoint nonempty convex subsets of Rn × R, so by Theorem 165 there exists
a nonzero (p̄, λ) ∈ Rn × R that properly separates A and B, say (p̄, λ) ·A ⩽ (p̄, λ) ·B.

It follows then that λ < 0. To see this, suppose λ = 0. Then proper separation of A and
B by (p̄, 0) implies infx∈dom f p̄ · x < supy∈dom g p̄ · y, which implies that p̄ properly separates
dom f and dom g, which contradicts ri dom f ∩ ri dom g ̸= ∅ (Theorem 165). If λ > 0, then for
large enough β > 0, we have (p̄, λ) · (x, β) > (p̄, λ) ·

(
x, g(x)

)
, a contradiction of the separation

inequality.
Thus without loss of generality we may take λ = −1. Then separation implies

p̄ · x− f(x) − α ⩽ p̄ · x− g(x) for all x.

Taking the supremum on the left and the infimum on the right gives

f∗(p̄) − α = sup
x
p̄ · x− f(x) − α ⩽ inf

x
p̄ · x− g(x) = g∗(p̄).

Recalling the definition of α gives

sup
x
g(x) − f(x) = α ⩾ f∗(p̄) − g∗(p̄) ⩾ inf

p
f∗(p) − g∗(p).

This proves the reverse inequality, so these are actually equalities, there is no gap, and p̄ attains
the infimum.

Now assume that f and g are closed, and that ri dom f∗ ∩ri dom g∗ ̸= ∅. Apply the argument
just used to the functions f∗ and g∗, to get supp g

∗(p) − f∗(p) = infx f
∗∗(x) − g∗∗(x) and is

finite. Now use the fact that f = f∗∗ and g = g∗∗, to get that the infimum of f − g, and hence
the supremum of g − f , is attained for some x̄.
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4.25 The calculus of sub/superdifferentials
230 Theorem (cf. Aubin [14, Theorem 3.4, p. 37].) Let f and g be proper closed concave (or
convex) functions on Rn. If ri dom f ∩ ri dom g ̸= ∅, then for each p ∈ dom f∗ ∩ dom g∗, there
is some q satisfying

(f + g)∗(p) = f∗(p− q) + g∗(q).

Proof : I’ll prove the concave case. By definition,

(f + g)∗(p) = inf
x

p · x−
(
f(x) + g(x)

)
= inf

x
(−g(x)) − (f(x) − p · x)

= sup
q

(f − p)∗(q) − (−g)∗(q),

where the last equality is the convex version of Fenchel’s Duality Theorem 229 applied to the con-
vex function −g and the concave function x 7→ f(x) −p ·x. Moreover this supremum is attained
for some q̃. Now recall that (−g)∗(q) = −g∗(−q) ((4.21)), so define q̄ = −q̃. Furthermore,

(f − p)∗(q) = sup
x

q · x− (f(x) − p · x) = sup
x

(p+ q) · x− f(x) = f∗(p+ q).

Substituting above yields

(f + g)∗(p) = f∗(p+ q̃) + g∗(−q̃)
= f∗(p− q̄) + g∗(q̄).

231 Theorem Let f and g be proper closed concave (or convex) functions on Rn. If the point
x belongs to ri dom f ∩ ri dom g, then

∂(f + g)(x) = ∂f(x) + ∂g(x)

Proof : (cf. Aubin [14, Theorem 4.4, p. 52].) Note that x must belong to the relative interior of
dom(f + g), so each of f , g, and f + g is superdifferentiable at x. Moreover f + g is a proper
closed concave function, as it is easy to see that the sum of upper (or lower) semicontinuous
functions is upper (or lower) semicontinuous.

It is easy to see that ∂f(x) + ∂g(x) ⊂ ∂(f + g)(x)—just add the supergradient inequalities.
That is, if p ∈ ∂f(x) and q ∈ ∂g(x), for each y we have

f(x) + p · (y − x) ⩾ f(y) and g(x) + q · (y − x) ⩾ g(y),

so
(f + g)(x) + (p+ q) · (y − x) ⩾ (fg)(y).

That is, p + q ∈ ∂(f + g)(x). (By the way, the assumption that x ∈ ri dom f ∩ ri dom g is not
needed for this part.)

For the reverse inclusion, let p belong to the superdifferential ∂(f + g)(x). Then by Corol-
lary 227

(f + g)(x) + (f + g)∗(p) = p · x,

but by Theorem 230 (this is where the assumption that x ∈ ri dom f ∩ ri dom g is needed), there
is a q satisfying (f + g)∗(p) = f∗(p− q) + g∗(q), so we have

f(x) + f∗(p− q) + g(x) + g∗(q) = p · x.
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Subtracting q · x from both sides and rearranging gives

f(x) + f∗(p− q) + g(x) + g∗(q) − q · x = (p− q) · x[
f(x) + f∗(p− q) − (p− q) · x

]
+
[
g(x) + g∗(q) − q · x

]
= 0.

But by Fenchel’s Inequality for concave functions, each of the two bracketed terms is nonpositive,
so each must be zero. But then by Corollary 227, we have

p− q ∈ ∂f(x) and q ∈ ∂g(x).

Thus p = (p− q) + q belongs to ∂f(x) + ∂g(x).

232 Theorem ∂g(Ax) =???

Proof : ************

Returning to Fenchel’s Duality Theorem, the first order necessary condition for a maximum
of g − f at x∗ is that 0 ∈ ∂(g − f)(x∗). When x∗ ∈ ri dom f ∩ ri dom g, so that ∂(g − f)(x∗) =
∂g(x∗) − ∂f(x∗), we have ∂f(x∗) ∩ ∂g(x∗) ̸= ∅. A generalization of this condition that is also
sufficient is given in the next theorem.

233 Theorem Let f be a closed proper convex function and g be a closed proper concave
function on Rn. Assume ri dom f ∩ ri dom g∗ ̸= ∅ and ri dom f∗ ∩ ri dom g ̸= ∅. Then the
following conditions are equivalent.

1. supx∈C g(x) − f(x) = g(x̄) − f(x̄) = f∗(p̄) − g∗(p̄) = infp f
∗(p) − g∗(p).

2. p̄ ∈ ∂g(x̄) and x̄ ∈ ∂f∗(p̄).

3. p̄ ∈ ∂f(x̄) and x̄ ∈ ∂g∗(p̄).

4. p̄ ∈ ∂g(x̄) ∩ ∂f(x̄) and x̄ ∈ ∂f∗(p̄) ∩ ∂g∗(p̄).

Proof : (1) =⇒ (4): If

sup
p
g∗(p) − f∗(p) = g∗(p̄) − f∗(p̄) = f(x̄) − g(x̄) = inf

x
f(x) − g(x),

rearranging and using (4.22) gives

g∗(p̄) + g(x̄) = p̄ · x̄ = f(x̄) + f∗(p̄).

Thus by Corollary 227,

x̄ ∈ ∂f∗(p̄), x̄ ∈ ∂g∗(p̄), p̄ ∈ ∂f(x̄), and p̄ ∈ ∂g(x̄).

(2) =⇒ (1): From Corollary 227 we have p̄ ∈ ∂g(x̄) implies g(x̄) + g∗(p̄) = p̄ · x̄, and
x̄ ∈ ∂f∗(p̄) implies f(x̄) + f∗(p̄) = p̄ · x̄. Therefore

g(x̄) + g∗(p̄) = f(x̄) + f∗(p̄)

so
g(x̄) − f(x̄) = f∗(p̄) − g∗(p̄).

Moreover by (4.23) we have

inf
p
f∗(p) − g∗(p) ⩾ sup

x
g(x) − f(x).

Thus

g(x̄) − f(x̄) = f∗(p̄) − g∗(p̄) ⩾ inf
p
f∗(p) − g∗(p) ⩾ sup

x
g(x) − f(x) ⩾ g(x̄) − f(x̄),

so g(x̄) − f(x̄) = supx g(x) − f(x). Similarly, f∗(p̄) − g∗(p̄) = infp f
∗(p) − g∗(p).

The implication (3) =⇒ (1) is similar, and (4) =⇒ (3) and (4) =⇒ (2) are trivial.
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234 Example (Fenchel’s Duality Theorem and the Support Function) Recall that
the support function µA of a nonempty closed convex set A is given by µA(p) = infx∈A p · x.
Recall that the indicator function δ(x | A) satisfies δ(x | A) = 0 for x ∈ A, and δ(x | A) = ∞
for x /∈ A. Let

f(x) = q · x and g(x) = −δ(x | A).
Then f is a proper closed convex function and g is a proper closed concave function, and

µA(q) = inf
x
f(x) − g(x).

The dual problem is to find supp g
∗(p) − f∗(p).

Now ri dom f = Rn and ri dom g = riA. By Theorem 229, the supremum is attained, and it
is easy to see that it is attained at q. Thus 0 ∈ ∂(f∗ − g∗)(q).

Recall from Example 221 that f∗(q) = 0 and f∗(p) = ∞ for p ̸= q. Thus ri dom f∗ = {q}.
Also the concave conjugate of the concave function g satisfies g∗(p) = infx p ·x−g(p) = infx∈A p ·
x = µA(p). So dom g∗ = {p : µA(p) is finite}.

In order to apply the remainder of Fenchel’s Duality Theorem 229 or Theorem 233, we
must have q ∈ ri domµA. Assume this for a moment. In that case, x̄ achieves the infimum
(q · x̄ = µA(q) if and only if there exists p̄ satisfying

x̄ ∈ ∂g∗(p̄), p̄ ∈ ∂f(x̄).

Now ∂f(x) = q for any x, so p̄ ∈ ∂f(x̄) if and only if p̄ = q. So x̄ minimizes q · x over A
if and only if x̄ ∈ ∂µA(q). This constitutes another proof of Theorem 193 for the case where
q ∈ ri domµA.Needs work.

Unfortunately the conditions under which q ∈ ri domµA are not very simple to explain. See
Rockafellar [130, Corollary 13.3.4, p. 117, and also p. 66]. □

4.26 Supergradients and cyclically monotone mappings
Recall that a real function g : X ⊂ R → R is increasing if x ⩾ y implies g(x) ⩾ g(y). Another
way to say this is

[
g(x) − g(y)

]
(x− y) ⩾ 0 for all x, y. Or equivalently, g is nondecreasing if

g(x)(y − x) + g(y)(x− y) ⩽ 0 for all x, y.

More generally, a correspondence φ : X ⊂ Rm ↠ Rm is monotone (increasing) if

(px − py) · (x− y) ⩾ 0 for all x, y ∈ X, and all px ∈ φ(x), py ∈ φ(y).

We could also write this as px ·(y−x)+py ·(x−y) ⩽ 0. A mapping φ is monotone decreasing
if the reverse inequality always holds.

There is a natural generalization of these conditions. A finite sequence x0, x1, . . . , xn, xn+1
with xn+1 = x0 is sometimes called a cycle. A mapping g : U ⊂ Rm → Rm is called cyclically
monotone (increasing) if for every cycle x0, x1, . . . , xn, xn+1 = x0 in U , we have

g(x0) · (x1 − x0) + g(x1) · (x2 − x1) + · · · + g(xn) · (x0 − xn) ⩽ 0.

If the same sum is always ⩾ 0, we shall say that g is cyclically monotone decreasing.
More generally, a correspondence φ : U ⊂ Rm ↠ Rm is called cyclically monotone (in-

creasing)8 if for every cycle (x0, p0), (x1, p1), . . . , (xn+1, pn+1) = (x0, p0) in the graph of φ, that
8 Most authors define monotone and cyclically monotone correspondences to be increasing, and do not make a

definition for decreasing monotonicity. This is because mathematicians find convex functions (such as norms) to
be natural, and as we shall see below there is an important relationship between convex functions and (cyclically)
monotone increasing mappings. Economists however find concave functions to be naturally occurring (as in
production functions) so it seems natural to introduce a term for (cyclically) monotone decreasing mappings.
Just keep in mind that for every statement about convex functions, there is a corresponding one for concave
functions derived by replacing f by −f .
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is, with pi ∈ φ(xi) for all i, we have

p0 · (x1 − x0) + p1 · (x2 − x1) + · · · + pn · (x0 − xn) ⩽ 0.

We mention that if m = 1 (Rm = R) then a function g is cyclically monotone if and only if
it is monotone. For m ⩾ 2, there are monotone functions that are not cyclically monotone.

235 Example (Monotonicity vs. cyclical monotonicity) This example is based on a
remark of Rockafellar [130, p. 240]. Define the function g : R2 → R2 by

g(x, y) = (2y − x,−y).

Then g is monotone (decreasing):

g(x0, y0) · (x1 − x0, y1 − y0) + g(x1, y1) · (x0 − x1, y0 − y1)
= (2y0 − x0,−y0) · (x1 − x0, y1 − y0) + (2y1 − x1,−y1) · (x0 − x1, y0 − y1)
= (2y0 − x0,−y0) · (x1 − x0, y1 − y0) − (2y1 − x1,−y1) · (x1 − x0, y1 − y0)
= (2y0 − x0 − 2y1 + x1, y1 − y0) · (x1 − x0, y1 − y0)
= (x1 − x0)2 − 2(y1 − y0)(x1 − x0) + (y1 − y0)2

=
(
(x1 − x0) − (y1 − y0)

)2

⩾ 0.

But g is not cyclically monotone (decreasing): Consider the cycle (0,−2), (2,−2), (3, 0), (0,−2).
Then

g(0,−2) ·
(
(2,−2) − (0,−2)

)
+ g(2,−2) ·

(
(3, 0) − (2,−2)

)
+ g(3, 0) ·

(
(0,−2) − (3, 0)

)
= (−4, 2) · (2, 0) + (−6, 2) · (1, 2) + (−3, 0) · (−3,−2)
= −8 − 2 + 9
= −1.

In fact, Rockafellar asserts the following. Let g : Rn → Rn be linear, that is, g(x) = Ax,
where A is an n × n matrix. If A is negative quasi-semidefinite but not symmetric, then g is
monotone decreasing, but not cyclically monotone decreasing. □

The next result is a simple corollary of Theorem 178.

236 Corollary (Cyclical monotonicity of the derivative) Let f be concave and differ-
entiable on a convex open set U ⊂ Rm. Then the gradient mapping x 7→ f ′(x) is cyclically
monotone (decreasing). That is, for any cycle x0, x1, . . . , xn, xn+1 in U with xn+1 = x0, we have

n∑
k=0

f ′(xk) · (xk+1 − xk) ⩾ 0.

Proof : By Theorem 178, f ′(xk) · (xk+1 − xk) ⩾ f(xk+1) − f(xk). Summing both sides gives
n∑

k=0

f ′(xk) · (xk+1 − xk) ⩾
n∑

k=0

[
f(xk+1) − f(xk)

]
= 0,

where the last equality follows from the fact that xn+1 = x0.

Note that the gradient of a convex function is cyclically monotone (increasing).
The remarkable fact is that the supergradient correspondence is characterized by cyclical

monotonicity. The next result is due to Rockafellar, and may be found (in different terminology)
in his book [130, Theorem 24.8, p. 238].
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237 Theorem (Rockafellar) Let C ⊂ Rm be a nonempty convex set and let φ : C ↠ Rm be
a correspondence with nonempty values. Then φ is cyclically monotone decreasing if and only
if there is an upper semicontinuous concave function f : C → R satisfying

φ(x) ⊂ ∂f(x) for every x ∈ C.

Proof : If φ(x) ⊂ ∂f(x) for a concave f , then the definition of ∂f(x) and the same argument
used to prove Corollary 236 show that φ is cyclically monotone decreasing.

For the converse, assume φ is cyclically monotone decreasing. Fix any point x0 in C and
fix p0 ∈ φ(x0). Given any finite sequence (x1, p1), . . . , (xn, pn) in Rm × Rm, define the affine
function g x1,...,xn

p1,...,pn
by

g x1,...,xn
p1,...,pn

(y) = p0 · (x1 − x0) + · · · + pn · (y − xn).

The construction of such functions g x1,...,xn
p1,...,pn

is illustrated in Figures 4.6 and 4.7.
Now define the function f : C → R to be the pointwise infimum of the g x1,...,xn

p1,...,pn
as (x1, p1), . . . , (xn, pn)

ranges over all finite sequences in the graph of φ. That is,

f(y) = inf{g x1,...,xn
p1,...,pn

(y) : ∀i, xi ∈ C, pi ∈ φ(xi)}.

Since f is the pointwise infimum of a collection of continuous affine functions, it is concave by
part 4 of Exercise 135, and upper semicontinuous by Proposition 31.

Cyclical monotonicity implies that the infimum defining f is finite, that is, f(y) > −∞ for
every y ∈ C. To see this, fix some p in φ(y). Then by cyclical monotonicity

g x1,...,xn
p1,...,pn

(y) + p · (x0 − y) = p0 · (x1 − x0) + · · · + pn · (y − xn) + p · (x0 − y) ⩾ 0.

Rearranging gives
g x1,...,xn

p1,...,pn
(y) ⩾ p · (y − x0).

Therefore f(y) ⩾ p · (y − x0) > −∞ for any y.
We claim that f is the desired function. That is, any x, y in C and any p ∈ φ(x) satisfy the

supergradient inequality
f(x) + p · (y − x) ⩾ f(y).

To see this, let ε > 0 be given. Then by the definition of f , since f(x) is finite, there is a finite
sequence (x0, p0), . . . , (xn, pn) in the graph of φ with

f(x) + ε > g x1,...,xn
p1,...,pn

(x).

Extend this sequence by appending (x, p). Again by the definition of f , for all y,

g x1,...,xn,x
p1,...,pn,p

(y) ⩾ f(y).

But

g x1,...,xn,x
p1,...,pn,p

(y) = p0 · (x1 − x0) + · · · + pn · (x− xn) + p · (y − x) = g x1,...,xn
p1,...,pn

(x) + p · (y − x).

Combining these gives

f(x) + ε+ p · (y − x) > g x1,...,xn
p1,...,pn

(x) + p · (y − x) = g x1,...,xn,x
p1,...,pn,p

(y) ⩾ f(y).

Since ε > 0 is arbitrary, we conclude that f(x) + p · (y − x) ⩾ f(y), so indeed φ(x) ⊂ ∂f(x).
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g x1,x2,x3
p1,p2,p3

f

x0 x1 x2 x3

}
p2(x3 − x2) p1(x2 − x1)


p0(x1 − x0)

p0

p1
p2 p3

Figure 4.6. The function g x1,x2,x3
p1,p2,p3

(y) = p0 · (x1 −x0)+p1 · (x2 −x1)+p2 · (x3 −x2)+p3 · (y−x3),
where each pi is taken from ∂f(xi).

g x1,x2,x3
p1,p2,p3

f

x0 x1 x3 x2

p0

p1
p3 p2

Figure 4.7. Another version of g x1,x2,x3
p1,p2,p3

(y) = p0·(x1−x0)+p1·(x2−x1)+p2·(x3−x2)+p3·(y−x3),
where the xi have been reordered.
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4.27 Monotonicity and second derivatives
From Corollary 236 we know that the gradient of a concave function f : C → R, where C is an
open convex set in Rn, is cyclically monotone (decreasing). That is, it satisfies

n∑
k=0

f ′(xk) · (xk+1 − xk) ⩾ 0.

Therefore it is monotone (decreasing). That is,

f ′(x0) · (x1 − x0) + f ′(x1) · (x0 − x1) ⩾ 0,

which can be rearranged as (
f ′(x1) − f ′(x0)

)
· (x1 − x0) ⩽ 0.

This is enough to show that the second differential (if it exists) is negative semidefinite.
Consider a point x in C and choose v so that x± v to C. Then by monotonicity with x0 = x

and x1 = x+ λv, (
f ′(x+ λv) − f ′(x)

)
· (λv) ⩽ 0.

Dividing by the positive quantity λ2 implies

v ·
(
f ′(x+ λv) − f ′(x)

)
λ

⩽ 0.

Define the function g : (−1, 1) → R by

g(λ) = v · f ′(x+ λv).

In particular, if f is twice differentiable, then by the Chain Rule

D2f(x)(v, v) = g′(0) = lim
λ→0

v · g(λ) − g(0)
λ

= lim
λ→0

v ·
(
f ′(x+ λv) − f ′(x)

)
λ

⩽ 0.

Thus the Hessian matrix f ′′(x) is negative semidefinite, which gives another proof of half of
Fact 213.

238 Remark At this point I was a bit confused. If you are not confused, you may not wish to read this.
We have just shown that if a twice differentiable function has a monotone gradient, then it has negative

semidefinite Hessian, so it is concave, and therefore its gradient is actually cyclically monotone. Thus every
monotone gradient is cyclically monotone. Now Theorem 237 says that every cyclically monotone vector field
is a selection from the subdifferential of a concave function. I am embarrassed to admit it, but I thought for a
while therefore that the argument above allowed me to conclude that every monotone vector field is a selection
from the subdifferential of a concave function, which is a stronger claim (and not true).

What the argument above shows is this: Every monotone vector field that also happens to be a gradient of a
twice differentiable function is indeed cyclically monotone. But, there are differentiable vector fields that are not
gradients of twice differentiable functions. (A vector field is just a function from Rn into Rn. If it is the gradient
of a real function f , then f is called the potential of the field.) The reason for this is that second differentials are
symmetric (Corollary 101). So if x 7→ g(x) is a gradient of a twice differentiable function f , then

Djgi(x) = DiDjf(x) = DjDif(x) = Digj(x).
Now consider the vector field of Example 235, namely g : R2 → R2 defined by

g(x, y) = (2y − x, −y).
This vector field is continuously differentiable, but

D1g2 = 0, D2g1 = 2,

so g cannot be the gradient of any twice differentiable function. However, as we saw in Example 235, g is
monotone (decreasing), but not cyclically monotone (decreasing).

By the way, this is analogous to the “integrability problem” in demand theory. The Weak Axiom of Revealed
Preference can be used to show that the Slutsky matrix is negative quasidefinite (negative without necessarily
being symmetric), see, e.g., Samuelson [136, pp. 109–111] or Kihlstrom, MasColell, and Sonnenschein [92], but it
takes the Strong Axiom to show symmetry: Gale [56], Houthakker [78], Uzawa [152].
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Now let’s return to support functions.

239 Lemma Suppose x(p) minimizes p · x over the nonempty set A. Suppose further that it is
the unique minimizer of p · x over coA. If ∂2µC (p)

∂p2
i

exists (or equivalently ∂x(p)
∂pi

exists), then

∂xi(p)
∂pi

⩽ 0.

Do we need twice
differentiability or just
the existence of the
second partial????Proof : This follows from Corollary 194 and the discussion above.

This, by the way, summarizes almost everything interesting we now about cost minimization.
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4.28 Solutions of systems of equalities and inequalities
In this section we present some basic results on the existence of solutions to linear equalities and
inequalities. These results are in the form of alternatives, that is, “an opportunity for choice
between two things, courses, or propositions, either of which may be chosen, but not both” [117].
While it is possible to prove these results in inequalities in a purely algebraic fashion (cf. Gale [57,
Chapter 2]), the geometric approach is illuminating.

In this section we shall adopt David Gale’s [57] notation, which does not distin-
guish between row and column vectors. This means that if A is an n×m matrix, and
x is a vector, and I write Ax, you infer that x is an m-dimensional column vector,
and if I write yA, you infer that y is an n-dimensional row vector. The notation
yAx means that x is an m-dimensional column vector, y is an n-dimensional row
vector, and yAx is the scalar yA · x = y ·Ax.

Consider the system of linear equations

Ax = b.

If A has an inverse, then this system always has a unique solution, namely x = A−1b. But even
if A does not have an inverse, the system may have a solution, possibly several. This brings
up the question of how to characterize the existence of a solution. The answer is given by the
Fredhom Alternative, which may be found in Gale [57, Theorem 2.5] or Franklin [54, Example 4,
p. 57].

240 Theorem (Fredholm Alternative) Exactly one of the two following alternatives holds.

∃x Ax = b. (4.24)

∃y yA = 0 and y · b > 0. (4.25)

Proof : It is easy to see that both (4.24) and (4.25) cannot be true, for then we would have
0 = 0 · x = yAx = y · b > 0, a contradiction. Let M be the subspace spanned by the columns of
A, and suppose (4.24) is false. That is, b does not belong to M . Then by the strong Separating
Hyperplane Theorem 160 there is a nonzero vector y strongly separating the compact convex set
{b} from the closed convex set M , that is, y · b > y · z for each z ∈ M . Since M is a subspace we
have y · z = 0 for every z ∈ M , and in particular for each column of A, so yA = 0 and y · b > 0,
which is just (4.25).

The following corollary about linear functions is true in quite general linear spaces, see
Aliprantis and Border [3, Theorem 5.91, p. 212], but we shall provide another proof using some
of the special properties of Rn. Wim Luxemburg refers to this result as the Fundamental
Theorem of Duality.

241 Corollary Let p0, p1, . . . , pm ∈ Rn and suppose that p0 ·v = 0 for all v such that pi ·v = 0,
i = 1, . . . ,m. Then p0 is a linear combination of p1, . . . , pm. That is, there exist scalars
µ1, . . . , µm such that p0 =

∑m
i=1 µip

i.

Proof : Consider the matrix A whose columns are p1, . . . , pm, and set b = p0. By hypothesis
alternative (4.25) of Theorem 240 is false, so alternative (4.24) must hold. But that is precisely
the conclusion of this theorem.

Proof using orthogonal decomposition: Let M = span {p1, . . . , pm} and orthogonally project p0

onto M to get p0 = p0
M + p0

⊥, where p0
M ∈ M and p0

⊥ ⊥ M . That is, p0
⊥ · p = 0 for all p ∈ M .

In particular, pi · p0
⊥ = 0, i = 1, . . . ,m. Consequently, by hypothesis, p0 · p0

⊥ = 0 too. But

0 = p0 · p0
⊥ = p0

M · p0
⊥ + p0

⊥ · p0
⊥ = 0 + ∥p0

⊥∥.

Thus p0
⊥ = 0, so p0 = p0

M ∈ M . That is, p0 is a linear combination of p1, . . . , pm.
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column space of A

A1

A2

b

y

Figure 4.8. Geometry of the Fredholm Alternative

Proof using extension of linear functionals: cf. Aliprantis and Border [3, Theorem 5.91, p. 212].
Let us define the kernel by ker p = {x : p · x = 0} = {p}⊥. If p0 =

∑m
i=1 λip

i, then clearly∩m
i=1 ker pi ⊂ ker p0. To prove the converse, assume that

∩m
i=1 ker pi ⊂ ker p0. Define the

linear operator T : X → Rm by T (x) =
(
p1 · x, . . . , pm · x

)
. On the range of T define the linear

functional φ : T (X) → R by φ
(
p1 · x, . . . , pm · x

)
= p0 · x. The hypothesis

∩m
i=1 ker pi ⊂ ker p0

guarantees that φ is well defined. Now note that φ extends to all of Rm, so there exist scalars
λ1, . . . , λm such that p0(x) =

∑m
i=1 λip

i(x) for each x ∈ X, as desired.

To study inequalities, we start out with some preliminary results on finite cones.
Let {x1, . . . , xn} be a set of vectors in Rm. Let us say that the linear combination

∑n
i=1 λixi

depends on the subset A if A = {xi : λi ̸= 0}.
The next result appears, for instance, in Gale [57, Theorem 2.11, p. 50]. It is true for general

(not necessarily finite dimensional) vector spaces.

242 Lemma A nonnegative linear combination of a set of vectors can be replaced by a non-
negative linear combination depending on an independent subset.

That is, if x1, . . . , xn belong to an arbitrary vector space and y =
∑n

i=1 λixi where each λi is
nonnegative, then there exist nonnegative β1, . . . , βn such that y =

∑n
i=1 βixi and {xi : βi > 0}

is independent.

Proof : Recall that the empty set is independent. This covers the case where the xis are inde-
pendent and y = 0. We proceed by induction on the number of vectors xi on which y depends.
The case n = 1 is obvious.

So suppose the conclusion holds whenever y depends on no more than n−1 of the xis, and
suppose λi > 0 for each i = 1, . . . , n. If x1, . . . , xn itself constitutes an independent set, there is
nothing to prove, just set βi = λi for each i. On the other hand, if x1, . . . , xn are dependent,
then there exist numbers α1, . . . , αn, not all zero, such that

n∑
i=1

αixi = 0.
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We will cleverly rescale these αis and use them to eliminate one of the xis.
Without loss of generality we may assume that at least one αi > 0 (otherwise we could

multiply them all by −1). This implies that M = maxi
αi

λi
> 0. Renumbering if necessary, we

can assume without loss of generality that M = αn

λn
. Then λi ⩾ 1

M αi for all i and λn = 1
M αn.

Thus we can eliminate xn from the linear combination and still keep all the remaining coefficients
nonnegative:

y =
n∑

i=1
λixi − 1

M

n∑
i=1

αixi

=
n∑

i=1

(
λi − 1

M αi

)
xi

=
n−1∑
i=1

(
λi − 1

M αi

)
xi.

So we have shown that y can be written as a nonnegative linear combination of no more than
n−1 vectors, so by the induction hypothesis it depends on an independent subset.

As an application of Lemma 242 we digress to prove Carathéodory’s theorem on convex hulls
in finite dimensional spaces.

243 Carathéodory Convexity Theorem In Rn, every vector in the convex hull of a
nonempty set can be written as a convex combination of at most n+1 vectors from the set.

Proof : Let A be a nonempty subset of Rn, and let x belong to the convex hull of A. Then we
can write x as a convex combination x =

∑m
i=1 λixi of points xi belonging to A. For any vector

y in Rn consider the “augmented” vector ŷ in Rn+1 defined by ŷj = yj for j = 1, . . . , n and
ŷn+1 = 1. Then it follows that x̂ =

∑m
i=1 λix̂i since

∑m
i=1 λi = 1. Renumbering if necessary, by

Lemma 242, we can write x̂ =
∑k

i=1 αix̂i, where x1, . . . , xk are independent and αi > 0 for all
i. Since an independent set in Rn+1 has at most n+1 members, k ⩽ n+1. But this reduces to
the two equations x =

∑k
i=1 αixi and 1 =

∑k
i=1 αi. In other words, x is a convex combination

of k ⩽ n+1 vectors of A.

The next application of Lemma 242 is often asserted to be obvious, but is not so easy to
prove. It is true in general Hausdorff topological vector spaces.

244 Lemma Every finite cone is closed.

Proof for the finite dimensional case: Consider C = {
∑k

i=1 λixi : λi ⩾ 0, i = 1, . . . , k}, the
finite cone generated by the vectors x1, . . . , xk in the finite dimensional space Rm. Let y be
the limit of some sequence {yn} in C. In light of Lemma 242, we can write each yn as a
nonnegative linear combination of an independent subset of the xis. Since there are only finitely
many such subsets, by passing to a subsequence we may assume without loss of generality that
each yn depends on the same independent subset, say x1, . . . , xp. Writing yn =

∑p
i=1 λ

n
i xi, by

Corollary 49, we have y =
∑p

i=1 λixi, where λi = limn→∞ λn
i . Since λn

i ⩾ 0, so is λi. Therefore
y belongs to C.

Sketch of proof for general case: Let X be a Hausdorff topological vector space. Then any finite
dimensional subspace of X is closed, e.g., Aliprantis and Border [3, Corollary 5.22, p. 178], so it
suffices to show that the cone generated by a finite set of vectors is a closed subset of their (finite
dimensional) linear span. Furthermore, by the same arguments as in the finite dimensional case,
we may assume without loss of generality that we have a cone generated by an independent set.
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So let C = {
∑p

i=1 λixi : λi ⩾ 0 i = 1, . . . , p} be the cone generated by the independent
vectors x1, . . . , xp. Let L denote the p-dimensional subspace spanned by this basis. For each y
in L there is a unique p-vector λ(y) such that y =

∑p
1=1 λixi. (In the finite dimensional case, it

is given by λ(y) = (X ′X)−1X ′y.) It is straightforward to verify that the mapping λ : L → Rp

is a linear homeomorphism and that C is the inverse image under λ of the closed set Rp
+, which

shows that C is closed in L, and so in X too.

The next theorem is one of many more or less equivalent results on the existence of solutions
to linear inequalities.

245 Farkas’ Lemma Exactly one of the following alternatives holds. Either

xA = b (4.26)

for some x ≧ 0. OR (exclusive)
Ay ≧ 0 b · y < 0 (4.27)

for some y.

Proof : Postmultiplying (4.26) by y, we get xAy = b · y < 0, but premultiplying by x in (4.27),
we have xAy ⩾ 0 whenever x ≧ 0, so the alternatives are inconsistent.

Let C = {xA : x ≧ 0}. If (4.26) fails, then b does not belong to C. By Lemma 244, the
convex cone C is closed, so by the Strong Separating Hyperplane Theorem 160 there is some
nonzero y such that z · y ⩾ 0 for all z ∈ X and b · y < 0. But this is just (4.27).

For a purely algebraic proof of Farkas’ Lemma, see Gale [57, Theorem 2.6, p. 44]. The next
result is a variant of Farkas’ Lemma, see Gale [57, Theorem 2.9, p. 49].

246 Theorem Exactly one of the following alternatives holds. Either

xA ≦ b (4.28)

for some x ≧ 0. OR (exclusive)
Ay ≧ 0 b · y < 0 (4.29)

for some y ≧ 0.

Proof : It is easy to see that the alternatives are inconsistent, so suppose that (4.28) fails. This

means that there is no nonnegative solution (x, z) to the equalities xA+ zI = [x, z]
[
A
I

]
= b,

so by Farkas’ Lemma 245 there is some y such that
[
A
I

]
y =

[
Ay
Iy

]
≧ 0 and b · y < 0. But

this just says that (4.29) holds for some y ≧ 0.

Each of these results on solutions of linear inequalities has a corresponding result for more
general concave or convex functions and vice versa. For instance, the general Concave Alterna-
tive 169 has a linear formulation, which we shall present in just a moment. But first we mention
the following obvious fact about nonnegative vectors.

x ≧ 0 ⇐⇒
(
x · y ⩾ 0 for every y ≧ 0

)
.

We can now state the analog of Concave Alternative 169 for linear inequalities, perhaps
due to von Neumann and Morgenstern [158, § 16.4, p. 140] who called it the Theorem of the
Alternative for Matrices. It can also be found in Gale [57, Theorem 2.10, p. 49].
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247 Theorem Exactly one of the following alternatives holds. Either

xA ≦ 0 (4.30)

for some x > 0. OR (exclusive)
Ay ≫ 0 (4.31)

for some y > 0.

Proof : Define the function f : C = Rm
+ → Rn by f(y) = Ay. By the Concave Alternative,

either there exists some ȳ ∈ C = Rm
+ with f(ȳ) = Aȳ ≫ 0, or (exclusive) there are nonnegative

x1, . . . , xn, not all zero, that is x > 0, such that
∑n

i=1 xif
i(y) = xAy ≦ 0 for all y ∈ C = Rm

+ .
But by the obvious fact mentioned above, this just means xA ≦ 0.

Another related result is the Stiemke Alternative. It has important applications in the theory
of no-arbitrage pricing of financial assets.

248 Stiemke’s Theorem Let A be an n×m matrix. Either
(1) the system of inequalities

Ax > 0

has a solution x ∈ Rm,

Or else
(2) the system of equations

yA = 0

has a strictly positive solution y ≫ 0 in Rn

(but not both).

Proof : Clearly both (1) and (2) cannot be true, for then we must have both yAx = 0 (as yA = 0)
and yAx > 0 (as y ≫ 0 and Ax > 0). So it suffices to show that if (1) fails, then (2) must hold.

In geometric terms, the negation of (1) asserts that the spanM of the columns {A1, . . . , An}
intersects the nonnegative orthant of Rn only at the origin. Thus the unit simplex ∆ in Rn is
disjoint from M if and only if (1) fails, where ∆ = {x ∈ Rn : x ≧ 0 and

∑n
j=1 xj = 1}.9

So assume that condtion (1) fails. Then since ∆ is compact and convex and M is closed and
convex, by Theorem 160, there is a hyperplane strongly separating ∆ and M . That is, there is
some nonzero y ∈ Rn and some ε > 0 satisfying

y · x+ ε < y · z for all x ∈ M, z ∈ ∆.

SinceM is a linear subspace, we must have y ·x = 0 for all x ∈ M . Consequently y ·z > ε > 0
for all z ∈ ∆. Since the jth unit coordinate vector ej belongs to ∆, we see that yj = y · ej > 0.
That is, y ≫ 0.

Since each Ai ∈ M , we have that y ·Ai = 0, i.e.,

yA = 0.

This completes the proof.

The next alternative is a variation on Stiemke’s.
9Note that since M is a linear subspace, if M intersects the nonnegative orthant at a nonzero point x, then
1∑
i

xi

x belongs to M ∩ ∆.
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column space of A

∆

A1

A2 y

Rn
++

Figure 4.9. Geometry of the Stiemke Alternative

249 Theorem Let A be an n×m matrix. Either
(1) the system of inequalities

Ax ≫ 0
has a solution x ∈ Rm,

Or else
(2) the system of equations

yA = 0, y · 1 = 1
has a semi-positive solution y > 0 in Rn

(but not both).

Proof : Clearly both (1) and (2) cannot be true, for then we must have both yAx = 0 (as yA = 0)
and yAx > 0 (as y > 0 and Ax ≫ 0). So it suffices to show that if (1) fails, then (2) must hold.

Assume that condtion (1) fails. Then the span M of the columns {A1, . . . , An} is disjoint
from the strictly positive orthant Rn

++. By Theorem 165, there is a nonzero y separating Rn
++,

and M . As in the above arguments we must have yA = 0, and y > 0, so it can be normalized
to satisfy y · 1 = 1.

Finally we come to another alternative, Motzkin’s Transposition Theorem [113], proven in
his 1934 Ph.D. thesis. This statement is take from his 1951 paper [114].10

250 Motzkin’s Transposition Theorem Let A be an m × n matrix, let B be an ℓ × n
matrix, and let C be an r × n matrix, where B or C may be omitted (but not A). Exactly one
of the following alternatives holds. Either there exists x ∈ Rn satisfying

Ax ≫ 0
Bx ≧ 0
Cx = 0

(4.32)

10Motzkin [114] contains an unfortunate typo. The condition Ax ≫ 0 is erroneously given as Ax ≪ 0.
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column space of A
A1A2

y

Rn
++

Figure 4.10. Geometry of Theorem 249

or else there exist p1 ∈ Rm, p2 ∈ Rℓ, and p3 ∈ Rr satisfying

p1A+ p2B + p3C = 0
p1 > 0
p2 ≧ 0.

(4.33)

Motzkin expressed (4.33) in terms of the transpositions of A, B, and C.

251 Exercise Prove the Transposition Theorem. Hint: If x satisfies (4.32), it can be scaled to
satisfy 

−A
−B
C

−C

x ≦


−1
0
0
0

 .
Apply the variant Farkas’ Lemma 246. □
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4.29 Constrained maxima and Lagrangean saddlepoints
In this section we discuss the relation between constrained maxima of concave functions and
saddlepoints of the so-called Lagrangean.

252 Definition Let φ : X × Y → R. A point (x∗, y∗) in X × Y is a saddlepoint of φ (over
X × Y ) if it satisfies

φ(x, y∗) ⩽ φ(x∗, y∗) ⩽ φ(x∗, y) for all x ∈ X, y ∈ Y.

That is, (x∗, y∗) is a saddlepoint of φ if x∗ maximizes φ(·, y∗) over X and y∗ minimizes
φ(x∗, ·) over Y . Saddlepoints of a function have the following nice interchangeability property.

253 Lemma (Interchangeability of saddlepoints) Let φ : X × Y → R, and let (x1, y1)
and (x2, y2) be saddlepoints of φ. Then

φ(x1, y1) = φ(x2, y1) = φ(x1, y2) = φ(x2, y2).

Consequently (x1, y2) and (x2, y1) are also saddlepoints.

Proof : We are given that

φ(x, y1) ⩽
(4.34a)

φ(x1, y1) ⩽
(4.34b)

φ(x1, y) x ∈ X, y ∈ Y, (4.34)

and
φ(x, y2) ⩽

(4.35a)
φ(x2, y2) ⩽

(4.35b)
φ(x2, y) x ∈ X, y ∈ Y. (4.35)

Evaluating (4.34a) at x = x2 yields

φ(x2, y1) ⩽ φ(x1, y1) (4.36)

evaluating (4.34b) at y = y2 yields

φ(x1, y1) ⩽ φ(x1, y2) (4.37)

evaluating (4.35a) at x = x1 yields

φ(x1, y2) ⩽ φ(x2, y2) (4.38)

and evaluating (4.35b) at y = y1 yields

φ(x2, y2) ⩽ φ(x2, y1). (4.39)

Combining these yields

φ(x2, y1) ⩽
(4.36)

φ(x1, y1) ⩽
(4.37)

φ(x1, y2) ⩽
(4.38)

φ(x2, y2) ⩽
(4.39)

φ(x2, y1)

which implies that
φ(x2, y1) = φ(x1, y1) = φ(x1, y2) = φ(x2, y2). (4.40)

To see that (x2, y1) is a saddlepoint, observe

φ(x, y1) ⩽
(4.34a)

φ(x1, y1) =
(4.40)

φ(x2, y1) =
(4.40)

φ(x2, y2) ⩽
(4.35b)

φ(x2, y) x ∈ X, y ∈ Y.

Similarly, (x1, y2) is also a saddlepoint.
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Saddlepoints play an important rôle in the sis of constrained maximum problems via La-
grangean functions.

254 Definition Given f, g1, . . . , gm : X → R, the associated Lagrangean L : X × Λ → R is
defined by

L(x, λ) = f(x) +
m∑

j=1
λjgj(x) = f(x) + λ · g(x),

where Λ is an appropriate subset of Rm. (Usually Λ = Rm or Rm
+ .) The components of λ are

called Lagrange multipliers.

The first result is that saddlepoints of Lagrangeans are constrained maxima. This result
makes no restrictive assumptions on the domain or the functions.

255 Theorem (Lagrangean saddlepoints are constrained maxima) Let X be an arbi-
trary set, and let f, g1, . . . , gm : X → R. Suppose that (x∗, λ∗) is a saddlepoint of the Lagrangean
L(x, λ) = f + λ · g (over X × Rm

+). That is,

L(x, λ∗) ⩽
(4.41a)

L(x∗, λ∗) ⩽
(4.41b)

L(x∗, λ) x ∈ X, λ ≧ 0. (4.41)

Then x∗ maximizes f over X subject to the constraints gj(x) ⩾ 0, j = 1, . . . ,m, and furthermore

λ∗
jgj(x∗) = 0 j = 1, . . . ,m. (4.42)

Proof : Inequality (4.41b) implies λ∗ ·g(x∗) ⩽ λ ·g(x∗) for all λ ≧ 0. Therefore g(x∗) ≧ 0 (why?),
so x∗ satisfies the constraints. Setting λ = 0, we see that λ∗ · g(x∗) ⩽ 0. This combined with
λ ≧ 0 and g(x∗) ≧ 0 implies λ∗ · g(x∗) = 0. Indeed it implies λ∗

jgj(x∗) = 0 for j = 1, . . . ,m.
Now note that (4.41a) implies f(x) + λ∗ · g(x) ⩽ f(x∗) for all x. Therefore, if x satisfies the

constraints, g(x) ≧ 0, we have f(x) ⩽ f(x∗), so x∗ is a constrained maximizer.

Condition (4.42) implies that if the multiplier λ∗
j is strictly positive, then the corresponding

constraint is binding, gj(x∗) = 0; and if a constraint is slack, gj(x∗) > 0, then the correspond-
ing multiplier satisfies λ∗

j = 0. These conditions are sometimes called the complementary
slackness conditions.

The converse of Theorem 255 is not quite true, but almost. To state the correct result we
now introduce the notion of a generalized Lagrangean.

256 Definition A generalized Lagrangean Lµ : X × Λ → R, where µ ⩾ 0, is defined by

Lµ(x, λ) = µf(x) +
m∑

j=1
λjgj(x),

where Λ is an appropriate subset of Rm.

Note that each choice of µ generates a different generalized Lagrangean. However for Λ =
Rm

+ , as long as µ > 0, a point (x, λ) is a saddlepoint of the Lagrangean if and only if it is a
saddlepoint of the generalized Lagrangean. Thus the only case to worry about is µ = 0.

The next results state that for concave functions satisfying a regularity condition, constrained
maxima are saddlepoints of some generalized Lagrangean.
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257 Theorem (Concave constrained maxima are nearly Lagrangean saddlepoints)
Let C ⊂ Rn be convex, and let f, g1, . . . , gm : C → R be concave. Suppose x∗ maximizes f sub-
ject to the constraints gj(x) ⩾ 0, j = 1, . . . ,m. Then there exist real numbers µ∗, λ∗

1, . . . , λ
∗
m ⩾ 0,

not all zero, such that (x∗, λ∗) is a saddlepoint of the generalized Lagrangean Lµ∗ . That is,

µ∗f(x) +
m∑

j=1
λ∗

jgj(x) ⩽
(4.43a)

µ∗f(x∗) +
m∑

j=1
λ∗

jgj(x∗) ⩽
(4.43b)

µ∗f(x∗) +
m∑

j=1
λjgj(x∗) (4.43)

for all x ∈ C and all λ1, . . . , λm ⩾ 0. Furthermore
m∑

j=1
λ∗

jgj(x∗) = 0. (4.44)

Proof : Since x∗ is a constrained maximizer there is no x ∈ C satisfying f(x) − f(x∗) > 0
and g(x) ≧ 0. Therefore the Concave Alternative 169 implies the existence of nonnegative
µ∗, λ∗

1, . . . , λ
∗
m, not all zero, satisfying

µ∗f(x) +
m∑

j=1
λ∗

jgj(x) ⩽ µ∗f(x∗) for every x ∈ C.

Evaluating this at x = x∗ yields
∑m

j=1 λ
∗
jgj(x∗) ⩽ 0. But each term in this sum is the product

of two nonnegative terms, so (4.44) holds. This in turn implies (4.43a). Given that gj(x∗) ⩾ 0
for all j, (4.44) also implies (4.43b).

So as not lose sight of the forest for the trees, here is an immediate but importance conse-
quence of the Saddlepoint Theorem. It essentially asserts that the Lagrange multipliers on the
constraints are conversion factors between the values of the constraint functions and the objec-
tive function so that a constrained maximizer of the objective is an unconstrained maximizer of
the Lagrangean. In Section 5.10 we will see another connection between Lagrange multipliers
and conversion factors.

258 Corollary (Constrained maximizers maximize the generalized Lagrangean) Let
C ⊂ Rn be convex, and let f, g1, . . . , gm : C → R be concave. Suppose x∗ maximizes f subject
to the constraints gj(x) ⩾ 0, j = 1, . . . ,m. Then there exist real ns umbers µ∗, λ∗

1, . . . , λ
∗
m ⩾ 0,

not all zero, such that x∗ maximizes the generalized Lagrangean Lµ∗ . That is,

µ∗f(x) +
m∑

j=1
λ∗

jgj(x) ⩽ µ∗f(x∗) +
m∑

j=1
λ∗

jgj(x∗).

for all x ∈ C.

259 Corollary (When constrained maxima are true Lagrangean saddlepoints) Un-
der the hypotheses of Theorem 257 suppose in addition that Slater’s Condition,

∃x̄ ∈ C g(x̄) ≫ 0, (S)

is satisfied. Then µ∗ > 0, and may be taken equal to 1. Consequently x∗, λ∗
1, . . . , λ

∗
m is a

saddlepoint of the Lagrangean for x ∈ C, λ ≧ 0. That is,

L(x, λ∗) ⩽ L(x∗, λ∗) ⩽ L(x∗, λ) x ∈ C, λ ≧ 0, (4.45)

where L(x, λ) = f(x) + λ · g(x).
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Proof : Suppose µ∗ = 0. Then evaluating (4.43) at x = x̄ yields λ∗ · g(x̄) ⩽ 0, but g(x̄) > 0
implies λ∗

j = 0, j = 1, . . . ,m. Thus µ = 0 and λj = 0, j = 1, . . . ,m, a contradiction. Therefore
µ > 0, and by dividing the Lagrangean by µ, we may take µ = 1. The remainder is then just
Theorem 257.

Again, we state the obvious.

260 Corollary (Constrained maximizers maximize the Lagrangean) Under the hy-
potheses of Corollary 259, The point x∗ maximizes the Lagrangean, that is,

L∗(x) ⩽ L∗(x∗), x ∈ C.

where L∗(x) = f(x) + λ∗ · g(x).

The above result may fail when the functions are not concave, even though they may be
otherwise well behaved. See Example 269 below.

Karlin [89, vol. 1, Theorem 7.1.1, p. 201] proposed the following alternative to Slater’s
Condition:

∀λ > 0 ∃x̄(λ) ∈ C λ · g
(
x̄(λ)

)
> 0,

which we may as well call Karlin’s condition.

261 Theorem Let C ⊂ Rn be convex, and let g1, . . . , gm : C → R be concave. Then g satisfies
Slater’s Condition if and only it satisfies Karlin’s Condition.

Proof : Clearly Slater’s Condition implies Karlin’s. Now suppose g violates Slater’s Condition.
Then by the Concave Alternative Theorem 169, it must also violate Karlin’s.

The next example shows what can go wrong when Slater’s Condition fails.

262 Example In this example, due to Slater [144], C = R, f(x) = x, and g(x) = −(1 − x)2.
Note that Slater’s Condition fails because g ⩽ 0. The constraint set [g ⩾ 0] is the singleton {1}.
Therefore f attains a constrained maximum at x∗ = 1. There is however no saddlepoint over
R × R+ at all of the Lagrangean

L(x, λ) = x− λ(1 − x)2 = −λ+ (1 + 2λ)x− λx2.

To see that L has no saddlepoint, consider first the case λ = 0. Then L(x, 0) = x, so there is
no maximizer with respect to x. On the other hand if λ > 0, the first order condition for a
maximum in x is ∂L

∂x = 0, or 1 + 2λ− 2λx = 0, which implies x = 1 + (1/2λ) > 1. But for x > 1,
∂L
∂λ = −(1 − x)2 < 0, so no minimum with respect to λ exists. □

4.29.1 The rôle of Slater’s Condition
In this section we present a geometric argument that illuminates the rôle of Slater’s Condition
in the saddlepoint theorem. The saddlepoint theorem was proved by invoking the Concave
Alternative Theorem 169, so let us return to the underlying argument used in its proof. In the
framework of Theorem 257, define the function h : C → Rm+1 by

h(x) =
(
g1(x), . . . , gm(x), f(x) − f(x∗)

)
and set

H = {h(x) : x ∈ C} and Ĥ = {y ∈ Rm+1 : ∃x ∈ C y ≦ h(x)
}
.

Then Ĥ is a convex set bounded in part by H. Figure 4.11 depicts the sets H and Ĥ for
Slater’s example 262, where f(x) − f(x∗) is plotted on the vertical axis and g(x) is plotted on
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f(x) − f(x∗)

g(x)

Ĥ

Figure 4.11. The sets H and Ĥ for Slater’s example.

the horizontal axis. Now if x∗ maximizes f over the convex set C subject to the constraints
gj(x) ⩾ 0, j = 1, . . . ,m, then h(x∗) has the largest vertical coordinate among all the points in
H whose horizontal coordinates are nonnegative.

The semipositive m+1-vector λ̂∗ = (λ∗
1, . . . , λ

∗
m, µ

∗) from Theorem 257 is obtained by sepa-
rating the convex set Ĥ and Rm+1

++ . It has the property that

λ̂∗ · h(x) ⩽ λ̂∗h(x∗)

for all x ∈ C. That is, the vector λ̂∗ defines a hyperplane through h(x∗) such that the entire
set Ĥ lies in one half-space. It is clear in the case of Slater’s example that the hyperplane is a
vertical line, since it must be tangent to H at h(x∗) = (0, 0). The fact that the hyperplane is
vertical means that µ∗ (the multiplier on f) must be zero.

If there is a non-vertical hyperplane through h(x∗), then µ∗ is nonzero, so we can divide by
it and obtain a full saddlepoint of the true Lagrangean. This is where Slater’s condition comes
in.

In the one dimensional, one constraint case, Slater’s Condition reduces to the existence of x̄
satisfying g(x̄) > 0. This rules out having a vertical supporting line through x∗. To see this,
note that the vertical component of h(x∗) is f(x∗) − f(x∗) = 0. If g(x∗) = 0, then the vertical
line through h(x∗) is simply the vertical axis, which cannot be, since h(x̄) lies to the right of
the axis. If g(x∗) > 0, then Ĥ includes every point below h(x∗), so the only line separating Ĥ
and R2

++ is horizontal, not vertical. See Figure 4.12.

g(x)

f(x) − f(x∗)

h(x̄)

h(x∗)

⊂ Ĥ

Figure 4.12. Slater’s condition guarantees a non-vertical supporting line.

In Figure 4.12, the shaded area is included in Ĥ. For instance, let C = (−∞, 0], f(x) = x,
and g(x) = x+ 1. Then the set Ĥ is just {y ∈ R2 : y ≦ (0, 1)}.
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In the next section we shall see that if f and the gjs are linear, then Slater’s Condition is
not needed to guarantee a non-vertical supporting line. Intuitively, the reason for this is that
for the linear programming problems considered, the set Ĥ is polyhedral, so even if g(x∗) = 0,
there is still a non-vertical line separating Ĥ and Rm

++. The proof of this fact relies on our
earlier results on linear inequalities. It is subtle because Slater’s condition rules out a vertical
supporting line. In the linear case, there may be a vertical supporting line, but if there is, there
is also a non-vertical supporting line that yields a Lagrangean saddlepoint. As a case in point,
consider C = (−∞, 0], f(x) = x, and g(x) = x. Then the set Ĥ is just {y ∈ R2 : y ≦ 0}, which
is separated from R2

++ by every semipositive vector.

4.30 The saddlepoint theorem for linear programming
The material for this handout is based largely on the beautifully written book by David Gale [57].

A maximum linear program in inequality form11 is a constrained maximization prob-
lem of the form

maximize
x

p · x

subject to

xA ≦ q (4.46)
x ≧ 0 (4.47)

where x and p belong to Rn, q belongs to Rm, and A is n × m. The program is feasible if
there is some x satisfying the constraints (4.46) and (4.47). Every maximum linear program in
inequality form has a dual program, which is the minimization problem:

minimize
y

q · y (4.48)

subject to

Ay ≧ p (4.49)
y ≧ 0. (4.50)

The original maximum linear program may be called the primal program to distinguish it from
the dual.

Let us start by examining the Lagrangean for the primal program. Write (4.46) as qj −
(xA)j ⩾ 0, j = 1, . . . ,m, and let yj denote the Lagrange multiplier for this constraint. Incorpo-
rate (4.47) by setting the domain X = Rn

+. The Lagrangean is then

L(x, y) = p · x+ q · y − xAy. (4.51)

Treating the dual as the problem of maximizing −q · y subject to Ay − p ≧ 0, and using x to
denote the vector of Lagrange multipliers, the Lagrangean for the dual is:

−q · y + xAy − x · p,

which is just the negative of (4.51). Consequently, by the Saddlepoint Theorem, if (x̄, ȳ) is a
saddlepoint of L(x, y) = p·x+q ·y−xAy over Rn ×Rm, then x̄ is optimal for the primal program
11Gale [57] refers to this as the “standard form” of a linear program. However Dantzig [39] uses the term

standard form in a different fashion. The expression “inequality form” has the virtue of being descriptive.
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and ȳ is optimal (minimal) for the dual program. In particular, if there is a saddlepoint, then
both programs are feasible. If we knew that both programs satisfied Slater’s Condition, then the
Saddlepoint Theorem would assert that any pair of optimal solutions would be a saddlepoint
of the Lagrangean. Remarkably, for the linear programming case, we do not need Slater’s
Condition.

263 Saddlepoint Theorem for Linear Programming The primal and dual are simulta-
neously feasible if and only if the function

L(x, y) = p · x+ q · y − xAy

has a saddlepoint in Rn
+ × Rm

+ . A pair (x̄, ȳ) is a saddlepoint if and only if x̄ is optimal for the
primal and ȳ is optimal for the dual.

A simple consequence worth noting is that the primal has an optimum if and only if the dual
does. The proof is broken down into a series of lemmas.

264 Lemma If x is feasible for the primal program and y is feasible for its dual, then p·x ⩽ q ·y.

Proof : Suppose x satisfies (4.46) and y ≧ 0. Then xAy ⩽ q · y. Likewise if y satisfies (4.49) and
x ≧ 0, then xAy ⩾ x · p. Combining these pieces proves the lemma.

This allows us to immediately conclude the following.

265 Corollary (Optimality Criterion for LP) If x is feasible for the primal program and
y is feasible for the dual, and if p · x = q · y = xAy, then x is optimal and y is optimal for the
dual program.

A consequence of this is the following result that Gale refers to as the Equilibrium Theo-
rem. It is also known as the Complementary Slackness Theorem.

266 Complementary Slackness Theorem Suppose x and y are feasible for the primal and
dual respectively. They are optimal if and only if both

(xA)j < qj =⇒ yj = 0 (4.52)

and
(Ay)i > pi =⇒ xi = 0. (4.53)

Proof : Suppose x and y are feasible for the primal and dual respectively. From xA ≦ q and
y ≧ 0, we have xAy ⩽ q · y with equality if and only if (4.52) holds. Similarly, (4.53) holds if
and only if xAy = p · x. The conclusion now follows from Corollary 265).

The gap remaining is to show that if x̄ is optimal, then the dual has an optimal solution ȳ
and that p · x̄ = q · ȳ (instead of p · x̄ < q · ȳ). This brings us to the following.

267 Fundamental Duality Theorem of LP If both a maximum linear program in inequality
form and its dual are feasible, then both have optimal solutions, and the values of the two programs
are the same. If one of the programs is infeasible, neither has a solution.

Proof : (Gale [57]) Start by assuming both programs are feasible. We already know that if x
and y are feasible for the primal and dual respectively, then p · x ⩽ q · y. Thus it suffices to find
a solution (x, y) ≧ 0 to the inequalities

xA ≦ q

−yA′ ≦ −p
y · q − x · p ⩽ 0,
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or, in matrix form
[x, y]

[
A 0 −p
0 −A′ q

]
≦ [q,−p, 0]. (4.54)

Either these inequalities have a solution, or by a theorem of the alternative, there is a nonnegative

vector

uv
α

 ≧ 0, where u ∈ Rm
+ , v ∈ Rn

+, and α ∈ R+, satisfying

[
A 0 −p
0 −A q

] u
v
α

 ≧

 0
0
0

 (4.55)

and

[q,−p, 0]

 u
v
α

 < 0. (4.56)

We shall show that this latter set of inequalities does not have a solution: Suppose by way
of contradiction that (4.55) and (4.56) have a nonnegative solution. Rewriting (4.55), we have

Au ≧ αp (4.57)

and
vA ≦ αq, (4.58)

while (4.56) becomes
q · u < p · v. (4.59)

Let x̄ ≧ 0 be feasible for the primal, that is, x̄A ≦ q. Then

x̄Au ⩽ q · u (4.60)

since u ≧ 0. Similarly let ȳ ≧ 0 be feasible for the dual, that is, Aȳ ≧ p. Then

vAȳ ⩾ v · p (4.61)

since v ≧ 0.
We next show that α ̸= 0. For suppose α = 0. Then (4.57) becomes Au ≧ 0, which implies

x̄Au ⩾ 0,

since x̄ ≧ 0. Also (4.58) implies
vAȳ ⩽ 0,

since ȳ ≧ 0. Combining this with (4.60) and (4.61) yields

q · u ⩾ x̄Au ⩾ 0 ⩾ vAȳ ⩾ v · p,

which contradicts (4.59).
This shows that α > 0, so we may without loss of generality assume α = 1. In this case,

(4.57) becomes Au ≧ p and (4.58) becomes vA ≦ q, which imply that v is feasible for the primal
program and u is feasible for the dual. Therefore, by Lemma 264, q · u ⩾ p · v, which again
contradicts (4.59). This contradiction shows that if both programs are feasible, then both have
optimal solutions and both programs have the same value.

If either program is infeasible, then certainly it cannot have an optimal solution. So suppose
that the primal program is infeasible, but the dual is feasible. That is, xA ≦ q has no nonnegative
solution, so by the theorem of the alternative again, there is a nonnegative y satisfying Ay ≧ 0
and q · y < 0. Let z be any feasible nonnegative solution to the dual. Then z + αy is feasible
for any α ⩾ 0, and q · (z + αy) = q · z + αq · y → −∞ as α → ∞. Therefore no optimal solution
exists for the dual.

A similar argument works if the dual is infeasible, but the primal is feasible.
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You may suspect that it is possible to combine linear constraints with more general concave
constraints that satisfy Slater’s Condition. This is indeed the case as Uzawa [151] has shown.
(See also Moore [111].)

4.30.1 Other formulations
Remember that the dual of a maximum linear program in inequality form is a linear program
of the form

minimize
y

q · y

subject to

Ay ≧ p

y ≧ 0

where x and p belong to Rn, q belongs to Rm, and A is n × m. Let us call this a minimum
linear program in inequality form. Now the dual program itself can be rewritten as the
following maximum LP in inequality form:

maximize
y

−q · y

subject to

y(−A′) ≦ −p
y ≧ 0,

where A′ is the transpose of A. The dual of this program is:

minimize
x

−p · x

subject to

−A′x ≧ −p
x ≧ 0,

or
maximize

x
p · x

subject to

xA ≦ p

x ≧ 0,

which is our primal. Thus the dual of a minimum LP in inequality form is a maximum LP in
inequality form, and vice-versa. Moreover the dual of the dual is the primal.

Not every linear program comes to us already in inequality form, nor is the inequality form
always the easiest to work with. There are other forms, some of which have names, and all
of which can be translated into one another. In fact, we just translated a minimum inequality
form into a maximum inequality form above. Each of these forms also has a dual, and the
program and its dual satisfy the Fundamental Duality Theorem of LP 267. That is, if both a
linear program (in any form) and its dual are feasible, then both have optimal solutions, and
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the values of the two programs are the same. If one of the programs is infeasible, neither has a
solution.

Let us start with a linear program in general maximum form, which allows for linear
inequalities and equations, and optional nonnegativity constraints.

maximize
x

p · x =
n∑

i=1
pixi

subject to

(xA)j ⩽ qj j /∈ E

(xA)j = qj j ∈ E

xi ⩾ 0 i ∈ N

where N , the set of nonnegativity constraints on components of x is a subset of {1, . . . , n}, and
E is a subset of {1, . . . ,m}. Note that (xA)j = x · Aj (where Aj is the jth column of A) so by
replacing Aj by −Aj and qj by −qj , we can convert ⩾ constraints to ⩽ constraints, so this form
is reasonably general.

We can translate this into inequality maximum form as follows. First we add a vector z ∈ Rn

of slack variables and require x ≧ 0 and z ≧ 0. We replace x in the inequalities by x − z,
which has components unrestricted in sign. To capture the requirement that xi − zi ⩾ 0 for
i ∈ N , we add the inequality z · ei ⩽ 0, where ei is the ith unit coordinate vector in Rn. (Do
you see why this works?) Now by replacing each equality with a pair of inequalities,

(xA)j = qj ⇐⇒ x ·Aj ⩽ qj and x · (−Aj) ⩽ −qj ,

we have the following inequality maximum problem

maximize
x

(p,−p) · (x, z) = p · (x− z)

subject to

[x, z]
[

A −AE 0
−A AE D

]
≦ [q, d, 0]

[x, z] ≧ 0

where

AE is the n× |E| matrix whose columns are Aj , j ∈ E,

D is the n× |N | matrix whose columns are ei, i ∈ N,

and d is the |E|-vector whose components are −qj , j ∈ E.
The dual of this is the inequality minimum problem

minimize
ŷ,u,v

[q, d, 0] · [ŷ, u, v]

subject to

[
A −AE 0

−A AE D

]ŷu
v

 ≧
[
p

−p

]
[ŷ, u, v] ≧ 0,
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where u ∈ R|E| and v ∈ R|N |. Now define y by

yj =

{
ŷj − uj j ∈ E

ŷj j /∈ E

and observe that the objective function can be rewritten as q · y and the constraints as

Ay ⩾ p

−Ay +Dv ⩾ −p
yj ⩾ 0 j /∈ E

v ≧ 0.

Now (Dv)i =

{
vi i ∈ N

0 i /∈ N
, so for i /∈ N we must have (Ay)i = pi and (Ay)i ⩾ pi otherwise.

In other words the dual can be written:

minimize
y

q · y

subject to

(Ay)i ⩾ pi i ∈ N

(Ay)i = pi i /∈ N

yj ⩾ 0 j /∈ E.

Recall that the variables in the dual are the Lagrange multipliers for the primal. Thus we see
that, the Lagrange multipliers associated with the equality constraints (i ∈ E) are not a priori
restricted in sign, while the multipliers for the inequality constraints (i /∈ E) are nonnegative.
Since the primal variables are the Lagrange multipliers for the dual program, the nonnegativity
constraints (i ∈ N) on the primal correspond to inequality constraints in the dual, and the
unrestricted primal variable are associated with equality constraints in the dual.

There is one more useful form for linear programs, which is called the equality form.12 In
it, all the constraints are equations, and all the variables are nonnegative. An LP is in equality
maximum form if it is written as:

maximize
x

p · x

subject to

xA = q

x ≧ 0

To transform an inequality form into the equality form, introduce slack variables x ∈ Rm and
observe that

xA ≦ q ⇐⇒ xA+ z = q, z ≧ 0.

I leave it to you to verify that the dual program can be written as the decidedly non-equality
minimum problem

12The equality form is what Dantzig [39] calls the standard form, and what Gale [57] calls the canonical form.
Dantzig uses the term canonical in a different fashion.
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Primal program Dual program
Inequality maximum form Inequality minimum form

maximizex p · x minimizey q · y
subject to subject to

xA ≦ q

x ≧ 0
Ay ≧ p

y ≧ 0

Equality maximum form
maximizex p · x minimizey q · y

subject to subject to

xA = q

x ≧ 0
Ay ≧ p

Equality minimum form
minimizey q · y maximizex p · x

subject to subject to

Ay = p

y ≧ 0
xA ≦ q

General maximum form General minimum form
maximizex p · x minimizey q · y

subject to subject to

(xA)j ⩽ qj j /∈ E

(xA)j = qj j ∈ E

xi ≧ 0 i ∈ N

(Ay)i ⩾ pi i ∈ N

(Ay)i = pi i /∈ N

yj ⩾ 0 j /∈ E

Table 4.1. Forms of linear programs and their duals.

minimize
y

q · y

subject to

Ay ≧ p

Note the lack of sign restrictions on y.
Table 4.1 summarizes these forms and their dual programs.

4.31 Linear equations as LPs
It is possible to recast the problem of solving linear equations and inequalities as LP problems.
Consider the problem of finding a nonnegative solution to a system of equations. That is, find
x such that

xA = q
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x ≧ 0.

Consider the linear program in equality minimum form:

minimize
x,z

1 · z

subject to

xA+ z = q

[x, z] ≧ 0

Here 1 is the vector whose components are all 1. Without loss of generality we may assume
q ≧ 0, for if qj < 0 we may multiply Aj and qj by −1 without affecting the solution set. Then
note that this program is feasible, since x = 0, z = q is a nonnegative feasible solution. Since we
require z ≧ 0, we have 1 · z ⩾ 0 and 1 · z = 0 if and only if z = 0, in which case xA = q. Thus, if
this linear program has value 0 if and only xA = q, x ≧ 0 has a solution, and any optimal (x, z)
provides a nonnegative solution to the equation.

At this point you might be inclined to say “so what?” In another handout, I will describe the
simplex algorithm, which is a special version of Gauss–Jordan elimination, that is a reasonably
efficient and easily programmable method for solving linear programs. In other words, it also
finds nonnegative solutions to linear equations when they exist.
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Section 5

Lagrange multiplier theory

5.1 Classical Lagrange Multiplier Theorem
Recall the following definition.

268 Definition A point x∗ is a constrained local maximizer of f subject to the constraints
g1(x) = α1, g2(x) = α2,…, gm(x) = αm in some neighborhood W of x∗ if x∗ satisfies the
constraints and also satisfies f(x∗) ⩾ f(x) for all x ∈ W that also satisfy the constraints.

The classical Lagrange Multiplier Theorem on constrained optima for differentiable functions
has a simple geometric interpretation, which is easiest to see with a single constraint. Consider
a point that maximizes f(x) subject to the equality constraint g(x) = α. It should be clear
from Figure 5.1 that at a point where a local maximum occurs, the level curves of f and g must

g = α

g = α

x∗

f ′

Figure 5.1. Constrained Maximum with an Equality Constraint.

be tangent. Since the gradient vectors are always perpendicular to the tangent line, they must
be colinear.1 Algebraically, this means that there are coefficients µ∗ and λ∗ (multipliers, if you
will), not both zero, satisfying

µ∗f ′(x∗) + λ∗g′(x∗) = 0.
In general, this is all that can be said. But if the gradient g′ is nonzero, then, as we shall see, the
multiplier on f ′ can be taken to be unity, and we get the more familiar condition, f ′ +λ∗g′ = 0.

1I know that this is usually spelled collinear, but my dictionary [117] lists colinear as a standard English
word (bottom section, p. 524). The other spelling derives from assimilation of the prefix com-, derived from the
Latin cum. The rules of assimilation change com- to col- before l, to cor- before r, to con- before any consonant
except b, h, l, m, p, r, and w, to co- before a vowel, h, w, and sometimes before other consonants. All this seems
unAmerican to me, so I prefer colinear. On the other hand, I still write correspondence.
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Note that this does not imply that λ itself is nonzero, since f ′ may be zero itself. Also note
that in general we cannot say anything about the sign of λ∗. That is, there is nothing to tell
us if g′ points in the same direction as f ′, or the opposite direction. This changes when we
have an inequality constraint. If there is a local maximum of f subject to g(x) ⩾ α, then the
gradient of g points into [g > α], and the gradient of f points out. See Figure 5.2. This means

g = α

g = α

x∗

f ′

g′

g > a

Figure 5.2. Constrained Maximum with an Inequality Constraint.

that we can take µ∗, λ∗ ⩾ 0. Even if [g > α] is empty, then g′ = 0 (why?), so we can take
µ∗ = 0 and λ∗ = 1. That’s really all there is to it, so keep these pictures in mind through all
the complications needed to express these ideas formally.

In Section 4.29 we also saw that the Lagrange multipliers could serve as conversion factors so
that (at least in the concave case) a constrained maximizer is also an unconstrained maximizer
of the Lagrangean. Unfortunately, without concave functions this may not be the case. The
following example may be found in Sydsaeter [146].

269 Example (Constained maximizers may not maximize the Lagrangean) Con-
sider maximizing f(x, y) = xy subject to g(x, y) = 2−x−y = 0. The objective function f is not
concave, although the constraint function g is. The constrained maximizer is (x∗, y∗) = (1, 1)
and for λ∗ = 1 we have f ′(x∗, y∗) + λ∗g′(x∗, y∗) = 0 but L∗(x, y) = xy + 2 − x− y is not maxi-
mized at (1, 1). (To see this, note that L∗(1 + ε, 1 + ε) = (1 + ε)(1 + ε) + 2 − (1 + ε) − (1 + ε) =
1 + ε2 > 1 = L∗(1, 1) for ε ̸= 0.) Thus (1, 1) is a maximizer along the constraint line, but is a
minimizer of L∗ along the ray from the origin, which is orthogonal to the constraint. □

The proofs of the Lagrange Multiplier Theorem make use of the Implicit Function Theorem
and its corollaries, which I discuss in section 3.15 and 3.16. The main result is the Fundamental
Lemma on Curves 124, which says that if x∗ satisfies the m constraints g1(x), . . . , gm(x) = 0,
and if v is orthogonal to the gradient of each of the independent constraints at x∗, then there is
a differentiable curve (x̂) through x∗ satisfying the constraints with derivative equal to v at x∗.

270 Lagrange Multiplier Theorem I Let X ⊂ Rn, and let f, g1, . . . , gm : X → R be
continuous. Let x∗ be an interior constrained local maximizer of f subject to g(x) = 0. Suppose
f , g1, . . . , gm are differentiable at x∗, and that g1

′(x∗), . . . , gm
′(x∗) are linearly independent.

Then there exist real numbers λ∗
1, . . . , λ

∗
m, such that

f ′(x∗) +
m∑

i=1
λ∗

i gi
′(x∗) = 0.

Proof : Let v ∈ Rn satisfy
g1

′(x∗) · v = · · · = gm
′(x∗) · v = 0.
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By the Fundamental Lemma on Curves 124 there is a curve x̂ : (−δ, δ) → X that is differentiable
at x∗ and satisfying g

(
x̂(α)

)
= 0, x̂(0) = x∗, and x̂′(0) = v. Define f̃(α) = f

(
x̂(α)

)
. Since f̃

achieves a local maximum at α = 0 (why?), f̃ ′(0) = 0. Thus

0 = f̃ ′(0) =
n∑

j=1
Djf(x∗)x̂′

j(0) = f ′(x∗) · v.

Therefore
gi

′(x∗) · v = 0 i = 1, . . . ,m =⇒ f ′(x∗) · v = 0

so by Corollary 241 of the Fredholm Alternative, f ′(x∗) is a linear combination of the gi
′(x∗)s,

f ′(x∗) =
m∑

i=1
µigi

′(x∗).

Thus setting λ∗
i = −µi, we get f ′(x∗) +

∑m
i=1 λ

∗
i gi

′(x∗) = 0.

The next result is provides a different version of the Lagrange Multiplier Theorem that
includes the first as a special case. The argument is essentially that of Carathéodory [35,
Theorem 11.1, pp. 175–177].

271 Lagrange Multiplier Theorem II Let X ⊂ Rn, and let f, g1, . . . , gm : X → R be
continuous. Let x∗ be an interior constrained local maximizer of f subject to g(x) = 0. Suppose
f , g1, . . . , gm are differentiable at x∗.

Then there exist real numbers µ∗, λ∗
1, . . . , λ

∗
m, not all zero, such that

µ∗f ′(x∗) +
m∑

i=1
λ∗

i gi
′(x∗) = 0.

Furthermore, if g1
′(x∗), . . . , gm

′(x∗), are linearly independent, we may take µ∗ to be unity.

Proof : Set α∗ = f(x∗). Define h : X × R → Rm+1 by

h0(x;α) = f(x) − α

hi(x;α) = gi(x), i = 1, . . . ,m.

Start by observing that each hi, i = 0, . . . ,m, is differentiable in x at (x∗, α∗). I claim that D1h
0(x∗;α∗)
...

Dnh
0(x∗;α∗)

 , . . . ,
 D1h

m(x∗;α∗)
...

Dnh
m(x∗;α∗)


are linearly dependent.

To see this first note that if m ⩾ n, then the gradients must be dependent because they
lie in Rn. So consider the case m < n, and suppose by way of contradiction that they are
independent. Then by renumbering the coordinates if necessary, we may assume that D1h

0(x∗;α∗) · · · Dm+1h
0(x∗;α∗)

...
...

D1h
m(x∗;α∗) · · · Dm+1h

m(x∗;α∗)


is invertible.
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Let U×W be a neighborhood of x∗ on which it is a local maximum point, where U ⊂ Rm+1.
Then, treating x∗

m+2, . . . , x
∗
n as fixed, the Implicit Function Theorem 113 implies that there is

a neighborhood V ⊂ R of α∗ and a function ξ : V → U satisfying

ξ(α∗) = (x∗
1, . . . , x

∗
m+1)

hi
(
ξ(α), x∗

m+2, . . . , x
∗
n;α

)
= 0 i = 0, . . . ,m

for all α ∈ V .
Thus for α ∈ V , gi

(
ξ(α), x∗

m+2, . . . , x
∗
n

)
= ai, i = 1, . . . ,m, but for α ∈ V satisfying α >

α∗, we have f
(
ξ(α), x∗

m+2, . . . , x
∗
n

)
= α > α∗ = f(x∗), contradicting the hypothesis that x∗

maximizes f over U ×W . Therefore the gradients are dependent.
Thus there are real numbers µ∗, λ∗

1, . . . λ
∗
m, not all zero, such that

µ∗

 D1h
0(x∗)
...

Dnh
0(x∗)

+
m∑

i=1
λ∗

i

 D1h
i(x∗)
...

Dnh
i(x∗)

 = 0.

But from the definitions of hi, we get

µ∗f ′(x∗) +
m∑

i=1
λ∗

i gi
′(x∗) = 0.

Suppose now that g1
′(x∗), . . . , gm

′(x∗), are linearly independent. Suppose by way of contra-
diction that µ∗ = 0. Then

∑m
i=1 λ

∗
i gi

′(x∗) = 0 and not all λ∗
i = 0, i = 1, . . . ,m. This contradicts

the linear independence of the gi
′ =s.

Since µ∗ ̸= 0, we can divide by it. Replacing λ∗
i by λ∗

i

µ∗ , i = 1, . . . ,m, we have

f ′(x∗) +
m∑

i=1
λ∗

i gi
′(x∗) = 0.

Let us now consider some examples.

272 Example (Multipliers are zero) The Lagrange Multiplier Theorem does not guaran-
tee that all the multipliers on the constraints will be nonzero. In fact the multipliers on the
constraints may all be zero. For instance consider the constrained maximum of

f(x, y) = −(x2 + y2)

subject to the single constraint
g(x, y) = y = 0.

Observe that g′(x, y) = (0, 1) ̸= 0, so the gradient is linearly independent. The point (0, 0) is a
constrained maximizer of f , but f ′(x, y) = (−2x,−2y) is equal to zero at (0, 0). Thus the only
way to solve f ′(0, 0) + λ∗g′(0, 0) is to set λ∗ = 0. □

273 Example (Dependent constraint gradients) If you are like me, you may be tempted
to think that if the gradients of the constraints are linearly dependent, then one of them may
be redundant. This is not true. Consider the constrained maximum of

f(x, y) = x
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subject to the two constraints

g1(x, y) = y − x2 = 0
g2(x, y) = y + x2 = 0.

It is easy to see that (0, 0) is the only point satisfying both constraints, and

g′
1(0, 0) = (0, 1) = g′

2(0, 0).

Thus the gradients of the constraints are dependent at the maximizer. Since f ′ = (1, 0), there
is no solution to f ′(0, 0) + λ∗

1g1(0, 0) + λ∗
2g2(0, 0). There is however a nonzero solution to

λ∗
0f

′(0, 0) + λ∗
1g1(0, 0) + λ∗

2g2(0, 0), namely λ∗
0 = 0, λ∗

1 = 1, and λ∗
2 = −1.

Notice that neither constraint is redundant, since if one of them is dropped, there are no
constrained maxima. □

5.2 Second Order Conditions for a Constrained Extremum
The Fundamental Lemma 124 allows us to investigate the second order conditions for a con-
strained local maximum.

274 Theorem (Necessary Second Order Conditions) Let U ⊂ Rn and let x∗ ∈ intU .
Let f, g1, . . . , gm : U → R be C2, and suppose x∗ is a local constrained maximizer of f subject to
g(x) = 0. Define the Lagrangean L(x, λ) = f(x)+

∑m
i=1 λigi(x). Assume that g1

′(x∗), . . . , gm
′(x∗)

are linearly independent, so the conclusion of the Lagrange Multiplier Theorem holds, that is,
there are λ∗

1, . . . , λ
∗
m satisfying the first order conditions

L′
x(x∗, λ∗) = f ′(x∗) +

m∑
i=1

λ∗
i gi

′(x∗) = 0.

Then
n∑

i=1

n∑
j=1

Di,jL(x∗, λ∗)vivj ⩽ 0,

for all v ̸= 0 satisfying gi
′(x∗) · v = 0, i = 1, . . . ,m.

Proof : Let v ̸= 0 satisfy gi
′(x∗) · v = 0, i = 1, . . . ,m. By Lemma 124 there is a C2 function

x̂ : (−δ, δ) → Rn satisfying gi

(
x̂(α)

)
= 0, for i = 1, . . . ,m, x̂(0) = x∗, and x̂′(0) = v. Define

f̃(α) = f
(
x̂(α)

)
= L

(
x̂(α), λ∗). Then f̃ is C2 and since g

(
x̂(α)

)
= 0, f̃ assumes its maximum

at α = 0.
Thus from our one dimensional theory we know f̃ ′(0) = 0 and f̃ ′′(0) ⩽ 0. But

f̃ ′(α) =
n∑

j=1
DjL

(
x̂(α), λ∗)dx̂j(α)

dα

so

f̃ ′′(α) =
n∑

i=1

 n∑
j=1

Di,jL
(
x̂(α), λ∗)dx̂i(α)

dα

dx̂j · (α)
dα

+DjL
(
x̂(α), λ∗)d2x̂j(α)

d(α2)

 .

But by the first order conditions
DjL

(
x̂(0), λ∗) = 0.

Using this and x̂′
j(0) = vj gives

0 ⩾ f̃ ′′(0) =
n∑

i=1

n∑
j=1

Di,jL(x∗, λ∗)vivj .
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Sufficient conditions can be derived much as in the unconstrained case. In progress.

275 Theorem (Sufficient Second Order Conditions) Let U ⊂ Rn and let x∗ ∈ intU .
Let f, g1, . . . , gm : U → R be continuously differentiable on U and twice differentiable at x∗.
Assume g(x∗) = 0, and that there exist λ∗

1, . . . , λ
∗
m satisfying the first order conditions

L′
x(x∗, λ∗) = f ′(x∗) +

m∑
i=1

λ∗
i gi

′(x∗) = 0.

Assume further that the strong second order condition holds, that is,

n∑
i=1

n∑
j=1

Di,jL(x∗, λ∗)vivj < 0,

for all v ̸= 0 satisfying gi
′(x∗) · v = 0, i = 1, . . . ,m. Then x∗ is a strict local maximizer of f

subject to the constraints g(x) = 0.

Proof : By Young’s form of Taylor’s Theorem for many variables 106, recalling that Df(x∗) = 0,
we have

f(x∗ + v) = f(x∗) +Df(x∗)(v) + 1
2D

2f(x∗)(v, v) + r(v)
2 ∥v∥2,

where limv→0 r(v) = 0. What this tells us is that the increment f(x∗ + v) − f(x∗) is bounded
between two quadratic forms that can be made arbitrarily close to Q(v) = D2f(x∗)(v, v). This
is the source of conclusions.

***************** The quadratic form Q achieves its maximum M and minimum m values
on the unit sphere (and they are the maximal and minimal eigenvalues, see Proposition 304).
If Q is positive definite, then 0 < m ⩽ M , and homogeneity of degree 2 implies that m∥v∥2 ⩽
Q(v) ⩽ M∥v∥2 for all v. Choose 0 < ε < m. Then there exist δ > 0 such that ∥v∥ < δ implies
|r(v)| < ε. The first inequality in (⋆⋆) thus implies

0 < m− ε

2
∥v∥2 ⩽ f(x∗ + v) − f(x∗),

for ∥v∥ < δ, which shows that x∗ is a strict local minimizer. Similarly if Q is negative definite,
then x∗ is a strict local maximizer. If Q is nonsingular, but neither negative or positive definite,
then Rn decomposes into two orthogonal nontrivial subspaces, and is positive definite on one and
negative definite on the other. It follows then that x∗ is neither a maximizer nor a minimizer.

5.3 Constrained Minimization
Since minimizing f is the same as maximizing −f , we do not need any new results for mini-
mization, but there a few things worth pointing out.

The Lagrangean for maximizing −f subject to gi = 0, i = 1, . . . ,m is

−f(x) +
m∑

i=1
λigi(x),

The second order condition for maximizing −f is that

n∑
i=1

n∑
j=1

(
−Dijf(x∗) +

m∑
i=1

λ∗Dijg(x∗)

)
vivj ⩽ 0,
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for all v ̸= 0 satisfying gi
′(x∗) · v = 0, i = 1, . . . ,m. This can be rewritten as

n∑
i=1

n∑
j=1

(
Dijf(x∗) −

m∑
i=1

λ∗Dijg(x∗)

)
vivj ⩾ 0,

which suggests that it is more convenient to define the Lagrangean for a minimization problem
as

L(x, λ) = f(x) −
m∑

i=1
λigi(x).

The first order conditions will be exactly the same. For the second order conditions we have the
following.

276 Theorem (Necessary Second Order Conditions for a Minimum) Let U ⊂ Rn

and let x∗ ∈ intU . Let f, g1, . . . , gm : U → R be C2, and suppose x∗ is a local constrained
minimizer of f subject to g(x) = 0. Define the Lagrangean

L(x, λ) = f(x) −
m∑

i=1
λigi(x).

Assume that g1
′(x∗), . . . , gm

′(x∗) are linearly independent, so the conclusion of the Lagrange
Multiplier Theorem holds, that is, there are λ∗

1, . . . , λ
∗
m satisfying the first order conditions

L′
x(x∗, λ∗) = f ′(x∗) −

m∑
i=1

λ∗
i gi

′(x∗) = 0.

Then
n∑

i=1

n∑
j=1

DijL(x∗, λ∗)vivj ⩾ 0,

for all v ̸= 0 satisfying gi
′(x∗) · v = 0, i = 1, . . . ,m.

5.4 Inequality constraints
The classical Lagrange Multiplier Theorem deals only with equality constraints. Now we take
up inequality constraints. We start by transforming the problem into one involving only equality
constraints. I learned this approach from Quirk [128].

277 Theorem Let U ⊂ Rn be open, and let f, g1, . . . , gm : U → R be twice continuously
differentiable on U . Let x∗ be a constrained local maximizer of f subject to g(x) ≧ 0 and x ≧ 0.

Let B = {i : gi(x∗) = 0}, the set of binding constraints, and let Z = {j : xj = 0}, the set
of binding nonnegativity constraints. Assume that {gi

′(x∗) : i ∈ B} ∪ {ej : j ∈ Z} is linearly
independent. Then there exists λ∗ ∈ Rm such that

f ′(x∗) +
m∑

i=1
λ∗

i gi
′(x∗) ≦ 0. (5.1)

x∗ ·
(
f ′(x∗) +

m∑
i=1

λ∗
i gi

′(x∗)

)
= 0 (5.2)

λ∗ ≧ 0. (5.3)

λ∗ · g(x∗) = 0. (5.4)
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Proof : Introduce m + n slack variables y1, . . . , ym and z1, . . . , zn, and consider the equality
constrained maximization problem:

maximize f̄(x) subject to gi(x) − y2
i = 0, i = 1, . . . ,m, and xj − z2

j = 0, j = 1, . . . , n.

Define y∗ and z∗ by

y∗
i =

√
gi(x∗) (5.5)

z∗
j =

√
x∗

j , (5.6)

Observe that (x∗, y∗, z∗) solves the equality constrained maximization problem.
So on U × Rm × Rn define

f̄(x, y, z) = f(x),
ḡi(x, y, z) = gi(x) − y2

i , i = 1, . . . ,m,
h̄j(x, y, z) = xj − z2

j , j = 1, . . . , n.

Note that these functions are also twice continuously differentiable. Then (x∗, y∗, z∗) solves the
revised equality constrained maximization problem:

maximize f̄(x, y, z) subject to ḡi(x, y, z) = 0, i = 1, . . . ,m, and h̄j(x, y, z) = 0, j = 1, . . . , n.

In order to apply the Lagrange Multiplier Theorem to this revised equality constrained problem,
we need to verify that the gradients of ḡ′

i(x∗, y∗, z∗), i = 1, . . . ,m and h̄′
j(x∗, y∗, z∗), j = 1, . . . , n

of the constraints with respect to the variables x, y, z are linearly independent. So suppose∑m
i=1 αiḡ

′
i +
∑

j=1 nβj h̄
′
j = 0. Now

ḡ′
i(x∗, y∗, z∗) =

gi
′(x∗)

−2y∗
i e

i

0

 and h̄′
j(x∗, y∗, z∗) =

 ej

0
−2z∗

j e
j

 . (5.7)

So the yi component of this sum is just −2αiy
∗
i . Therefore

i /∈ B ⇐⇒ y∗
i > 0 =⇒ αi = 0.

Similarly the zj component is −2βjz
∗
j , so

j /∈ Z ⇐⇒ z∗
j > 0 =⇒ βj = 0.

Given this, the x component is just∑
i∈B

αiḡ
′
i(x∗) +

∑
j∈Z

βje
j = 0.

By hypothesis, these vectors are linearly independent, so we conclude that αi = 0, i ∈ B, and
βj = 0, j ∈ Z, which proves the linear independence of the constraint gradients of the revised
equality problem.

So form the Lagrangean

L̄(x, y, z;λ, µ) = f̄(x, y, z) +
m∑

i=1
λiḡi(x, y, x) +

n∑
j=1

µj h̄j(x, y, z).

= f(x) +
m∑

i=1
λi

(
gi(x) − y2

i

)
+

n∑
j=1

µj(xj − z2
j ).
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Then by the Lagrange Multiplier Theorem 270 there are multipliers λ∗
i , i = 1, . . . ,m and µ∗

j ,
j = 1, . . . , n such that the following first order conditions are satisfied.

∂f(x∗)
∂xj

+
m∑

i=1
λ∗

i

∂gi(x∗)
∂xj

+ µ∗
j = 0 j = 1, . . . , n, (5.8)

−2λ∗
1y

∗
i = 0 i = 1, . . . ,m, (5.9)

−2µ∗
jz

∗
j = 0 j = 1, . . . , n. (5.10)

Now the Hessian of the Lagrangean L̄ (with respect to (x, y, z) and evaluated at (x∗, y∗, z∗;λ∗, µ∗))
is block diagonal:

∂2L
∂x1∂x1

· · · ∂2L
∂x1∂xn

...
...

∂2L
∂xn∂x1

· · · ∂2L
∂xn∂xn

−2λ∗
1

. . .
−2λ∗

m

−2µ∗
1

. . .
−2µ∗

n


From the second order conditions (Theorem 274) for the revised equality constrained prob-

lem, we know that this Hessian is negative semidefinite under constraint. That is, if a vector is
orthogonal to the gradients of the constraints, then the quadratic form in the Hessian is non-
positive. In particular, consider a vector of the form v = (0, ek, 0) ∈ Rn × Rm × Rn. It follows
from (5.7) that for i ̸= k this vector v is orthogonal to ḡ′

i(x∗, y∗, z∗), and also orthogonal to
h̄′

j(x∗, y∗, z∗), j = 1, . . . , n. The vector v is orthogonal to ḡ′
k(x∗, y∗, z∗) if and only if y∗

k = 0,
that is, when k ∈ B. Thus for k ∈ B the second order conditions imply −2λ∗

k ⩽ 0, so

gi(x∗) = 0 =⇒ λ∗
i ⩾ 0.

Next consider a vector of the form u = (0, 0, ek) ∈ Rn × Rm × Rn. It follows from (5.7) that
this vector u is orthogonal to each ḡ′

i(x∗, y∗, z∗) each h̄′
j(x∗, y∗, z∗) for j ̸= k. The vector u

is orthogonal to h̄′
k(x∗, y∗, z∗) if and only if z∗

k = 0, that is, j ∈ Z. Again the second order
conditions imply that the quadratic form in u, which has value −2µ∗

k is nonnegative for k ∈ Z,
so

x∗
j = 0 =⇒ µ∗

j ⩾ 0.
Now if i /∈ B, that is, gi(x∗) > 0, so that y∗

i > 0, then from the first order condition (5.9) we
have λ∗

i = 0. Also, from (5.10), if x∗
j > 0, so that z∗

j > 0, then µ∗
j = 0. That is,

gi(x∗) > 0 =⇒ λ∗
i = 0 and x∗

j > 0 =⇒ µ∗
j = 0

Combining this with the paragraph above we see that λ∗ ≧ 0 and µ∗ ≧ 0. Thus (5.8) implies
conclusion (5.1). A little more thought will show you that we have just deduced conditions (5.2)
through (5.4) as well.

There is a simple variation on the slack variable approach that applies to mixed inequality
and equality constraints. To prove the next result, simply omit the slack variables for the
equality constraints and follow the same proof as in Theorem 277.

KC Border src: lagrange v. 2015.11.20::14.58



KC Border Notes on Optimization, etc. 144

278 Corollary Let U ⊂ Rn be open, and let f, g1, . . . , gm : U → R be twice continuously
differentiable on U . Let x∗ be a constrained local maximizer of f subject to

gi(x) = 0 i ∈ E,

gi(x) ⩾ 0 i ∈ Ec,

xj ⩾ 0 j ∈ N.

Let B = {i ∈ Ec : gi(x∗) = 0} (binding inequality constraints), and let Z = {j ∈ N : xj = 0}
(binding nonnegativity constraints). Assume that

{gi
′(x∗) : i ∈ E ∪B} ∪ {ej : j ∈ Z} is linearly independent,

then there exists λ∗ ∈ Rm such that

∂f(x∗)
∂xj

+
∑m

j=1 λ
∗
i

∂gj(x∗)
∂xj

⩽ 0 j ∈ N,

∂f(x∗)
∂xi

+
∑m

j=1 λ
∗
i

∂gj(x∗)
∂xi

= 0 j ∈ N c,

λ∗
i ⩾ 0 i ∈ Ec.

x∗ ·
(
f ′(x∗) +

∑m
j=1 λ

∗
i gj

′(x∗)
)

= 0

λ∗ · g(x∗) = 0.

We now translate the result for minimization.

279 Theorem (Minimization) Let U ⊂ Rn be open, and let f, g1, . . . , gm : U → R be
twice continuously differentiable on U . Let x∗ be a constrained local minimizer of f subject to
g(x) ≧ 0 and x ≧ 0.

Let B = {i : gi(x∗) = 0}, the set of binding constraints, and let Z = {j : xj = 0}, the set
of binding nonnegativity constraints. Assume that {gi

′(x∗) : i ∈ B} ∪ {ej : j ∈ Z} is linearly
independent. Then there exists λ∗ ∈ Rm such that

f ′(x∗) −
m∑

i=1
λ∗

i gi
′(x∗) ≧ 0. (5.11)

x∗ ·

(
f ′(x∗) −

m∑
i=1

λ∗
i gi

′(x∗)

)
= 0 (5.12)

λ∗ ≧ 0. (5.13)

λ∗ · g(x∗) = 0. (5.14)

Proof : As in the proof of Theorem 277, introducem+n slack variables y1, . . . , ym and z1, . . . , zn,
and define f̄(x, y, z) = f(x), ḡi(x, y, z) = gi(x) − y2

i , i = 1, . . . ,m and h̄j(x, y, z) = xj − z2
j ,

j = 1, . . . , n. Again define y∗ by y∗
i =

√
gi(x∗) and z∗ by z∗

j =
√
x∗

j . Observe that (x∗, y∗, z∗)
solves the revised equality constrained minimization problem:

minimize f̄(x, y, z) subject to ḡi(x, y, z) = 0, i = 1, . . . ,m, and h̄j(x, y, z) = 0,
j = 1, . . . , n.
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The proof of the linear independence of the constraint gradients of the revised equality
problem is the same as in Theorem 277.

So form the Lagrangean

L̄(x, y, z;λ, µ) = f(x) −
m∑

i=1
λi

(
gi(x) − y2

i

)
−

n∑
j=1

µj(xj − z2
j ).

Then by the Lagrange Multiplier Theorem 270 there are multipliers λ∗
i , i = 1, . . . ,m and µ∗

j ,
j = 1, . . . , n such that the following first order conditions are satisfied.

∂f(x∗)
∂xj

−
m∑

i=1
λ∗

i

∂gi(x∗)
∂xj

− µ∗
j = 0 j = 1, . . . , n, (5.15)

2λ∗
1y

∗
i = 0 i = 1, . . . ,m, (5.16)

2µ∗
jz

∗
j = 0 j = 1, . . . , n. (5.17)

The Hessian of the Lagrangean L̄ (with respect to (x, y, z) and evaluated at (x∗, y∗, z∗;λ∗, µ∗))
is: 

∂2L
∂x1∂x1

· · · ∂2L
∂x1∂xn

...
...

∂2L
∂xn∂x1

· · · ∂2L
∂xn∂xn

2λ∗
1

. . .
2λ∗

m

2µ∗
1

. . .
2µ∗

n


From the second order conditions for minimization (Theorem 276) for the revised equality con-
strained problem, we know that this Hessian is positive semidefinite under constraint. In par-
ticular, as in the proof of Theorem 277, we have that

gi(x∗) = 0 =⇒ λ∗
i ⩾ 0.

x∗
j = 0 =⇒ µ∗

j ⩾ 0.
From the first order conditions, if i /∈ B, that is, gi(x∗) > 0, so that y∗

i = 0, then λ∗
i = 0.

Also if x∗
j > 0, so that z∗

j = 0, then µ∗
j = 0. That is,

gi(x∗) > 0 =⇒ λ∗
i = 0 and x∗

j > 0 =⇒ µ∗
j = 0

Combining this with the paragraph above we see that λ∗ ≧ 0 and µ∗ ≧ 0. Thus (5.15) im-
plies conclusion (5.11). A little more thought will show you that we have just deduced condi-
tions (5.12) through (5.14) as well.

280 Corollary Let U ⊂ Rn be open, and let f, g1, . . . , gm : U → R be twice continuously
differentiable on U . Let x∗ be a constrained local minimizer of f subject to

gi(x) = 0 i ∈ E,

gi(x) ⩾ 0 i ∈ Ec,

xj ⩾ 0 j ∈ N.
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Let B = {i ∈ Ec : gi(x∗) = 0} (binding inequality constraints), and let Z = {j ∈ N : xj = 0}
(binding nonnegativity constraints). Assume that

{gi
′(x∗) : i ∈ E ∪B} ∪ {ej : j ∈ Z} is linearly independent,

then there exists λ∗ ∈ Rm such that

∂f(x∗)
∂xj

−
∑m

j=1 λ
∗
i

∂gj(x∗)
∂xj

⩾ 0 j ∈ N,

∂f(x∗)
∂xi

+
∑m

j=1 λ
∗
i

∂gj(x∗)
∂xi

= 0 j ∈ N c,

λ∗
i ⩾ 0 i ∈ Ec.

x∗ ·
(
f ′(x∗) +

∑m
j=1 λ

∗
i gj

′(x∗)
)

= 0

λ∗ · g(x∗) = 0.

5.5 Karush–Kuhn–Tucker Theory
A drawback of the slack variable approach is that it assumes twice continuous differentiability in
order to apply the second order conditions and thus conclude λ∗ ≧ 0 and µ∗ ≧ 0. Fortunately,
Karush [90] and Kuhn and Tucker [95] provide another approach that remedies this shortcoming.
They only assume differentiability, and replace the independence condition on gradients by a
weaker but more obscure condition called the Karush–Kuhn–Tucker Constraint Qualification.

281 Definition Let f, g1, . . . , gm : Rn
+ → R. Let

C = {x ∈ Rn : x ≧ 0, gi(x) ⩾ 0, i = 1, . . . ,m}.

In other words, C is the constraint set. Consider a point x∗ ∈ C and define

B = {i : gi(x∗) = 0} and Z = {j : xj = 0},

the set of binding constraints and binding nonnegativity constraints, respectively. The point x∗

satisfies the Karush–Kuhn–Tucker Constraint Qualification if f, g1, . . . , gm are differen-
tiable at x∗, and for every v ∈ Rn satisfying

vj = v · ej ⩾ 0 j ∈ Z,

v · gi
′(x∗) ⩾ 0 i ∈ B,

there is a continuous curve ξ : [0, ε) → Rn satisfying

ξ(0) = x∗,

ξ(t) ∈ C for all t ∈ [0, ε),
Dξ(0) = v,

where Dξ(0) is the one-sided directional derivative at 0.Consistent notation?

This condition is actually a little weaker than Kuhn and Tucker’s condition. They assumed
that the functions f, g1, . . . , gm were differentiable everywhere and required ξ to be differentiable
everywhere. You can see that it may be difficult to verify it in practice.

282 Theorem (Karush–Kuhn–Tucker) Let f, g1, . . . , gm : Rn
+ → R be differentiable at x∗,

and let x∗ be a constrained local maximizer of f subject to g(x) ≧ 0 and x ≧ 0.
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Let B = {i : gi(x∗) = 0}, the set of binding constraints, and let Z = {j : xj = 0}, the
set of binding nonnegativity constraints. Assume that x∗ satisfies the Karush–Kuhn–Tucker
Constraint Qualification. Then there exists λ∗ ∈ Rm such that

f ′(x∗) +
m∑

i=1
λ∗

i gi
′(x∗) ≦ 0,

x∗ ·

(
f ′(x∗) +

m∑
i=1

λ∗
i gi

′(x∗)

)
= 0,

λ∗ ≧ 0,
λ∗ · g(x∗) = 0.

To better understand the hypotheses of the theorem, let’s look at a classic example of its
failure (cf. Kuhn and Tucker [95]).

283 Example (Failure of the Karush–Kuhn–Tucker Constraint Qualification) Con-
sider the functions f : R2 → R via f(x, y) = x and g : R2 → R via g(x, y) = (1 − x)3 − y. The
curve g = 0 is shown in Figure 5.3, and the constraint set in Figure 5.4.

Clearly (x∗, y∗) = (1, 0) maximizes f subject to (x, y) ≧ 0 and g ⩾ 0. At this point we have
g′(1, 0) = (0,−1) and f ′ = (1, 0) everywhere. Note that no λ (nonnegative or not) satisfies

(1, 0) + λ(0,−1) ≦ (0, 0).

Fortunately for the theorem, the Constraint Qualification fails at (1, 0). To see this, note that
the constraint g ⩾ 0 binds, that is g(1, 0) = 0 and the second coordinate of (x∗, y∗) is zero.
Suppose v = (vx, vy) satisfies

v · g′(1, 0) = v · (0,−1) = −vy ⩽ 0 and v · e2 = vy ⩾ 0,

that is, vy = 0. For instance, take v = (1, 0). The constraint qualification requires that there is
a path starting at (1, 0) in the direction (1, 0) that stays in the constraint set. Clearly no such
path exists, so the constraint qualification fails. □

Proof of Theorem 282: Let x∗ be a constrained maximizer, and define the sets B and Z of
indices as in the statement of the theorem, and let v ∈ Rn satisfy

vj = v · ej ⩾ 0 j ∈ Z,

v · gi
′(x∗) ⩾ 0 i ∈ B.

By the constraint qualification there is a continuous curve ξ : [0, ε) → Rn satisfying

ξ(0) = x∗,

ξ(t) ∈ C for all t ∈ [0, ε),
Dξ(0) = v.

By hypothesis, x∗ is a local maximizer, so g(t) = f ◦ ξ(t) attains its maximum at t = 0. It
follows from Lemma 71 that f ′(x∗) · v = f ′(x∗) · ξ′(0) ⩽ 0.

We now use a theorem of the alternative in a manner similar to that in the proof of Theo-
rem 270. We have just shown that the system

f ′(x∗) · v > 0
g′

i(x∗) · v ⩾ 0 i ∈ B

ej · v ⩾ 0 j ∈ Z
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g > 0

g = 0
g < 0

1

1

Figure 5.3. The function g(x, y) = (1 − x)3 − y.

g′(1, 0)

f ′(1, 0)

Figure 5.4. This constraint set violates the Constraint Qualification. (Note: f ′ and g′ are not
to scale.)
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has no solution v. Therefore by Motzkin’s Transposition Theorem 250 there exist p > 0, and
λi ⩾ 0, i ∈ B and µj ⩾ 0, j ∈ Z such that

pf ′(x∗) +
∑
i∈B

λig
′
i(x∗) +

∑
j∈Z

µje
j = 0.

Since p > 0, we may rescale these numbers so that without loss of generality p = 1: Create the
vector λ∗ ∈ Rm by setting λ∗

i = λi/p for i ∈ B and λ∗
i = 0 for i /∈ B, and define µ∗ ∈ Rn by

setting µ∗
j = µj/p for j ∈ Z, and µ∗

j = 0 for j /∈ Z. Then dividing by p > 0 we have

f ′(x∗) +
m∑

i=1
λ∗

i g
′
i(x∗) +

n∑
j=1

µ∗
je

j = 0.

Since each µ∗
j ⩾ 0, this says that

f ′(x∗) +
m∑

i=1
λ∗

i g
′
i(x∗) ≦ 0,

with component j being < 0 only if µ∗
j > 0, which could happen only if j ∈ Z. Since x∗ ≧ 0,

these two facts imply

x∗
j

(
f ′(x∗) +

m∑
i=1

λ∗
i gi

′(x∗)
)

j
= 0, j = 1, . . . , n.

Also, by construction λ∗ ≧ 0, and λ∗
i > 0 can occur only if i ∈ B (and not necessarily even

then), so
λ∗

i gi(x∗) = 0, i = 1, . . . ,m.
This completes the proof.

The next result, which may be found in Arrow, Hurwicz, and Uzawa [12, Corollaries 1, 4, 6,
pp. 183–184], provides a tractable sufficient condition for the KTCQ.

284 Theorem In Theorem 282, the KTCQ may be replaced by any of the conditions below.
1. Each gi is convex. (This includes the case where each is linear.)

2. Each gi is concave and there exists some x̂ ≫ 0 for which each gi(x̂) > 0.

3. The set {ej : j ∈ Z} ∪ {gi
′(x∗) : i ∈ B} is linearly independent.

5.6 Karush–Kuhn–Tucker Theorem for Minimization
285 Theorem (Karush–Kuhn–Tucker) Let f, g1, . . . , gm : Rn

+ → R be differentiable at x∗,
and let x∗ be a constrained local minimizer of f subject to g(x) ≧ 0 and x ≧ 0.

Let B = {i : gi(x∗) = 0}, the set of binding constraints, and let Z = {j : xj = 0}, the
set of binding nonnegativity constraints. Assume that x∗ satisfies the Karush–Kuhn–Tucker
Constraint Qualification. Then there exists λ∗ ∈ Rm such that

f ′(x∗) −
m∑

i=1
λ∗

i gi
′(x∗) ≧ 0,

x∗ ·
(
f ′(x∗) −

m∑
i=1

λ∗
i gi

′(x∗)

)
= 0,

λ∗ ≧ 0,
λ∗ · g(x∗) = 0.
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Proof : Minimizing f is the same as maximizing −f . The Karush–Kuhn–Tucker conditions for
this imply that there exists λ∗ ∈ Rm

+ such that

−f ′(x∗) +
m∑

i=1
λ∗

i gi
′(x∗) ≦ 0,

and the conclusion follows by multiplying this by −1.

5.7 Quasiconcave functions
There are weaker notions of convexity that are commonly applied in economic theory.

286 Definition A function f : C → R on a convex subset C of a vector space is:

• quasiconcave if for all x, y in C with x ̸= y and all 0 < λ < 1

f
(
λx+ (1 − λ)y

)
⩾ min{f(x), f(y)}.

• strictly quasiconcave if for all x, y in C with x ̸= y and all 0 < λ < 1

f
(
λx+ (1 − λ)y

)
> min{f(x), f(y)}.

• explicitly quasiconcave or semistrictly quasiconcave if it is quasiconcave and in
addition, for all x, y in C with x ̸= y and all 0 < λ < 1

f(x) > f(y) =⇒ f
(
λx+ (1 − λ)y

)
> min{f(x), f(y)} = f(y).

• quasiconvex if for all x, y in C with x ̸= y and all 0 < λ < 1

f
(
λx+ (1 − λ)y

)
⩽ max{f(x), f(y)}.

• strictly quasiconvex if for all x, y in C with x ̸= y and all 0 < λ < 1

f
(
λx+ (1 − λ)y

)
< max{f(x), f(y)}.

• explicitly quasiconvex or semistrictly quasiconvex if it is quasiconvex and in addi-
tion, for all x, y in C with x ̸= y and all 0 < λ < 1

f(x) < f(y) =⇒ f
(
λx+ (1 − λ)y

)
< max{f(x), f(y)} = f(y).

There are other choices we could have made for the definition based on the next lemma.

287 Lemma For a function f : C → R on a convex set, the following are equivalent:

1. The function f is quasiconcave.

2. For each α ∈ R, the strict upper contour set [f(x) > α] is convex, but possibly empty.

3. For each α ∈ R, the upper contour set [f(x) ≥ α] is convex, but possibly empty.
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Proof : (1) =⇒ (2) If f is quasiconcave and x, y in C satisfy f(x) > α and f(y) > α, then for
each 0 ⩽ λ ⩽ 1 we have

f
(
λx+ (1 − λ)y

)
≥ min{f(x), f(y)} > α.

(2) =⇒ (3) Note that

[f ⩾ α] =
∞∩

n=1
[f > α− 1

n ],

and recall that the intersection of convex sets is convex.
(3) =⇒ (1) If [f ⩾ α] is convex for each α ∈ R, then for y, z ∈ C put α = min{f(y), f(z)}

and note that f
(
λy + (1 − λ)z

)
belongs to [f ⩾ α] for each 0 ⩽ λ ⩽ 1.

288 Corollary A concave function is quasiconcave. A convex function is quasiconvex.

289 Lemma A strictly quasiconcave function is also explicitly quasiconcave. Likewise a strictly
quasiconvex function is also explicitly quasiconvex.

Of course, not every quasiconcave function is concave.

290 Example (Explicit quasiconcavity) This example sheds some light on the definition
of explicit quasiconcavity. Define f : R → [0, 1] by

f(x) =

{
0 x = 0
1 x ̸= 0.

If f(x) > f(y), then f
(
λx + (1 − λ)y

)
> f(y) for every λ ∈ (0, 1) (since f(x) > f(y) implies

y = 0). But f is not quasiconcave, as {x : f(x) ⩾ 1} is not convex. □

291 Example (Sum of quasiconcave functions is not quasiconcave) Define f and g
on the real line by f(x) = x+ = x ∨ 0 and g(x) = x− = −x ∨ 0. Then both f and g are
quasiconcave, but the sum (f + g)(x) = |x| is not quasiconcave. (Observe that both f and g are
convex functions as well!) □

The next result has applications to production functions. (Cf. Jehle [85, Theorem 5.2.1,
pp. 224–225] and Shephard [139, pp. 5–7].)

292 Theorem Let f : Rn
+ → R+ be nonnegative, nondecreasing, quasiconcave, and positively

homogeneous of degree k where 0 < k ⩽ 1. Then f is concave.

Proof : Let x, y ∈ Rn and suppose first that f(x) = α > 0 and f(y) = β > 0. (The case α = 0
and/or β = 0 will be considered in a moment.) Then by homogeneity,

f
( x

α
1
k

)
= f

( y

β
1
k

)
= 1

By quasiconcavity,
f
(
λ
x

α
1
k

+ (1 − λ) y

β
1
k

)
⩾ 1

for 0 ⩽ λ ⩽ 1. So setting λ = α
1
k

α
1
k +β

1
k
, we have

f
( x

α
1
k + β

1
k

+ y

α
1
k + β

1
k

)
⩾ 1.
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By homogeneity,
f(x+ y) ⩾ (α 1

k + β
1
k )k =

[
f(x) 1

k + f(y) 1
k

]k
. (5.18)

Observe that since f is nonnegative and nondecreasing, (5.18) holds even if f(x) = 0 or f(y) = 0.
Now replace x by µx and y by (1 − µ)y in (5.18), where 0 ⩽ µ ⩽ 1, to get

f
(
µx+ (1 − µ)y

)
⩾

[
f(µx) 1

k + f
(
(1 − µ)y

) 1
k

]k

=
[
µf(x) 1

k + (1 − µ)f(y) 1
k

]k

⩾ µ
(
f(x) 1

k

)k + (1 − µ)
(
f(y) 1

k

)k

= µf(x) + (1 − µ)f(y),

where the last inequality follows from the concavity of γ 7→ γk. Since x and y are arbitrary, f
is concave.

5.8 Quasiconcavity and Differentiability
Quasiconcavity has implications for derivatives.

293 Proposition Let C ⊂ Rn be convex and let f : C → R be quasi-concave. Let y belong to C

and assume that f has a one-sided directional derivative f ′(x; y−x) = limλ↓0
f
(

x+λ(y−x)
)

−f(x)
λ .Notation? Definition?

Then
f(y) ⩾ f(x) =⇒ f ′(x; y − x) ⩾ 0.

In particular, if f is differentiable at x, then f ′(x) · (y − x) ⩾ 0 whenever f(y) ⩾ f(x).

Proof : If f(y) ⩾ f(x), then f
(
x + λ(y − x)

)
= f

(
(1 − λ)x + λy

)
⩾ f(x) for 0 < λ ⩽ 1 by

quasiconcavity. Rearranging implies f
(

x+λ(y−x)
)

−f(x)
λ ⩾ 0 and taking limits gives the desired

result.
Converse???

294 Theorem Let C ⊂ Rn be open and let f : C → R be quasiconcave and twice-differentiable
at x ∈ C. Then

n∑
i=1

n∑
j=1

Di,jf(x)vivj ⩽ 0 for any v satisfying f ′(x) · v = 0.

Proof : Pick v ∈ Rn and define g(λ) = f(x + λv). Then g(0) = f(x), g′(0) = f ′(x) · v, and
g′′(0) =

∑n
i=1
∑n

j=1 Di,jf(x)vivj . What we have to show is that if g′(0) = 0, then g′′(0) ⩽ 0.
Assume for the sake of contradiction that g′(0) = 0 and g′′(0) > 0. Then by Theorem 78, g
has a strict local minimum at zero. That is, for ε > 0 small enough, f(x + εv) > f(x) and
f(x− εv) > f(x). But by quasiconcavity,

f(x) = f
( 1

2 (x+ εv) + 1
2 (x− εv)

)
⩾ min{f(x+ εv), f(x− εv)} > f(x),

a contradiction.
Converse???
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5.9 Quasiconcavity and First Order Conditions
The following theorem and its proof may be found in Arrow and Enthoven [9].

295 Theorem (Arrow–Enthoven) Let f, g1, . . . , gm : Rn
+ → R be differentiable and quasi-

concave. Suppose x∗ ∈ Rn
+ and λ∗ ∈ Rm satisfy the constraints g(x∗) ≧ 0 and x∗ ≧ 0 and the

Karush–Kuhn–Tucker–Lagrange first order conditions:

f ′(x∗) +
∑m

j=1 λ
∗
i gj

′(x∗) ≦ 0

x∗ ·
(
f ′(x∗) +

∑m
j=1 λ

∗
i gj

′(x∗)
)

= 0

λ∗ ≧ 0

λ∗ · g(x∗) = 0.

Say that a variable xj is relevant if it may take on a strictly positive value in the constraint
set. That is, if there exists some x̂ ≧ 0 satisfying x̂j > 0 and g(x̂) ≧ 0.

Suppose one of the following conditions is satisfied:

1. Dj0f(x∗) < 0 for some relevant variable xj0 .

2. Dj1f(x∗) > 0 for some relevant variable xj1 .

3. f ′(x∗) ̸= 0 and f is twice differentiable in a neighborhood of x∗.

4. f is concave.

Then x∗ maximizes f(x) subject to the constraints g(x) ≧ 0 and x ≧ 0.
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5.10 Value functions and envelope theorems
In this section we analyze parametrized maxima. Given a constrained maximizer x∗ of f(x, p)
subject to the constraint g(x, p) = 0, we denote the maximum value of f by V (p). The function
V is known as the value function. Theorems on the derivatives of the value function are called
envelope theorems. Here’s why.

Given a one-dimensional parametrized family of curves, fα : [0, 1] → R, where α runs over
some interval, a curve h : [0, 1] → R is the envelope of the family if each point on the curve
h is tangent to one of the curves fα and each curve fα is tangent to h (see, e.g., Apostol [7,
p. 342] for this definition). That is, for each α, there is some t and also for each t, there is some
α, satisfying fα(t) = h(t) and f ′

α(t) = h′(t). For example, long-run cost curve is the envelope of
the short-run cost curves, a result sometimes referred to as the “Wong–Viner Theorem.”2

Consider now an unconstrained parametrized maximization problem. Let x∗(p) be the value
of the control variable x that maximizes f(x, p), where p is our parameter of interest. For fixed
x, the function

φx(p) = f(x, p)

defines a curve (or more generally a surface). The value function V (p) satisfies

V (p) = f
(
x∗(p), p

)
= max

x
φx(p).

296 Informal Statement of the Envelope Theorem Under appropriate conditions, the
graph of the value function V is the envelope of the family of graphs of φx.

To get a picture of this result, imagine a plot of the graph of f . It is the surface z = f(x, p)
in (x, p, z)-space. Orient the graph so that the x-axis is perpendicular to the page and the p-axis
runs horizontally across the page, and the z-axis is vertical. The high points of the surface
(minus perspective effects) determine the graph of the value function V . Here is an example:

297 Example Let
f(x, p) = p− (x− p)2 + 1, 0 ⩽ x, p ⩽ 2.

See Figure 5.5. Then given p, the maximizing x is given by x∗(p) = p, and V (p) = p + 1.
The side-view of this graph in Figure 5.6 shows that the high points do indeed lie on the line
z = 1 + p. For each x, the function φx is given by

φx(p) = p− (x− p)2 + 1.

The graphs of these functions and of V are shown for selected values of x in Figure 5.7. Note
that the graph of V is the envelope of the family of graphs φx. Consequently the slope of V is
the slope of the φx to which it is tangent, that is,

V ′(p) = ∂f

∂p

∣∣∣
x=x∗(p)=p

= 1 + 2(x− p)
∣∣∣
x=p

= 1.

This last observation is an example of the Envelope Theorem. □

Most of the envelope theorems in these notes do not require differentiability with respect to
the control variables, only with respect to the parameters (state variables). I am not aware of
any statement of Theorem 298 in the literature, although the technique of proof is standard (cf.
Myerson [116]). It provides a unifying approach to many related problems.

2According to Samuelson [136, p. 34], Jacob Viner asked his draftsman, one Mr. Wong, to draw the long run
cost curve passing through the minimum of each short run cost curve, and tangent to it. Mr. Wong argued that
this was impossible, and that the correct interpretation was that the long run curve was the envelope of the short
run curves. See also Viner [157].
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Figure 5.5. Graph of f(x, p) = p− (x− p)2 + 1.
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Figure 5.6. Graph of f(x, p) = p− (x− p)2 + 1 viewed from the side.
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Figure 5.7. Graphs of φx for x = 0, .2, . . . , 2 (left), and with the graph of V (p) = p + 1 as the
envelope of the family {φx(p) : x ∈ [0, 2]} (right), where φx(p) = p− (x− p)2 + 1 = f(x, p).
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5.10.1 An envelope theorem for saddlepoints
298 Saddlepoint Envelope Theorem Let X and Y be metric spaces, and let P be an open
subset of Rn. Let

L : X × Y × P → R

and assume that the partial derivative ∂L
∂p exists and is jointly continuous on X × Y × P . For Does L need to be

continuous?
each p, let

(
x∗(p), y∗(p)

)
be a saddlepoint of L in X × Y . That is, for every p ∈ P

L
(
x, y∗(p), p

)
⩽ L

(
x∗(p), y∗(p), p

)
⩽ L

(
x∗(p), y, p

)
for all x ∈ X and y ∈ Y . Set

V (p) = L
(
x∗(p), y∗(p), p

)
.

Assume that x∗ and y∗ are continuous functions. Then V is continuously differentiable and

DV (p) = ∂

∂p
L
(
x∗(p), y∗(p), p

)
.

Proof : Since P is finite dimensional, it suffices to show that V has continuous directional
derivatives. Let h be a nonzero vector in Rn small enough so that [p, p + h] ⊂ P , where
[p, p+ h] = {p+ th : 0 ⩽ t ⩽ 1}.

By definition,

V (p+ h) − V (p) = L
(
x∗(p+ h), y∗(p+ h), p+ h

)
− L

(
x∗(p), y∗(p), p

)
.

Adding and subtracting a few terms that net out to zero, we have:

V (p+ h) − V (p) =
L
(
x∗(p+ h), y∗(p+ h), p+ h

)
− L

(
x∗(p+ h), y∗(p), p+ h

)
(5.19)

+ L
(
x∗(p+ h), y∗(p), p+ h

)
− L

(
x∗(p+ h), y∗(p), p

)
(5.20)

+ L
(
x∗(p+ h), y∗(p), p

)
− L

(
x∗(p), y∗(p), p

)
(5.21)

The saddle point property of (x∗, y∗) implies that terms (5.19) and (5.21) are nonpositive.
Applying the Mean Value Theorem to term (5.20), we have:

∂

∂p
L
(
x∗(p+ h), y∗(p), p1(h)

)
· h ⩾ V (p+ h) − V (p) (5.22)

for some p1(h) ∈ [p, p+ h].
Similarly:

V (p+ h) − V (p) =
L
(
x∗(p+ h), y∗(p+ h), p+ h

)
− L

(
x∗(p), y∗(p+ h), p+ h

)
+ L

(
x∗(p), y∗(p+ h), p+ h

)
− L

(
x∗(p), y∗(p+ h), p

)
+ L(x∗(p), y∗(p+ h), p) − L(x∗(p), y∗(p), p).

⩾ ∂

∂p
L
(
x∗(p), y∗(p+ h), p2(h)

)
· h (5.23)

for some p2(h) ∈ [p, p+ h].
Combining (5.22) and (5.23) yields

∂

∂p
L
(
x∗(p+ h), y∗(p), p1(h)

)
· h ⩾ V (p+ h) − V (p)

⩾ ∂

∂p
L
(
x∗(p), y∗(p+ h), p2(h)

)
· h.
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Since ∂
∂pL is jointly continuous, replacing h by th, dividing by ∥th∥ and letting t ↓ 0 shows

that the directional derivative of V in the direction h is:
∂

∂p
L
(
x∗(p), y∗(p), p

)
· h.

Thus
DV (p) = ∂

∂p
L
(
x∗(p), y∗(p), p

)
.

5.10.2 An envelope theorem for unconstrained maximization
The following corollary is extremely useful in the design of optimal revelation mechanisms,
and indeed has been proven without statement many times over. It follows immediately from
Theorem 298.

299 Corollary Let X be a metric space and P an open subset of Rn. Let w : X ×P → R and
assume ∂w

∂p exists and is continuous in X × P . For each p ∈ P , let x∗(p) maximize w(x, p) over
X. Set

V (p) = w
(
x∗(p), p

)
.

Assume that x∗ : P → X is a continuous function. Then V is continuously differentiable and

DV (p) = ∂w

∂p

(
x∗(p), p

)
.

Proof : Set L(x, y, p) = w(x, p) and apply Theorem 298.

5.10.3 Classical Envelope Theorem
300 Theorem Let X ⊂ Rn and P ⊂ Rℓ be open, and let f, g1, . . . , gm : X×P → R be C1. For
each p ∈ P , let x∗(p) be an interior constrained local maximizer of f(x, p) subject to g(x, p) = 0.
Define the Lagrangean

L(x, λ; p) = f(x, p) +
m∑

i=1
λigi(x, p),

and assume that the conclusion of the Lagrange Multiplier Theorem holds for each p, that is,
there exist real numbers λ∗

1(p), . . . , λ∗
m(p), such that the first order conditionsNotation!!!!

∂L
(
x∗(p), λ∗(p), p

)
∂x

= f ′
x

(
x∗(p), p

)
+

m∑
i=1

λ∗
i (p)gi

′
x

(
x∗(p), p

)
= 0

are satisfied. Assume that x∗ : P → X and λ∗ : P → Rm are C1. Set

V (p) = f (x∗(p), p) .

Then V is C1 and

∂V (p)
∂pj

=
∂L
(
x∗(p), λ∗(p), p

)
∂pj

= ∂f(x∗, p)
∂pj

+
m∑

i=1
λ∗

i (p)∂gi(x∗, p)
∂pj

.

Proof : Clearly V is C1 as the composition of C1 functions. Since x∗ satisfies the constraints,
we have

V (p) = f (x∗(p), p) = f (x∗(p), p) +
m∑

i=1
λ∗

i (p)gi(x∗, p).
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Therefore by the chain rule,

∂V (p)
∂pj

=

(
n∑

k=1

∂f(x∗, p)
∂xk

∂x∗k

∂pj

)
+ ∂f(x∗, p)

∂pj

+
m∑

i=1

{
∂λ∗

i (p)
∂pj

gi(x∗, p) + λ∗(p)

[(
n∑

k=1

∂gi(x∗, p)
∂xk

∂x∗k

∂pj

)
+ ∂gi(x∗, p)

∂pj

]}

= ∂f(x∗, p)
∂pj

+
m∑

i=1
λ∗

i (p)∂gi(x∗, p)
∂pj

+
m∑

i=1

∂λ∗
i (p)
∂pj

gi(x∗, p) (5.24)

+
n∑

k=1

(
∂f(x∗, p)
∂xk

+
m∑

i=1
λ∗(p)∂gi(x∗, p)

∂xk

)
∂x∗k

∂pj
. (5.25)

The theorem now follows from the fact that both terms (5.24) and (5.25) are zero. Term (5.24)
is zero since x∗ satisfies the constraints, and term (5.25) is zero, since the first order conditions
imply that each ∂f(x∗,p)

∂xk
+
∑m

i=1 λ
∗(p) ∂gi(x∗,p)

∂xk
= 0.

5.10.4 Another Envelope Theorem
The previous theorem assume only that the conclusion of Lagrange Multiplier Theorem held.
This version requires the assumptions of the Lagrange Multiplier Theorem to hold, but dispenses
with the assumption that the multipliers are a C1 function of the parameters. At the moment,
there is an uncomfortable gap in the proof, so label it a conjecture.

301 Conjecture Let X ⊂ Rn and P ⊂ Rℓ be open, and let f, g1, . . . , gm : X × P → R be
C1. For each p ∈ P , let x∗(p) be an interior constrained local maximizer of f(x, p) subject
to g(x, p) = 0. Assume that for each p, the gradients (with respect to x) gi

′
x are linearly

independent at
(
x∗(p), p

)
. Assume that x∗ : P → X is C1.

Define the Lagrangean

L(x, λ; p) = f(x, p) +
m∑

i=1
λigi(x, p).

Then for each p there exist real numbers λ∗
1(p), . . . , λ∗

m(p), such that the first order conditions Notation!!!!

∂L
(
x∗(p), λ∗(p), p

)
∂x

= f ′
x

(
x∗(p), p

)
+

m∑
i=1

λ∗
i (p)gi

′
x

(
x∗(p), p

)
= 0

are satisfied. Set
V (p) = f (x∗(p), p) .

Then V is C1 and

∂V (p)
∂pj

=
∂L
(
x∗(p), λ∗(p), p

)
∂pj

= ∂f(x∗, p)
∂pj

+
m∑

i=1
λ∗

i (p)∂gi(x∗, p)
∂pj

.

The main idea of this proof appears in many places, e.g., Silberberg [141, 142], Clarke
et. al. [38], and Diamond and McFadden [42] who attribute it to Gorman.
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Proof : As in the proof of Theorem 300, the function V is clearly C1. Now observe that we can
embed our maximization in the family of problems

maximize f(x, p) subject to g(x, p) − α = 0 (P(α))

where α ranges over a neighborhood 0 in Rm. The first thing we have to show is that for each
α, there is some (x, p) satisfying g(x, p) +α = 0. We have already assumed that for each p there
is some xp satisfying g(xp, p) = 0. Indeed xp = x∗(p) works. Now consider the function

hp(x, α) = g(x, p) − α.

By hypothesis hp(xp, 0) = 0. The Jacobian of h with respect to x is just the Jacobian of g,
which is of full rank by our linear independence hypothesis. Therefore by the Implicit Function
Theorem 117, there is a neighborhood U of 0 in Rm such that α ∈ U implies the existence of
some x̂p(α) such that hp

(
xx̂p(α), α

)
= 0. Thus each problem P(α) is feasible.

One gap in the proof is to show that in fact each P(α)m has an optimal solution. Assume
for now that this is so, and let x∗(p, α) = x̂p(α) be the optimum. Another gap is to show that
x∗ is a differentiable function of both p and α. Modify the definition of V so that

V (p, α) = f
(
x∗(p, α), p).

Now for any x and p, if we set α = g(x, p), then x satisfies g(x, p) + α = 0. In particular, the
value f(x, p) is less than or equal to the optimal value V

(
p, g(x, p)

)
. In other words,

h(x, p) = V
(
p, g(x, p)

)
− f(x, p) ⩾ 0,

and is equal to zero for x = x∗(p, g(x, p)
)
. Thus minima of h occur whenever x = x∗(p, 0). The

first order conditions for this minimum are that

∂h

∂xj
= 0 j = 1, . . . , n,

∂h

∂pi
= 0 i = 1, . . . ,m.

The first group of first order conditions imply

∂h

∂xj
=

m∑
k=1

∂V

∂αi

∂gk

∂xj
− ∂f

∂xj
= 0,

which tells us that
λ∗

i = − ∂V

∂αi

are the desired Lagrange multipliers. The second group of first order conditions imply

∂h

∂pi
= ∂V

∂pi
+

m∑
k=1

∂V

∂αi

∂gk

∂pi
− ∂f

∂pi
= 0,

or using the Lagrange multipliers defined above

∂V

∂pi
= ∂f

∂pi
+

m∑
k=1

λ∗ ∂gk

∂pi
,

where of course the partials are evaluated at the optimizers.
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Section 6

Quadratic forms

In this section, subscripts typically denote the coordinates of a vector and superscripts typically
are used to enumerate vectors or indicate exponents of a scalar.

6.1 Eigenvectors, eigenvalues, and characteristic roots
Let A be an n×n matrix. A scalar λ is an eigenvalue of A if there is a nonzero vector x in Rn

such that Ax = λx. The vector x is called an eigenvector of A associated with λ. Since we
are dealing only with real matrices, every eigenvalue is a real number. Note that the vector 0 is
by definition not an eigenvector of A. Consequently at exactly one eigenvalue can be associated
to an eigenvector (as αx = Ax = λx and x ̸= 0 imply λ = α). While the vector 0 is never an
eigenvector, the scalar 0 may be an eigenvalue. Indeed 0 is the eigenvalue associated with any
nonzero vector in the null space of A.

It is not hard to show that eigenvectors corresponding to distinct eigenvalues must be linearly
independent, so that every n × n matrix has at most n eigenvalues. But there are matrices
with no eigenvalues. For instance, the 2 × 2 matrix A =

[
0 −1
1 0

]
has no eigenvalues. (In

order to satisfy Ax = λx we must have λx1 = −x2 and λx2 = x1. This cannot happen
for any nonzero x and real λ.) On the other hand, the identity matrix has an eigenvalue 1,
associated with every nonzero vector. We shall see below that symmetric matrices always have
real eigenvalues. Now any eigenvalue must be associated with many eigenvectors, for if x is an
eigenvector associated with λ, so is any nonzero scalar multiple of x. More generally, a linear
combination of eigenvectors corresponding to an eigenvalue is also an eigenvector corresponding
to the same eigenvalue (provided the linear combination does not equal the zero vector). The
span of the set of eigenvectors associated with the eigenvalue λ is called the eigenspace of A
corresponding to λ. Every nonzero vector in the eigenspace is an eigenvector associated with λ.
The dimension of the eigenspace is sometimes called the multiplicity of λ.

Recall that the characteristic polynomial f of a square matrix A is defined by f(λ) =
det(λI −A). Roots of this polynomial, even complex roots, are called characteristic roots of
A.1

302 Lemma Every eigenvalue of a matrix is a characteristic root, and every real characteristic
root is an eigenvalue.

1Some authors, notably Carathéodory [35, p. 178] and Gantmacher [59, pp. 69–70], write the characteristic
polynomial as det(A − λI). For an n × n matrix this differs from the more common definition by a factor of −1n,
and so has the same roots. Interestingly, Gantmacher changes to the more common definition twelve pages later
on page 82.
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Proof : To see this note that if λ is an eigenvalue with eigenvector x ̸= 0, then (λI − A)x =
λx− Ax = 0, so (λI − A) is singular, so det(λI − A) = 0. That is, λ is a characteristic root of
A.

Conversely, if det(λI−A) = 0, then there is some nonzero x with (λI−A)x = 0, or Ax = λx.

303 Lemma The determinant of a square matrix is the product of its characteristic roots.

Proof : (cf. Apostol [8, p. 106]) Let A be an n× n square matrix and let f be its characteristic
polynomial. Then f(0) = det(−A) = (−1)n detA. On the other hand, we can factor f as

f(λ) = (λ− λ1) · · · (λ− λn)

where λ1, . . . , λn are its characteristic roots. Thus f(0) = (−1)nλ1 · · ·λn.

6.2 Quadratic forms
Let A be an n× n symmetric matrix, and let x be an n-vector. Then x ·Ax is a scalar,

x ·Ax =
n∑

i=1

n∑
j=1

aijxixj .

The mapping Q : x 7→ x ·Ax is the quadratic form defined by A.2
The quadratic form Q(x) = x · Ax is positively homogeneous of degree 2 in x, so it is

completely determined by its values on the unit sphere S = {x ∈ Rn : x · x = 1}. Moreover Q
is a continuous function, so it achieves a maximum and minimum on the unit sphere, which is
compact. Every maximizer turns out to be an eigenvector of A, and the value of the maximum
is its corresponding eigenvalue. This eigenvalue also turns out to be the Lagrange Multiplier for
the constraint that the maximizer lies on the sphere. We can say even more, for if we restrict
attention to the subspace orthogonal to the eigenvector and look for a maximizer, we get another
eigenvector and eigenvalue. We can repeat this procedure until we have found them all:

304 Proposition (Extrema of quadratic forms on the sphere) Let A be an n× n sym-
metric matrix. Define the vectors x1, . . . , xn recursively so that xk+1 maximizes the quadratic
form Q(x) = x · Ax over Sk = S ∩ Mk⊥, where S is the unit sphere in Rn, and Mk denotes
the span of x1, . . . , xk, with M0 = {0}. Then each xk, k = 1, . . . , n is an eigenvector of A, and
λk = Q(xk) is its corresponding eigenvalue.

Note that by construction Sk+1 ⊂ Sk, so λ1 ⩾ · · · ⩾ λn. Indeed λn is the minimum of Q on
the unit sphere. The sequence of eigenvalues and eigenvectors can be obtained in reverse order
by minimizing rather than maximizing.

Proof : Let S = {x ∈ Rn : x · x = 1} denote the unit sphere. Set M0 = {0} and define
S0 = S ∩ M0⊥, where M0⊥ is the orthogonal complement of M0. (This is a little silly, since
M0⊥ = Rn, so S0 = S, but the reason will become apparent soon.) Since Q is continuous, it has
a maximizer on S0, which is compact. (This maximizer cannot be unique, since Q(−x) = Q(x),
and indeed if A = I, then Q is constant on S.) Fix a maximizer x1 of Q over S0.

2The term form refers to a polynomial function in several variables where each term in the polynomial has the
same degree. (The degree of the term is the sum of the exponents. For example, in the expression xyz+x2y+xz+z,
the first two terms have degree three, the third term has degree two and the last one has degree one. It is thus
not a form.) This is most often encountered in the phrases linear form (each term has degree one) or quadratic
form (each term has degree two). Tom Apostol once remarked at a cocktail party that mathematicians evidently
don’t know the difference between form and function.
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Proceed recursively for k = 1, . . . , n−1. Let Mk denote the span of x1, . . . , xk, and set
Sk = S ∩ Mk⊥. Let xk+1 maximize Q over Sk. By construction, xk+1 ∈ Mk⊥, so the xk’s are
orthogonal, indeed orthonormal.

The quadratic form Q(x) = x · Ax is continuously differentiable and Q′(x) = 2Ax. Since
x1 maximizes Q on S = S0, it maximizes Q subject to the constraint 1 − x · x = 0. Now the
gradient of this constraint function is −2x, which is clearly nonzero (hence linearly independent)
on S. It is a nuisance to have these 2s popping up, so let us agree to maximize 1

2x ·Ax subject
1
2 (1 − x · x) = 0 instead. Therefore by the Lagrange Multiplier Theorem 270, there exists λ1
satisfying

Ax1 − λ1x
1 = 0.

This obviously implies that the Lagrange multiplier λ1 is an eigenvalue of A and x1 is a corre-
sponding eigenvector. Further, it is the value of the maximum:

Q(x1) = x1 ·Ax1 = λ1x
1 · x1 = λ1,

since x1 · x1 = 1.
We now proceed by induction on k. Let x1, . . . , xn be recursively defined as above and assume

that for i = 1, . . . , k, each xi is an eigenvector of A and that λi = Q(xi) is its corresponding
eigenvalue. We wish to show that xk+1 is an eigenvector of A and λk+1 = Q(xk+1) is its
corresponding eigenvalue.

By hypothesis, xk+1 maximizes 1
2Q(x) subject to the constraints 1

2 (1 − x · x) = 0, x · x1 =
0, . . . , x ·xk = 0. The gradients of these constraint functions are −x and x1, . . . , xk respectively.
By construction, x1, . . . , xk+1 are orthonormal, so at xk+1 the constraint gradients are linearly
independent. Therefore by the Lagrange Multiplier Theorem there exist multipliers λk+1 and
µ1, . . . , µk satisfying

Axk+1 − λk+1x
k+1 + µ1x

1 + · · · + µkx
k = 0. (6.1)

Therefore

Q(xk+1) = xk+1 ·Axk+1 = λk+1x
k+1 · xk+1 − µ1x

k+1 · x1 − · · · − µkx
k+1 · xk = λk+1,

since x1, . . . , xk+1 are orthonormal. That is, the multiplier λk+1 is the maximum value of Q
over Sk.

By the induction hypothesis, Axi = λix
i for i = 1, . . . , k. Then since A is symmetric,

xi ·Axk+1 = xk+1 ·Axi = xk+1 · (λix
i) = 0, i = 1, . . . , k.

That is, xk+1 ∈ Mk⊥, so Axk+1 − λk+1x
k+1 ∈ Mk⊥, so equation (6.1) implies

Axk+1 − λk+1x
k+1 = 0 and µ1x

1 + · · · + µkx
k = 0.

(Recall that if x ⊥ y and x+y = 0, then x = 0 and y = 0. Hint: This follows from (x+y)·(x+y) =
x ·x+ 2x · y+ y · y = x ·x+ y · y when x · y = 0.) We conclude therefore that Axk+1 = λk+1x

k+1,
so that xk+1 is an eigenvector of A and λk+1 is the corresponding eigenvalue.

Note that since the first order conditions for a minimum are the same as for a maximum
that by minimizing rather than maximizing, we can construct the sequence of eigenvectors in the
reverse order by minimizing. The values of the minima are once again eigenvalues of A. Since an
eigenvector can have only one associated eigenvalue, the sequence of eigenvalues is reproduced
in reverse order as well.

305 Corollary Let A be an n × n symmetric matrix. Then Rn has an orthonormal basis of
eigenvectors of A. There are n eigenvalues, counting each eigenvalue at its multiplicity.
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6.3 Definite and semidefinite quadratic forms
A symmetric matrix A (or its associated quadratic form) is called

• positive definite if x ·Ax > 0 for all nonzero x.

• negative definite if x ·Ax < 0 for all nonzero x.

• positive semidefinite if x ·Ax ⩾ 0 for all x.

• negative semidefinite if x ·Ax ⩽ 0 for all x.

If A is not symmetric, then A+A′

2 is symmetric (where A′ denotes the transpose of A) and
x · Ax = x · ( A+A′

2 )x for any x, so we do not lose much applicability by this assumption. Some
authors use the term quasi-(semi)definite when they do not wish to impose symmetry.

306 Proposition (Eigenvalues and definiteness) The symmetric matrix A is

1. positive definite if and only if all its eigenvalues are strictly positive.

2. negative definite if and only if all its eigenvalues are strictly negative.

3. positive semidefinite if and only if all its eigenvalues are nonnegative.

4. negative semidefinite if and only if all its eigenvalues are nonpositive.

First proof : I’ll prove only the first statement. All the eigenvalues are strictly positive if and only
if the least eigenvalue is strictly positive if and only the quadratic form is strictly positive on the
unit sphere (Proposition 304) if and only the quadratic form is positive definite (homogeneity).

Second proof : Let {x1, . . . , xn} be an orthonormal basis for Rn consisting of eigenvectors of A.
(See Corollary 305.) Let λi be the eigenvalue corresponding to xi. That is,

Axi = λix
i.

Writing y =
∑n

i=1 αix
i, we see that

y ·Ay =
n∑

i=1

n∑
j=1

(αix
i) ·A(αjx

j) =
n∑

i=1

n∑
j=1

αiαjλjx
i · xj =

n∑
k=1

(αk)2λk,

where the last equality follows from the orthonormality of {x1, . . . , xn}. All the statements
above follow from this equation and the fact that (αk)2 ⩾ 0 for all k.

307 Proposition (Definiteness of the inverse) If A is positive definite (negative definite),
then A−1 exists and is also positive definite (negative definite).

Proof : First off, how do we know the inverse ofA exists? SupposeAx = 0. Then x·Ax = x·0 = 0.
Since A is positive definite, we see that x = 0. Therefore A is invertible. Here are two proofs of
the proposition.

First proof. Since (Ax = λx) =⇒ (x = λA−1x) =⇒ (A−1x = 1
λx), the eigenvalues of A

and A−1 are reciprocals, so they must have the same sign. Apply Proposition 306.
Second proof.

x ·A−1x = y ·Ay where y = A−1x.

The proof of the next theorem may be found in Debreu [40] or Gantmacher [59, pp. 306–308].
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308 Theorem For a symmetric matrix A:

1. A is positive definite if and only if all its NW principal minors are strictly positive.

2. A is negative definite if and only if all its kth-order NW principal minors have sign (−1)k.

3. A is positive semidefinite if and only if all its principal minors are nonnegative.

4. A is negative semidefinite if and only if all its kth-order principal minors have sign (−1)k

or 0.

Proof : We start with the necessity of the conditions on the minors.
First note that every principal submatrix of a matrix A inherits its definiteness. To see this

let I ⊂ {1, . . . , n} be the (nonempty) set of indices of rows and columns for the submatrix. Let
x be any nonzero vector with xk = 0 for k /∈ I. Then

x ·Ax =
n∑

i=1

n∑
j=1

aijxixj =
∑
i∈I

∑
j∈I

aijxixj ,

so the quadratic form defined by the submatrix cannot have a different sign from the quadratic
form defined by A.

By Proposition 306, if a matrix is positive definite, all its eigenvalues are positive, so by
Lemma 303 its determinant must be positive, as the product of the eigenvalues. Thus every
principal submatrix of a positive definite matrix has a strictly positive determinant. Similarly,
every principal submatrix of a positive semidefinite matrix has a nonnegative determinant.

The results for negative (semi)definiteness stem from the observation that a matrix A is
negative (semi)definite if and only if −A is positive (semi)definite, and that the determinant of
a kth order submatrix of −A is (−1)k times the corresponding subdeterminant of A.

The sufficiency part is harder. To see why such a result might be true, consider first the case
n = 2. Then, completing the square, we get

x ·Ax = a11x
2
1 + 2a12x1x2 + a22x

2
2

= a11
(
x1 + a12

a11
x2
)2 + a11a22 − a2

12
a11

x2
2

= D1y
2
1 + D2

D1
y2

2 ,

where [
y1
y2

]
=
[

1 a12
a11

0 1

] [
x1
x2

]
,

D1 = a11, the determinant of the 1 × 1 NW principal minor of A, and D2 = detA, the deter-
minant of the 2 × 2 NW principal minor. In this case it is easy to see that D1 > 0 and D2 > 0
imply that A is positive definite.

Lagrange noticed that this technique could be generalized. That is, if D1 ̸= 0, . . . , Dn ̸= 0
there is always a nonsingular upper triangular matrix U (with 1s on the main diagonal), so that

x ·Ax =
n∑

i=1

Di

Di−1
y2

i ,

where y = Ux, D0 = 1, and Di is the determinant of the i × i NW principal minor of A.
Given this decomposition, known as Jacobi’s formula, it is easy to see why the conditions
D1 > 0, . . . , Dn > 0 guarantee that A is positive definite. The matrix U is computed by using
Gaussian elimination on A. For details, see, e.g., Gantmacher [59, pp. 33–41, 300–302]. This
proves parts (1) and (2).
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To prove parts (3) and (4), we use the fact that if A has rank k, then there is a permutation
matrix P so that Â = P ′AP satisfies D̂1 > 0, . . . , D̂k > 0 and D̂k+1 = · · · = D̂n = 0. Further-
more, each D̂i is some i × i minor subdeterminant of the original A. Thus there is an upper
triangular matrix Û such that

x ·Ax = x · PÂP ′x = P ′x · ÂP ′x =
k∑

i=1

D̂i

D̂i−1
y2

i ,

where y = ÛP ′x. Again see Gantmacher [59, pp. 33—41] for details.

6.4 Quadratic forms under constraint
Proposition 304 considered the extrema of a quadratic form restricted to a subspace orthogonal
to a set of eigenvectors. In this section we will generalize this problem to morte general subspaces.

A matrix A is positive definite under the orthogonality constraints b1, . . . , bm if it
is symmetric and

x ·Ax > 0 for all x ̸= 0 satisfying bi · x = 0, i = 1, . . . ,m.

The notions of negative definiteness and semidefiniteness under constraint are defined in the
obvious analogous way. Notice that we can replace b1, . . . , bm by any basis for the span of
b1, . . . , bm, so without loss of generality we may assume that b1, . . . , bm are linearly independent,
or even orthonormal.

309 Theorem Suppose A is an n×n symmetric matrix that is negative definite under constraint
for the linearly independent constraint vectors b1, . . . , bm. That is, x · Ax < 0 for all nonzero x
satisfying B′x = 0, where B is the n×m matrix whose jth column is bj . Then:

1. The matrix [
A B
B′ 0

]
is invertible.

2. Write [
A B
B′ 0

]−1

=
[
C D
D′ E

]
.

Then C is negative semidefinite of rank n − m, with Cx = 0 if and only if x is a linear
combination of b1, . . . , bm.

Proof : (cf. Samuelson [136, pp. 378–379], Quirk [128, pp. 22–25], and Diewert and Woodland [44,
Appendix, Lemma 3])

(1) Observe that

[
x′ z′ ][ A B

B′ 0

][
x
z

]
=
[
x′ z′ ][ Ax+Bz

B′x

]
= x′Ax+ x′Bz + z′B′x.

Now suppose
[
A B
B′ 0

][
x
z

]
= 0. Then

Ax+Bz = 0 (6.2)

and
B′x = 0, (6.3)
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so
0 =

[
x′ z′ ][ A B

B′ 0

][
x
z

]
= x ·Ax. (6.4)

Since A is definite under constraint, (6.3) and (6.4) imply that x = 0. Thus (6.2) implies Bz = 0.
Since B has linearly independent columns, this implies z = 0.

Thus
[
A B
B′ 0

][
x
z

]
= 0 implies

[
x
z

]
= 0. Therefore

[
A B
B′ 0

]
is invertible.

(2) So write [
A B
B′ 0

]−1

=
[
C D
D′ E

]
and observe that [

C D
D′ E

][
A B
B′ 0

]
=
[
In 0
0 Im

]
.

Expanding this yields

CA+DB′ = I (6.5)
CB = 0 (6.6)

D′A+ EB′ = 0 (6.7)
D′B = I (6.8)

Now premultiply (6.5) by x′ and postmultiply by Cx to get

x′CACx+ x′D B′C︸︷︷︸
=0

by 6.6

x = x′Cx.

Now again by (6.6), we have B′Cx = 0, so Cx is orthogonal to each column of B. That is, Cx
satisfies the constraints, so x · CACx ⩽ 0 with < 0 if Cx ̸= 0. Thus x · Cx ⩽ 0 with < 0 if
Cx ̸= 0. That is, C is negative semidefinite.

To see that C has rank n−m, we show that Cx = 0 if and only if x is a linear combination
of the columns of the m independent columns of B. Equation (6.6) already implies that x = Bz
implies Cx = 0. Now suppose Cx = 0. Premultiply (6.5) by x′ to get

x′CA+ x′DB′ = x′.

Thus x′C = 0 implies (x′D)B′ = x′, or x = Bz, where z = Dx.
Thus Cx = 0 if and only if x is a linear combination of the columns of B. Therefore the null

space of C has dimension equal to the rank of B, which is m, so the rank of C equals n−m.

The next result is a partial converse to Theorem 309.

310 Theorem Suppose A is an n × n symmetric matrix that is negative semidefinite under
constraint for the linearly independent constraint vectors b1, . . . , bm. That is, x · Ax ⩽ 0 for all
nonzero x satisfying B′x = 0, where B is the n × m matrix whose jth column is bj . Suppose
also that the matrix [

A B
B′ 0

]
is invertible. Then A is actually negative definite under constraint. That is, x · Ax < 0 for all
nonzero x satisfying B′x = 0.

Note that if B has full rank, then there are no nonzero x with B′x = 0. In that case the
theorem is trivially true.
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Proof : Suppose
x̄ ·Ax̄ = 0 and B′x̄ = 0.

Then x̄ maximizes the quadratic form 1
2x · Ax subject to the constraints B′x = 0. Since the

columns of B are independent, the constraint qualification is satisfied, so by the Lagrange
Multiplier Theorem 270, there is a vector λ ∈ Rm satisfying the first order conditions:

Ax̄+Bλ = 0.

Thus [
A B
B′ 0

][
x̄
λ

]
=
[
Ax̄+Bλ
B′x̄

]
=
[

0
0

]
.

Since
[
A B
B′ 0

]
is invertible, we see that x̄ = 0 (and λ = 0). Thus B′x = 0 and x ̸= 0 imply

x ·Ax < 0.

6.4.1 Determinantal conditions
Now consider the problem of maximizing the quadratic form Q(x) = 1

2x ·Ax over the unit sphere
subject to the constraints that b1 ·x = 0, . . . , bm ·x = 0, where m < n and b1, . . . , bm are linearly
independent. Note that the constraint set is a closed subset of the unit sphere (hence compact)
so a maximizer exists. Let x∗ be such a constrained maximizer. (It is not unique as at least
−x∗ is also a maximizer.)

We want to apply the Lagrange Multiplier Theorem, so we need verify the linear indepen-
dence of the gradients of the constraints. Write the unit sphere constraint as 1

2 (1 − x · x) = 0
to avoid unsightly fractions. The gradient of this constraint is −x, and the gradient of bi · x is
bi. Thus we need to show that x∗, b1, …, bm are linearly independent. Since x∗ is on the unit
sphere, it is nonzero, and since it is orthogonal to each bi, it cannot be a linear combination of
them, so the set of gradients is independent.

Thus there exist Lagrange multipliers λ∗, µ∗
1, . . . , µ

∗
m satisfying the first-order conditions

Ax∗ − λ∗x+ µ∗
1b

1 + · · · + µ∗
mb

m = 0. (6.9)

Premultiplying equation (6.9) by x∗, and using the fact that x∗ is orthogonal to each bi, we get

Q(x∗) = x∗ ·Ax∗ = λ∗x∗ · x∗ = λ∗.

That is, the Lagrange multiplier λ∗ is the maximum value of Q.
We can combine equation (6.9) with the orthogonality conditions in one big matrix equation:[

A− λ∗I B
B′ 0

][
x∗

µ∗

]
=
[

0
0

]
,

where B is the matrix whose columns are b1, . . . , bm and µ∗ is the vector with components
µ∗

1, . . . , µ
∗
m. Since x∗ is nonzero (it lies on the unit sphere), the matrix

[
A− λ∗I B
B′ 0

]
must be

singular, so

det
[
A− λ∗I B
B′ 0

]
= 0.

The next result is can be found in Hancock [71, p. 106], who attributes it to Zajaczkowski [163].

311 Proposition (Hancock) Let A be an n × n symmetric matrix and let {b1, . . . , bm} be
linearly independent. Let

f(λ) = det
[
A− λI B
B′ 0

]
.
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If all the coefficients of f have the same sign, then A is negative semidefinite under constraint.
If the coefficients of f alternate in sign, then A is positive semidefinite under constraint.

(Here we must consider the zero coefficients to be alternating in sign.)

If in addition, f(0) = det
[
A B
B′ 0

]
̸= 0, then A is actually definite under constraint.

Proof : Even without resort to Descartes’ infamous Rule of Signs the following fact is easy to
see: If all the nonzero coefficients of a nonzero polynomial f have the same sign, then f has no
strictly positive roots. For if all the coefficients of a polynomial f are nonnegative, then f(0) ⩾ 0
and f is nondecreasing on (0,∞), so it has no positive roots. Likewise if all the coefficients
are nonpositive, then f(0) ⩽ 0 and f is nonincreasing on (0,∞), so it has no positive roots.
Trivially if f(0) ̸= 0, then 0 is not a root.

From the discussion preceding the proposition, λ∗, the maximum value of x′Ax on the unit
sphere, is a root of f . If the coefficients of f do not change sign, then λ∗ ⩽ 0. That is, A is
negative semidefinite under the constraints, and is actually definite if f(0) ̸= 0.

The results on positive (semi)definiteness follow from the fact that λ∗ is a negative root of
f(λ) if and only if −λ∗ is a positive root of f(−λ).

The problem with applying this result is that he does not provide a simple formula for the
coefficients.

6.4.2 Bordered matrices and quadratic forms
If A is some kind of definite under constraint, we define matrices of the form

a11 . . . a1r b1
1 . . . bm

1
...

...
...

...
ar,1 . . . arr b1

r . . . bm
r

b1
1 . . . b1

r 0 . . . 0
...

...
...

...
bm

1 . . . bm
r 0 . . . 0


to be r-th order bordered minors of A. Note that the r refers to the number of rows and
columns from A. The actual r-th order minor has m + r rows and columns, where m is the
number of constraint vectors. The proof of the following result may be found in Debreu [40,
Theorems 4 and 5] or Mann [106]. Note that Mann errs in the statement of part 2. A proof
may also be found sketched in Samuelson [136, pp. 376–378].

312 Theorem Let A be an n×n symmetric matrix and let {b1, . . . , bm} be linearly independent.

1. A is positive definite under constraint subject to b1 . . . , bm if and only if

(−1)m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1r b1
1 . . . bm

1
...

...
...

...
ar,1 . . . arr b1

r . . . bm
r

b1
1 . . . b1

r 0 . . . 0
...

...
...

...
bm

1 . . . bm
r 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0

for r = m+1, . . . , n. That is, if and only if every rth-order NW bordered principal minor
has sign (−1)m for r > m.
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2. A is negative definite under constraint subject to b1 . . . , bm if and only if

(−1)r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1r b1
1 . . . bm

1
...

...
...

...
ar,1 . . . arr b1

r . . . bm
r

b1
1 . . . b1

r 0 . . . 0
...

...
...

...
bm

1 . . . bm
r 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0

for r = m+1, . . . , n. That is, if and only if every rth-order NW bordered principal minor
has sign (−1)r for r > m.

Note that for positive definiteness under constraint all the NW bordered principal minors of
order greater than m have the same sign, the sign depending on the number of constraints. For
negative definiteness the NW bordered principal minors alternate in sign. For the case of one
constraint (m = 1) if A is positive definite under constraint these minors are negative. Again
with one constraint if A is negative definite under constraint, then the minors of even order are
positive and of odd order are negative.

To see how to derive statement (2) from statement (1), observe that A is negative definite
under constraint if and only if −A is positive definite under constraint, which by statement (1)
is equivalent to

(−1)m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−a11 . . . −a1r b1
1 . . . bm

1
...

...
...

...
−ar,1 . . . −arr b1

r . . . bm
r

b1
1 . . . b1

r 0 . . . 0
...

...
...

...
bm

1 . . . bm
r 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0

for r = m+1, . . . , n. But

(−1)m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−a11 . . . −a1r b1
1 . . . bm

1
...

...
...

...
−ar,1 . . . −arr b1

r . . . bm
r

b1
1 . . . b1

r 0 . . . 0
...

...
...

...
bm

1 . . . bm
r 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)m+r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1r −b1
1 . . . −bm

1
...

...
...

...
ar,1 . . . arr −b1

r . . . −bm
r

b1
1 . . . b1

r 0 . . . 0
...

...
...

...
bm

1 . . . bm
r 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)2m+r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1r b1
1 . . . bm

1
...

...
...

...
ar,1 . . . arr b1

r . . . bm
r

b1
1 . . . b1

r 0 . . . 0
...

...
...

...
bm

1 . . . bm
r 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

and (−1)2m+r = (−1)r, so (2) follows.
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Answers to selected exercises

Chapter 2
Exercise 30 (p. 15)
Prove that if both the epigraph and hypograph of a function are closed, then the graph is closed.

Proof : This is easy, as

graph f = {(x, α) : α = f(x)} = {(x, α) : α ⩾ f(x)}
∩

{(x, α) : α ⩽ f(x)}

and the intersection closed sets is closed.

Give an example to show that the converse is not true.

Example: Define f : R → R by

f(x) =

{ 1
x x ̸= 0

0 x = 0.

Clearly the graph is closed, but neither the hypograph nor epigraph is closed.

Chapter 4
Exercise 130 (Affine combinations, p. 69)
Let A be an affine subspace. Prove that if x1, . . . , xn belong to A and λ1, . . . , λn are scalars that
sum to one, then λ1x1 + · · · + λnxn also belongs to A.

Proof : The proof is by induction on n. The result is clearly true for n = 1, since in that
case we must have λ1 = 1. So let n > 1, and assume that the result holds for n − 1, and let
x1, . . . , xn belong to A and λ1 + · · · +λn = 1. By renumbering if necessary we may assume that
γ = λ1 + · · · +λn−1 = 1 −λn ̸= 0. (This is because if this sum is zero, then λn = 1, and if this is
true for all subsets of size n− 1, then λi = 1 for each i, which contradicts their summing to 1.)

Then
∑n−1

i=1 λi/γ = 1, so by the induction hypothesis, the point y =
∑n−1

i=1
λi

γ xi belongs to
A. Therefore the affine combination

γy + λnxn =
n∑

i=1
λixi

belongs to A.

171
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Exercise 131 (Affine subspaces, p. 69)
Let X be a vector space. Prove the following.

1. LetM be a linear subspace of X and let a be a vector in X. ThenM+a = {x+a : x ∈ M}
is an affine subspace of X.

Proof : Let α and β be scalars with α+ β = 1, and let x and y belong to M + a. We wish
to show that αx+ βy belongs to M + a.
Let x = x′ + a and y = y′ + a, where x′ and y′ belong to M . Then

αx+ βy = α(x′ + a) + β(y′ + a) = αx′ + βy′ + (α+ β)a = αx′ + βy′ + a.

Since M is a linear subspace αx′ + βy′ belong to M , so αx+ βy belongs to M + a.

2. Let A be an affine subspace of X, and let a and b belong to A.

(a) The set A− a = {x− a : x ∈ A} is a linear subspace of X.
Proof : Let x and y belong to A−a, and let α and β be scalars, and let γ = 1−(α+β).
We wish to show that αx+ βy belongs to A− a. Now x+ a, y + a, and a belong to
A, which is closed under affine combinations, so

α(x+ a) + β(y + a) + γa = αx+ βy + a belongs to A.

That is, αx+ βy belongs to A− a.
(b) A− a = A− b.

Proof : Let x belong to A. We may write

x− a = (x− b) − (a− b).

But both x− b and a− b belong to A− b, which is a linear subspace, so x−a belongs
to A− b. This proves that A− a ⊂ A− b. Interchanging the roles of a and b proves
the reverse inclusion, so A− a = A− b.

3. Consequently, for every affine subspace A, there is a linear subspace M such that A =
M + a.

Proof : Set M = A− a. Then M is a linear subspace and A = M = a.

4. If M and N are linear subspaces such A = M +a = N + b for some a, b ∈ A, then M = N .
This subspace is called the linear subspace parallel to A.

Proof : We know that A−a = A−b, but A−a = (M+a)−a = M and A−b = (N+b)−b =
N , so M = N .

5. An affine subspace is a linear subspace if and only it contains 0.

Proof : If an affine subspace is also a linear subspace, it must contain 0. Conversely, if A
is an affine subspace that contains 0, then by the above A− 0 = A is a linear subspace.

6. Let M denote the unique linear subspace parallel to A. For x ∈ M and y ∈ A together
imply that x+ y ∈ A.

Proof : If y ∈ A, then by the above, A − y = M . Since x ∈ M , we have x ∈ A − y, or
x+ y ∈ A.
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Exercise 133 (Affine functions, p. 70)
A function f on an affine subspace A is affine if and only it is of the form f(x) = g(x− a) − γ,
where a belongs to A and g is linear on the linear subspace A− a. Moreover, g is independent
of the choice of a in A.

In particular, when A = X, then an affine function f on X can be written as f(x) = g(x)−γ,
where g is linear on X and γ = −f(0).

Proof : (⇐=) Fix some point a in A, a scalar γ, and a linear function g on A − a. Define f on
A by f(x) = g(x− a) − γ. We need to show that f is affine. So let α and β be scalars satisfying
α+ β = 1. Then

f(αx+ βy) = f
(
α(x− a) + β(y − a) + a

)
= g
(
α(x− a) + β(y − a)

)
− γ

= αg(x− a) + βg(y − a) − γ

= α
[
g(x− a) − γ

]
+ β

[
g(y − a) − γ

]
= αf(x) + βf(y),

which proves that f is affine.
( =⇒ ) Let f be an affine function on A. Pick some point a in A, and define g on A− a by

g(x) = f(x + a) − f(a). (Thus f(y) = g(y − a) − γ, where γ = −f(a) for y ∈ A). We need to
show that g is linear on A− a.

Let x belong to A− a. We first show that

g(αx) = αg(x) for all α. (1)

To see this, write

g(αx) = g
(
αx+ (1 − α)0

)
= f

(
αx+ (1 − α)0 + a

)
− f(a)

= f
(
α(x+ a) + (1 − α)a

)
− f(a)

= αf(x+ a) + (1 − α)f(a) − f(a)
= α

[
f(x+ a) − f(a)

]
+ (1 − α)

[
f(a) − f(a)

]
= αg(x).

Next we show that g is additive, that is,

g(x+ y) = g(x) + g(y) for all x, y ∈ A− a. (2)

Now
g(x+ y) = g

(
2[ 1

2x+ 1
2y]
)

= 2g
( 1

2x+ 1
2y
)

by (1)
= 2

{
f
(
[ 1

2x+ 1
2y] + a

)
− f(a)

}
defn. of g

= 2
{
f
( 1

2 [x+ a] + 1
2 [y + a]

)
− f(a)

}
= 2

{1
2f(x+ a) + 1

2f(y + a) − f(a)
}

since f is affine
= 2

{1
2
[
f(x+ a) − f(a)

]
+ 1

2
[
f(y + a) − f(a)

]}
=
[
f(x+ a) − f(a)

]
+
[
f(y + a) − f(a)

]
= g(x) + g(y).

This shows that g is linear. To see that g does not depend on the choice of a, let a and b
belong to A and let x belong to the linear subspace M = A− a = A− b. We want to show that
f(x+ a) − f(a) = f(x+ b) − f(b).
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Now 1
2x also belongs to the linear subspace M and 1

2a + 1
2b belongs to the affine subspace

A. Recall that for any point z ∈ M and y ∈ A, the point z + y belongs to A. In particular,
1
2x+ 1

2a+ 1
2b ∈ A, x+ a ∈ A, x+ b ∈ A.

Now

f( 1
2x+ 1

2a+ 1
2b) = f( 1

2x+ 1
2b+ 1

2a)
f
( 1

2 [x+ a] + 1
2b) = f( 1

2 [x+ b] + 1
2a)

1
2f(x+ a) + 1

2f(b) = 1
2f(x+ b) + 1

2f(a)
f(x+ a) + f(b) = f(x+ b) + f(a)
f(x+ a) − f(a) = f(x+ b) − f(b)

which shows that the linear function g is independent of the choice of a or b in A.
The last paragraph follows by taking a = 0 when A = X.

Exercise 127 (p. 67)
1. The sum of two convex sets is convex.

Let S = A + B = {x + y : x ∈ A, y ∈ B}. Let u, v belong to S where u = x1 + y1,
v = x2 + y2, each xi ∈ A, yi ∈ B. Then

λu+(1−λ)v = λ(x1 +y1)+(1−λ)(x2 +y2) =
(
λx1 + (1 − λ)y1

)︸ ︷︷ ︸
∈ A

+
(
λx2 + (1 − λ)y2

)︸ ︷︷ ︸
∈ B

∈ S.

2. Scalar multiples of convex sets are convex.
Obvious, as λαx+ (1 − λ)αy = α

(
λx+ (1 − λ)y

)
.

3. A set C is convex if and only if

αC + βC = (α+ β)C

for all nonnegative scalars α and β.
(⇐=) Assume C is convex, and let α, β ⩾ 0 be given. If α = β = 0, the claim reduces to
{0} = {0}, which is true. So assume α+ β > 0.
First we show that (α+β)C ⊂ αC+βC. This uses no convexity. Let y belong to (α+β)C.
Then y = (α+ β)x, where x ∈ C. But (α+ β)x = αx+ βx ∈ αC + βC.
Next we show αC + βC ⊂ (α + β)C. Let y belong to αC + βC, that is, y = αu + βv,
where u, v ∈ C. Dividing by the nonzero quantity α+ β gives

1
α+ β

y = α

α+ β
u+ β

α+ β
v ∈ C,

where the set membership follows from the convexity of C. Multiplying by α + β gives
y ∈ (α+ β)C.
(=⇒) This is easy: Assume αC + βC = (α+ β)C for all nonnegative scalars α and β. Let
λ ∈ [0, 1], and let x, y ∈ C. Then

λx+ (1 − λ)y ∈ λC + (1 − λ)C =
(
λ+ (1 − λ)

)
C = C.

4. The intersection of an arbitrary family of convex sets is convex.
Let A be a set and for each α ∈ A, let Cα be a convex set. Let x, y ∈

∩
α Cα. Since each

Cα is convex, λx+ (1 − λ)y ∈ Cα too. But then λx+ (1 − λ)y ∈
∩

α Cα.
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5. A convex set C contains every convex combination of its members.
The proof is by induction. The definition of convexity is that the set includes every convex
combination of two of its members. So assume that C includes every convex combination
of n or fewer members, and let x =

∑n+1
i=1 λixi be a convex combination of n+1 members.

If any λi = 0, then we have a combination of no more thn n members, and so are finished.
Therefore we may assume every λi > 0. Let α =

∑n
i=1 λi. Then

n+1∑
i=1

λixi = α
n∑

i=1
(λi/α)xi + (1 − α)xn+1.

But y =
∑n

i=1(λi/α)xi is a convex combination, and so belongs to C by the induction
hypothesis. Thus x = αy + (1 − α)xn+1 is a convex combination that belongs to C.

6. The convex hull of a set A is the smallest (with respect to inclusion) convex set that
includes A.
Recall that

coA =
{ m∑

i=1
λixi : where m ⩾ 1 and each xi ∈ A, λi ≥ 0, and

m∑
i=1

λi = 1
}
.

To show that this is the smallest convex set that includes A, we need to show three things.
(i) coA includes A. (ii) coA is convex. (iii) If C is convex and includes A, then C also
includes coA. Note that this also proves that coA is the intersection of all convex sets
that include A.
(i) is easy: Just take m = 1, so λ1 = 1, and (iii) follows from the definition of convexity.
So it remains to show that coA is actually convex. This too is easy. Let x =

∑n
i=1 αixi

and y =
∑m

j=1 γjyj belong to coA, where each xi, yj ∈ A, etc. Let 0 ⩽ λ ⩽ 1. Then

λx+ (1 − λ)y =
n∑

i=1
λαixi +

m∑
j=1

(1 − λ)γjyj .

Since each λαi, (1 − λ)γj ⩾ 0 and their sum is λ+ 1 − λ = 1, and each xi, yj ∈ A, we see
that λx+ (1 − λ)y belongs to coA, so it is convex.

7. The interior and closure of a convex set are also convex.
Let C be convex, and let C◦ denote its interior, and C its closure. Recall that C◦ is
open, and indeed is the largest open set included in C. Let 0 < λ < 1, and observe that
λC◦ +(1−λ)C◦ is open.3 Since C is convex, λC◦ +(1−λ)C◦ ⊂ C. Since C◦ is the largest
open set included in C we must haveλC◦ + (1 − λ)C◦ ⊂ C◦. But this shows that C◦ is
convex.
To see that C is convex, let x, y ∈ C, xn → x, yn → y, each xn, yn ∈ C, and let 0 ⩽ λ ⩽ 1.
Then λxn + (1 − λ)yn ∈ C, and λxn + (1 − λ)yn → λx+ (1 − λ)y, so λx+ (1 − λ)y ∈ C.

Exercise 135 (p. 70)
1. The sum of concave functions is concave.

(f + g)
(
λx+ (1 − λ)y

)
= f

(
λx+ (1 − λ)y

)
+ g
(
λx+ (1 − λ)y

)
⩽ λf(x) + (1 − λ)f(y) + λg(x) + (1 − λ)g(y)
= λ(f + g)(x) + (1 − λ)(f + g)(y).

3Indeed if G is open, then G + A is open for any set A, for if x = u + v with u ∈ G and v ∈ A, then G + v
is an open neighborhood of x included in G + A. Also if G is open and λ ̸= 0, then λG is open, for if Bε(x) is
included in G, then B|λ|ε(x) is included in λG.
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2. A nonnegative multiple of a concave function is concave.
If f

(
λx + (1 − λ)y

)
⩽ λf(x) + (1 − λ)f(y), since multiplying by positive α preserves

inequalities, we also have αf
(
λx+ (1 −λ)y

)
⩽ λαf(x) + (1 −λ)αf(y) for α > 0. The case

α = 0 is obviously true.

3. The pointwise limit of a sequence of concave functions is concave.
By concavity fn

(
λx+(1−λ)y

)
⩽ λfn(x)+(1−λ)fn(y) for each n, so by elementary prop-

erties of limits of real sequences, limn fn

(
λx+(1−λ)y

)
⩽ λ limn fn(x)+(1−λ) limn fn(y).

4. The pointwise infimum of a family of concave functions is concave.
Let g = infα fα. Then

λg(x) + (1 − λ)g(y) = inf
α
λfα(x) + inf

β
(1 − λ)fβ(y)

⩽ inf
γ
λfγ(x) + (1 − λ)fγ(y) (inf over smaller set)

⩽ inf
γ
fγ

(
λx+ (1 − λ)y

)
(by concavity of fγ)

= g
(
λx+ (1 − λ)y

)
.

5. A function is both concave and convex if and only if it is affine.
This is just Exercise 133.

Exercise 159 (p. 78)
Let A and B be disjoint nonempty convex subsets of Rn and suppose nonzero p in Rn properly
separates A and B with p ·A ⩾ p ·B.

1. If A is a linear subspace, then p annihilates A. That is, p · x = 0 for every x in A.

2. If A is a cone, then p · x ⩾ 0 for every x in A.

3. If B is a cone, then p · x ⩽ 0 for every x in B.

4. If A includes a set of the form x+ Rn
++, then p > 0.

5. If B includes a set of the form x− Rn
++, then p > 0.

Proof : The proofs of all these are more or less the same, so I shall just prove (4). Since p is
nonzero by hypothesis, it suffice to show that p ≧ 0. Suppose by way of contradiction that
pi < 0 for some i. Note that tei + ε1 belongs to Rm

++ for every t, ε > 0. Now p · (x+ tei + ε1) =
p · x + tpi + εp · 1. By letting t → ∞ and ε ↓ 0 we see that p · x + tpi + εp · 1 ↓ −∞, which
contradicts p · (x+ tei + ε1) ⩾ p · y for any y in B. Therefore p > 0.

Exercise 200 (p. 93)
Prove Lemma 199: Let f be a real-valued function defined on some interval I of R. If f is
concave, then for every x < y < z in I,

f(y) − f(x)
y − x

⩾ f(z) − f(x)
z − x

⩾ f(z) − f(y)
z − y

.

Conversely, if one of the (three) inequalities is satisfied for every x < y < z in I, then f is
concave.

Equivalently,

f(z) − f(x)
z − x

is decreasing in both x and z over {(x, z) : x < z} if and only f is concave.
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Proof : ( =⇒ ) Assume f is concave. Since x < y < z we can write y as a convex combination
of x and z, namely

y = z − y

z − x
x+ y − x

z − x
z.

By concavity
f(y) ⩾ z − y

z − x
f(x) + y − x

z − x
f(z). (∗)

Subtracting f(x) from both sides gives

f(y) − f(x) ⩾ x− y

z − x
f(x) + y − x

z − x
f(z).

Dividing by y − x > 0 gives

f(y) − f(x)
y − x

⩾ −1
z − x

f(x) + 1
z − x

f(z) = f(z) − f(x)
z − x

.

Similarly, subtracting f(z) from both sides of (∗) gives

f(y) − f(z) ⩾ z − y

z − x
f(x) + y − z

z − x
f(z).

Dividing by y − z < 0 gives

f(z) − f(y)
z − y

= f(y) − f(z)
y − z

⩽ −1
z − x

f(x) + 1
z − x

f(z) = f(z) − f(x)
z − x

.

Combining these inequalities completes this part of the proof.
(⇐=) It suffices to show that f

(
αx+(1−α)z

)
⩾ αf(x)+(1−α)f(z) whenever x < z belong

to I and 0 < α < 1. (The cases x = z, or α = 0, or α = 1 take care of themselves.) Define
y = αx+ (1 − α)z, so x < y < z, and note that α = z − y

z − x
and 1 − α = y − x

z − x
. There are three

cases to consider:
Case 1. The outer inequality

f(y) − f(x)
y − x

⩾ f(z) − f(y)
z − y

is satisfied. Multiplying by y − x = (1 − α)(z − x) > 0, we have

f(y) − f(x) ⩾ (1 − α)z − x

z − y

(
f(z) − f(y)

)
.

Multiplying by z − x

z − y
= α > 0 gives

α
(
f(y) − f(x)

)
⩾ (1 − α)

(
f(z) − f(y)

)
and regrouping we get

f(y) ⩾ αf(x) + (1 − α)f(z).

Case 2. The left hand inequality

f(y) − f(x)
y − x

⩾ f(z) − f(x)
z − x

is satisfied. Multiplying by y − x = (1 − α)(z − x) > 0 gives

f(y) − f(x) ⩾ (1 − α)
(
f(z) − f(x)

)
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and regrouping we get
f(y) ⩾ αf(x) + (1 − α)f(z).

Case 3. The right hand inequality

f(z) − f(x)
z − x

⩾ f(z) − f(y)
z − y

is satisfied. If you don’t trust me by now, you should be able to figure this one out, but here it
is anyhow. Multiply by z − y = α(z − x) to get

α
(
f(z) − f(x)

)
⩾ f(z) − f(y),

and rearrange to get
f(y) ⩾ αf(x) + (1 − α)f(z).

Exercise 203 (p. 94)
Prove Corollary 202.

Proof : Recall that

∆2
v,wf(x) = f(x+ w + v) − f(x+ w) −

(
f(x+ v) − f(x)

)
.

There are four cases.
Case 1: v, w > 0. By Corollary 201 with x1 = x, y1 = x+ v, x2 = x+w, and y2 = x+w+ v,

we have
f(x+ v) − f(x)

v
⩾ f(x+ w + v) − f(x+ w)

v
,

so
f(x+ w + v) − f(x+ w)

v
− f(x+ v) − f(x)

v
⩽ 0,

so multiplying by v2w > 0 gives the desired conclusion.
Case 2: v < 0, w > 0. Use Corollary 201 with x1 = x + v, y1 = x, x2 = x + w + v, and

y2 = x+ w to get
f(x) − f(x+ v)

−v
⩾ f(x+ w) − f(x+ w + v)

−v
so

f(x+ w) − f(x+ w + v)
−v

− f(x) − f(x+ v)
−v

⩽ 0,

and rearrange.
Case 3: v > 0, w < 0. Use ∆2

v,wf(x) = ∆2
w,vf(x) and interchange the roles of v and w in

case (2).
Case 4: v, w < 0. Use Corollary 201 with x1 = x + w + v, y1 = x + w, x2 = x + v, and

y2 = x,
f(x+ w) − f(x+ w + v)

−v
⩾ f(x) − f(x+ v)

−v
,

or
f(x+ w + v) − f(x+ w)

v
⩾ f(x+ v) − f(x)

v
,

so
f(x+ w + v) − f(x+ w)

v
− f(x+ v) − f(x)

v
⩾ 0,

and multiply by v2w < 0.
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