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Econometica, Vol. 63, No. 5 (September, 1995), 1161-1180 

EPISTEMIC CONDITIONS FOR NASH EQUILIBRIUM 

BY ROBERT AUMANN AND ADAM BRANDENBURGER' 

Sufficient conditions for Nash equilibrium in an n-person game are given in terms of 
what the players know and believe-about the game, and about each other's rationality, 
actions, knowledge, and beliefs. Mixed strategies are treated not as conscious randomiza- 
tions, but as conjectures, on the part of other players, as to what a player will do. Common 
knowledge plays a smaller role in characterizing Nash equilibrium than had been sup- 
posed. When n = 2, mutual knowledge of the payoff functions, of rationality, and of the 
conjectures implies that the conjectures form a Nash equilibrium. When n > 3 and there 
is a common prior, mutual knowledge of the payoff functions and of rationality, and 
common knowledge of the conjectures, imply that the conjectures form a Nash equilib- 
rium. Examples show the results to be tight. 

KEYWORDS: Game theory, strategic games, equilibrium, Nash equilibrium, strategic 
equilibrium, knowledge, common knowledge, mutual knowledge, rationality, belief, belief 
systems, interactive belief systems, common prior, epistemic conditions, conjectures, 
mixed strategies. 

1. INTRODUCTION 

IN RECENT YEARS, a literature has emerged that explores noncooperative game 
theory from a decision-theoretic viewpoint. This literature analyzes games in 
terms of the rationality2 of the players and their epistemic state: what they know 
or believe about the game and about each other's rationality, actions, knowl- 
edge, and beliefs. As far as Nash's fundamental notion of strategic equilibrium is 
concerned, the picture remains incomplete;' it is not clear just what epistemic 
conditions lead to Nash equilibrium. Here we aim to fill that gap. Specifically, 
we seek sufficient epistemic conditions for Nash equilibrium that are in a sense 
as " spare" as possible. 

The stage is set by the following Preliminary Observation: Suppose that each 
player is rational, knows his own payoff function, and knows the strategy choices of 
the others. Then the players' choices constitute a Nash equilibrium in the game being 
played.4 

Indeed, since each player knows the choices of the others, and is rational, his 
choice must be optimal given theirs; so by definition,5 we are at a Nash 
equilibrium. 

Though simple, the observation is not without interest. Note that it calls for 
mutual knowledge of the strategy choices-that each player know the choices of 
the others, with no need for the others to know that he knows (or for any higher 

1 We are grateful to Kenneth Arrow, John Geanakoplos, and Ben Polak for important discus- 
sions, and to a co-editor and the referees for very helpful editorial suggestions. 

2 We call a player rational if he maximizes his utility given his beliefs. 
3 See Section 7i. 
4 For a formal statement, see Section 4. 
5 Recall that a Nash equilibrium is a profile of strategies in which each player's strategy is optimal 

for him, given the strategies of the others. 
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order knowledge). It does not call for common knowledge, which requires that 
all know, all know that all know, and so on ad infinitum (Lewis (1969)). For 
rationality and for the payoff functions, not even mutual knowledge is needed; 
only that the players are in fact rational, and that each knows his own payoff 
function.6 

The observation applies to pure strategies-henceforth called actions. It 
applies also to mixed actions, under the traditional view of mixtures as conscious 
randomizations; in that case it is the mixtures that must be mutually known, not 
their pure realizations. 

In recent years, a different view of mixing has emerged.7 According to this 
view, players do not randomize; each player chooses some definite action. But 
other players need not know which one, and the mixture represents their 
uncertainty, their conjecture about his choice. This is the context of our main 
results, which provide sufficient conditions for a profile of conjectures to 
constitute a Nash equilibrium.8 

Consider first the case of two players. Here the conjecture of each is a 
probability distribution on the other's actions-formally, a mixed action of the 
other. We then have the following (Theorem A): Suppose that the game being 
played (i.e., both payoff functions), the rationality of the players, and their conjec- 
tures are all mutually known. Then the conjectures constitute a Nash equilibrium.9 

In Theorem A, as in the preliminary observation, common knowledge plays no 
role. This is worth noting, in view of suggestions that have been made that there 
is a close relation between Nash equilibrium and common knowledge-of the 
game, the players' rationality, their beliefs, and/or their choices.10 On the face 

6 Knowledge of one's own payoff function may be considered tautologous. See Section 2. 
7Harsanyi (1973), Armbruster and Boege (1979), Aumann (1987a), Tan and Werlang (1988), 

Brandenburger and Dekel (1989), among others. 
8 The preliminary observation, too, may be interpreted as referring to an equilibrium in conjec- 

tures rather than actions. When each player knows the actions of the others, then conjectures 
coincide with actions: what people do is the same as what others believe them to do. Therefore, the 
conjectures as well as the actions are in equilibrium. 

The idea of the proof is not difficult. Call the players "Rowena" and "Colin"; let their 
conjectures and payoff functions be 4, g and tf, h respectively. Let a be an action of Rowena to 
which Colin's conjecture tf assigns positive probability. Since Colin knows that Rowena is rational, 
he knows that a is optimal against her conjecture, which he knows to be 4, given her payoff 
function, which he knows to be g. Similarly any action b to which 4 assigns positive probability is 
optimal against tf given Colin's payoff function h. So (tf, 4) is a Nash equilibrium in the game 
defined by (g, h). 

10 Thus Kreps and Wilson (1982, p. 885): "An equilibrium in Nash's sense supposes that strategies 
are 'common knowledge' among the prayers." Or Geanakoplos, Pearce, and Stacchetti (1989, p. 62): 
"In traditional equilibrium analysis, the equilibrium strategy profile is taken to be common 
knowledge." Or Milgrom and Roberts (1991, p. 82): "Equilibrium analysis dominates the study of 
games of strategy, but ... many... are troubled by its assumption that players ... identify and play a 
particular vector of equilibrium strategies, that is,... that the equilibrium is common knowledge." 
See also, inter alia, Arrow (1986, p. S392), Binmore and Dasgupta (1986, pp. 2-5), Fudenberg and 
Kreps (1988, p. 2), Tan and Werlang (1988, pp. 381-385), Fudenberg and Tirole (1989, p. 267), 
Werlang (1989, p. 82), Binmore (1990, pp. 51, 61, 210), Rubinstein (1991, p. 915), Binmore (1992, 
p. 484), and Reny (1992, p. 628). 

We ourselves have written in this vein (Aumann (1987b, p. 473) and Binmore and Brandenburger 
(1990, p. 119)); see Section 7f. 
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of it, such a relation sounds not implausible. One might have reasoned that each 
player plays his part of the equilibrium "because" the other does so; he, in turn, 
also does so "because" the first does so; and so on ad infinitum. This infinite 
regress does sound related to common knowledge; but the connection, if any, is 
murky.1" Be that as it may, Theorem A shows that in two-person games, 
epistemic conditions not involving common knowledge in any way already imply 
Nash equilibrium. 

When the number n of players exceeds 2, the conjecture of a player i is not a 
mixed action of another player, but a probability distribution on (n - 1)-tuples 
of actions of all the other players. Though not itself a mixed action, i's 
conjecture does induce a mixed action12 for each player j other than i; we call 
this i's conjecture about j. However, different players other than j may have 
different conjectures about j. Since j's component of the putative equilibrium is 
meant to represent the conjectures of other players i about j, and these may be 
different for different i, it is not clear how j's component should be defined. 

To proceed, we need another definition. The players are said to have a 
common prior13 if all differences between their probability assessments are due 
only to differences in their information; more precisely, if one can think of the 
situation as arising from one in which the players had the same information and 
probability assessments, and then got different information. 

Theorem B, our n-person result, is now as follows: In an n-player game, 
suppose that the players have a common prior, that their payoff functions and their 
rationality are mutually known, and that their conjectures are commonly known. 
Then for each player j, all the other players i agree on the same conjecture uj about 
j; and the resulting profile ( o-1, . . ., oa) of mixed actions is a Nash equilibrium. 

So common knowledge enters the picture after all, but in an unexpected way, 
and only when there are at least three players. Even then, what is needed is 
common knowledge of the players' conjectures, not of the game or of the 
players' rationality. 

Theorems A and B are formally stated and proved in Section 4. 
In the observation as well as the two results, the conditions are sufficient, not 

necessary. It is always possible for the players to blunder into a Nash equilib- 
rium "by accident," so to speak, without anybody knowing much of anything. 
Nevertheless, the statements are "tight," in the sense that they cannot be 
improved upon; none of the conditions can be left out, or even significantly 
weakened. This is shown by a series of examples in Section 5, which, in addition, 
provide insight into the role played by the epistemic conditions. 

One might suppose that one needs stronger hypotheses in Theorem B than in 
Theorem A only because when n ? 3, the conjectures of two players about a 

11 Brandenburger and Dekel (1989) do state a relation between common knowledge and Nash 
equilibrium in the two-person case, but it is quite different from the simple sufficient conditions 
established here. See Section 7i. 

12 The marginal on j's actions of i's overall conjecture. 
13Aumann (1987a); for a formal definition, see Section 2. Harsanyi (1967-68) uses the term 

"consistency" to describe this situation. 
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third one may disagree. But that is not so. One of the examples in Section 5 
shows that even when the necessary agreement is assumed outright, conditions 
similar to those of Theorem A do not suffice for Nash equilibrium when n > 3. 

Summing up: With two players, mutual knowledge of the game, of the players' 
rationality, and of their conjectures implies that the conjectures constitute a 
Nash equilibrium. To reach the same conclusion when there are at least three 
players, one must also assume a common prior and common knowledge of the 
conjectures. 

The above presentation, while correct, has been informal, and sometimes 
slightly ambiguous. For an unambiguous presentation, one needs a formal 
framework for discussing epistemic matters in game contexts; in which, for 
example, one can describe a situation where each player maximizes against the 
choices of the others, all know this, but not all know that all know this. In 
Section 2 we describe such a framework, called an interactive belief system; it is 
illustrated in Section 3. Section 6 defines infinite belief systems, and shows that 
our results apply to this case as well. 

The paper concludes with Section 7, where we discuss conceptual matters and 
related work. 

The reader wishing to understand just the main ideas should read Sections 1 
and 5, and skim Sections 2 and 3. 

2. INTERACTIVE BELIEF SYSTEMS 

Let us be given a strategic game form; that is, a finite set {1,...,n} (the 
players), together with an action set Ai for each player i. Set A =A1 x .. XA,. 
An interactive belief system (or simply belief system) for this game form is defined 
to consist of: 

(2.1) for each player i, a set S1 (i's types), 

and for each type si of i, 

(2.2) a probability distribution on the set S` of (n - 1)-tuples of 
(2.2) types of the other players (si's theory), 

(2.3) an action ai of i (si's action), and 

(2.4) a function gi: A -* R (si's payofffunction). 

The action sets Ai are assumed finite. One may also think of the type spaces 
Si as finite throughout the paper; the ideas are then more transparent. For a 
general definition, where the Si are measurable spaces and the theories are 
probability measures, see Section 6. 

Set S= S1 x .. x Sn. Call the members s = (s1,. . *, Sn) of S states of the 
world, or simply states. An event is a subset E of S. By (2.2), si's theory has 
domain S-'; define an extension p(-; si) of the theory to S, called i's probability 
distribution on S at si, as follows: If E is an event, define p(E; si) as the 
probability that si's theory assigns to {s 

- Si-: (si, s- ) eE). Abusing our 
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terminology a little, we will use "belief system" to refer also to the system 
consisting of S and the p(; si); no confusion should result.14 

A state is a formal description of the players' actions, payoff functions, and 
beliefs-about each other's actions and payoff functions, about these beliefs, 
and so on. Specifically, the theory of a type si represents the probabilities that si 
ascribes to the types of the other players, and so to their actions, their payoff 
functions, and their theories. It follows that a player's type determines his 
beliefs about the actions and payoff functions of the others, about their beliefs 
about these matters, about their beliefs about others' beliefs about these 
matters, and so on ad infinitum. The whole infinite hierarchy of beliefs about 
beliefs about beliefs ... about the relevant variables is thus encoded in the belief 
system.15 

A function g: A -* Rn (an n-tuple of payoff functions) is called a game. 
Set A-':=A1 x ... xAi1 xAi+1 x .. xAn; for a in A, set a- 

(a1,..., a i1, ai*l*.*, an). When referring to a player i, the phrase "at s" means 
"at si." Thus "i's action at s" means s1's action (see (2.3)); we denote it ai(s), 
and write a(s) for the n-tuple (al(s),...,an(s)) of actions at s. Similarly, "i's 
payoff function at s" means si's payoff function (see (2.4)); we denote it gi(s), 
and write g(s) for the n-tuple (g1(s), . . ., gn(S)) of payoff functions16 at s. Viewed 
as a function of a, we call g(s) "the game being played at s," or simply "the 
game at s." 

Functions defined on S (like ai, a, gi, and g) may be viewed like random 
variables in probability theory. Thus if x is such a function and x is one of its 
values, then [x = x], or simply [x], denotes the event {s e S: x(s) = x}. For 
example, [ai] denotes the event that i chooses the action ai, [g] denotes the 
event that the game g is being played; and [si] denotes the event that i's type 
iS Si. 

A conjecture 4' of i is a probability distribution on A -. For j 0 i, the 
marginal of 4' on A, is called the conjecture of i about j induced by 4'. The 
theory of i at a state s yields a conjecture 4i(s), called i's conjecture at s, given 
by 4'(s)(a- ) :=p([a-]; si). We denote the n-tuple (41(s),..., 4n(s)) of 
conjectures at s by +(s). 

Player i is called rational at s if his action at s maximizes his expected payoff 
given his information (i.e., his type si); formally, letting gi:= gi(s) and ai:= ai(s), 
this means that exp(gi(ai, a-'); si)?exp(gi(bi, a-'); si) for all bi in Ai. 
Another way of saying this is that i's actual choice ai maximizes the expectation 
of his actual payoff gi when the other players' actions are distributed according 
to his actual conjecture 4i(s). 

14 The extension p(; si ) is uniquely determined by two conditions: first, that its marginal on S-i 
be si's theory; second, that it assign probability 1 to i being of type si. We are thus implicitly 
assuming that a player of type si assigns probability 1 to being of type si. For a discussion, see 
Section 7c. 

15 Conversely, it may be shown that any such hierarchy satisfying certain minimal coherency 
requirements may be encoded in some belief system (Mertens and Zamir (1985); also Armbruster 
and Boege (1979), Boege and Eisele (1979), and Brandenburger and Dekel (1993)). 

16 Thus i's actual payoff at the state s is gi(s)(a(s)). 
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Player i is said to know an event E at s if at s, he ascribes probability 1 to E. 
Define KiE as the set of all those s at which i knows E. Set K1E =K1E 
n ... n Kn E; thus K1E is the event that all players know E. If s E K1E, call E 
mutually known at s. Set CKE:= K1E n K1K 'E n K1K1K'E n .. .; if s E CKE, 
call E commonly known at s. 

A probability distribution P on S is called a common prior if for all players i 
and all of their types si, the conditional distribution of P given si is p(-; si); this 
implies that for all i, all events E and F, and all numbers ir, 

(2.5) if p(E; si ) = Trp(F; si ) for all si E Si, then P(E) = TrP(F). 

In words, (2.5) says that for each player i, if two events have proportional 
probabilities given any si, then they have proportional prior probabilities.17 

Belief systems provide a formal language for stating epistemic conditions. 
When we say that a player knows some event E, or is rational, or has a certain 
conjecture 4p' or payoff function gi, we mean that that is the case at some 
specific state s of the world. Some of these ideas are illustrated in Section 3. 

We end this section with a lemma that is needed in the sequel. 

LEMMA 2.6: Player i knows that he attributes probability iT to an event E if and 
only if he indeed attributes probability ir to E. 

PROOF: If: Let F be the event that i attributes probability ir to E; that is, 
F {t E S: p(E; ti ) = Tr}. Thus s E F if and only if p(E; si ) = Tr. Therefore if 
s eF, then all states u with ui =si are in F, and so p(F; si)= 1; that is, i 
knows F at s. 

Only if: Suppose that i attributes probability p / ir to E. By the "if' part of 
the proof, he must know this, contrary to his knowing that he attributes 
probability r to E. Q.E.D. 

3. AN ILLUSTRATION 

Consider a belief system in which all types of each player i have the same 
payoff function gi, namely that depicted in Figure 1. Thus the game being 
played is commonly known. Call the row and column players (Players 1 and 2) 
"Rowena" and "Colin" respectively. The theories are depicted in Figure 2; here 
C1 denotes a type of Rowena whose action is C, whereas D1 and D2 denote two 
different types of Rowena whose actions are D. Similarly for Colin. Each square 
denotes a state, i.e., a pair of types. The two entries in each square denote the 
probabilities that the corresponding types of Rowena and Colin ascribe to that 
state. For example, Colin's type d2 attributes 2- 2 probabilities to Rowena's type 
being D1 or D2. So at the state (D2, d2), he knows that Rowena will choose the 
action D. Similarly, Rowena knows at (D2, d2) that Colin will choose d. Since d 
and D are optimal against each other, both players are rational at (D2, d2) and 
(D, d) is a Nash equilibrium. 

17 Note for specialists: We do not use "mutual absolute continuity." 
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FIGURE 1 
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FIGURE 2 

We have here a typical instance of the preliminary observation. At (D2, d2), 
there is mutual knowledge of the actions D and d, and both players are in fact 
rational. But the actions are not common knowledge. Though Colin knows that 
Rowena will play D, she doesn't know that he knows this; indeed, she attributes 
probability 2 to his attributing probability 1 to her playing C. Moreover, though 
both players are rational at (D2, d2), there isn't even mutual knowledge of 
rationality there. For example, Colin's type d1 chooses d, with an expected 
payoff of 2, rather than c, with an expected payoff of 1; thus this type is 
irrational. At (D2, d2), Rowena attributes probability 2 to Colin being of this 
irrational type. 

Note that the players have a common prior, which assigns probability 1/6 to 
each of the six boxes not containing O's. This, however, is not relevant to the 
above discussion. 

4. FORMAL STATEMENTS AND PROOFS OF THE RESULTS 

We now state and prove Theorems A and B formally. For more transparent 
formulations, see Section 1. We also supply, for the record, a precise, unambigu- 
ous formulation of the preliminary observation. 

PRELIMINARY OBSERVATION: Let a be an n-tuple of actions. Suppose that at 
some state s, all players are rational, and it is mutually known that a = a. Then a is 
a Nash equilibrium. 

THEOREM A: With n = 2 (two players), let g be a game, 4 a pair of conjectures. 
Suppose that at some state, it is mutually known that g = g, that the players are 
rational, and that 4 = 4P. Then (4?2, (P1) is a Nash equilibrium of g. 

The proof of Theorem A uses two lemmas. 
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LEMMA 4.1: Let 4) be an n-tuple of conjectures. Suppose that at some state s, it is 
mutually known that 4 = 4. Then +(s) = 4. (In words: if it is mutually known 
that the conjectures are 4, then they are indeed 4.) 

PROOF: Follows from Lemma 2.6. Q.E.D. 

LEMMA 4.2: Let g be a game, 4) an n-tuple of conjectures. Suppose that at some 
state s, it is mutually known that g = g, that the players are rational, and that 
4 = 4. Let a1 be an action of a player j to which the conjecture 41 of some other 
player i assigns positive probability. Then ai maximizes g1 against18 4i. 

PROOF: By Lemma 4.1, the conjecture of i at s is 4. So i attributes positive 
probability at s to [ai]. Also, i attributes probability 1 at s to each of the three 
events [j is rational], [4)1], and [g1]. When one of four events has positive 
probability, and the other three each have probability 1, then their intersection 
is nonempty. So there is a state t at which all four events obtain: j is rational, he 
chooses aj, his conjecture is 4), and his payoff function is gj. So aj maximizes gj 
against (Pi. Q.E.D. 

PROOF OF THEOREM A: By Lemma 4.2, every action a1 with positive probabil- 
ity in 42 is optimal against '1 in g, and every action a2 with positive 
probability in 41 is optimal against 42 in g. This implies that (4)2, 41) is a Nash 
equilibrium of g. Q.E.D. 

THEOREM B: Let g be a game, 4 an n-tuple of conjectures. Suppose that the 
players have a common prior, which assigns positive probability to it being mutually 
known that g -g, mutually known that all players are rational, and commonly 
known that 4 = 4. Then for each j, all the conjectures Xi of players i other than j 
induce the same conjecture o-, about], and ( an1,..., o) is a Nash equilibrium of g. 

The proof requires several more lemmas. Some of these are standard when 
"knowledge" means absolute certainty, but not quite as well known when it 
means probability 1 belief, as here. 

LEMMA 4.3: Ki(El n E2 n ...) = KiEl n KiE2 n ... (a player knows each of 
several events if and only if he knows that they all obtain). 

PROOF: At s, player i ascribes probability 1 to E1 n E2 n ... if and only if he 
ascribes probability 1 to each of El, E2,.... Q.E.D. 

LEMMA 4.4: CKE c KiCKE (if something is commonly known, then each player 
knows that it is commonly known). 

18 That is, exp gj(aj, a1 ) > exp gj(bj, a-) for all bj in Aj, when a - is distributed according to 
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PROOF: Since KiK1F D K1K1F for all F, Lemma 4.3 yields KiCKE = Ki(K1E 
n K1K1E n ... )=KiK1E n KiK1KE n ... K KKlE n KK1K1En ... D CKE. 

Q.E.D. 

LEMMA 4.5: Suppose P is a common prior, KiH D H, and p(E; si ) = for all 
s E H. Then P(E n H) = 7rP(H). 

PROOF: Let Hi be the projection of H on Si. From KiH:DH it follows 
that p(H; si ) = 1 or 0 according as to whether si is or is not" in Hi. So when 
si e Hi, then p(E n H; si ) = p(E; si ) = X = vrp(H; si ); and when si 0 Hi, then 
p(E n H; si) 0= O=p(H; si ). The lemma now follows from (2.5). Q.E.D. 

LEMMA 4.6: Let Q be a probability distribution on A with20 Q(a) = Q(ai )Q(a -i 
for all a in A and all i. Then Q(a) = Q(a1). .. Q(an) for all a. 

PROOF: By induction. For n = 1 and 2 the result is immediate. Suppose it is 
true for n - 1. From Q(a) = Q(a1)Q(a-1) we obtain, by summing over an, that 
Q(a -n) = Q(a1)Q(a2, . .- , an -1) Similarly Q(a-') = Q(ai)Q(a1, .. . , ai1 
ai+1... an - ) whenever i <n. So the induction hypothesis yields Q(a -n)= 

Q(a1)Q(a2).. Q(an_1). Hence Q(a) = Q(a -n )Q(an) = Q(a1)Q(a2).. Q(an). 
Q.E.D. 

PROOF OF THEOREM B: Set F:= CK[ 4 and let P be the common prior. By 
assumption, P(F) > 0. Set Q(a) := P([a]IF). We show that for all a and i, 

(4.7) Q(a) = Q(ai)Q(a-1). 

Set H:= [ai] n F. By Lemmas 4.3 and 4.4, KiH D H, since i knows his own 
action. If s E H, it is commonly, and so mutually, known at s that 4 = 4; so by 
Lemma 4.1, +(s) = 4; that is, p([a-i]; si) = 4(a-'). So Lemma 4.5 (with 
E = [a-i]) yields P([a] n F) = P([a-i] n H) = 0.(a -)P(H) = 01(a1 )P([ai ] n 
F). Dividing by P(F) yields Q(a) = 4'(a- )Q(ai ); then summing over ai, we get 

(4.8) Q(a-') = 0'(a-') 

Thus Q(a) = Q(a- )Q(ai ), which is (4.7). 
For each j, define a probability distribution orj on Aj by oj(a) := Q(a1). Then 

(4.8) yields Oai() = Q(a1) = oj(ajY for j 0 i. Thus for all i, the conjecture about 
j induced by 4k is oj, which does not depend on i. Lemma 4.6, (4.7), and (4.8) 
then yield 

(4.9) 0'(a- ) - = r(a,) ... - a- l(ai - 1) oi + l(ai + 1) ... oj(an); 

that is, the distribution Xi is the product of the distributions o-j with j p i. 

19 In particular, i always knows whether or not H obtains. 
20 We denote Q(a- ) Q(Ai x {a }), Q(ai ) Q(A -i x {ai}), and so on. 
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Since common knowledge implies mutual knowledge, the hypothesis of the 
theorem implies that there is a state at which it is mutually known that g =g, 
that the players are rational, and that 4 = 4. So by Lemma 4.2, each action a 
with 0'(a) > 0 for some i /j maximizes gj against 4). By (4.9), these aj are 
precisely the ones that appear with positive probability in oj. Again using (4.9), 
we conclude that each action appearing with positive probability in 0j maxi- 
mizes gj against the product of the distributions ork with k +/j. This implies that 
(o,., voA) is a Nash equilibrium of g. Q.E.D. 

5. TIGHTNESS OF THE RESULTS 

This section explores possible variations on Theorem B. For simplicity, let 
n = 3 (three players). Each player's "overall" conjecture is then a distribution on 
pairs of actions of the other two players; so the three conjectures form a triple 
of probability mixtures of action pairs. On the other hand, an equilibrium is a 
triple of mixed actions. Our discussion hinges on the relation between these two 
kinds of objects. 

First, since our real concern is with mixtures of actions rather than of action 
pairs, could we not formulate conditions that deal directly with each player's 
"individual" conjectures-his conjectures about each of the other 
players-rather than with his overall conjecture? For example, one might hope 
that it would be sufficient to assume common knowledge of each player's 
individual conjectures. 

Example 5.1 shows that this hope is vain, even when there is a common prior, 
and rationality and payoff functions are commonly known. Overall conjectures 
do play an essential role. 

Nevertheless, common knowledge of the overall conjectures seems a rather 
strong assumption. Couldn't we get away with less-say, with mutual knowledge 
of the overall conjectures, or with mutual knowledge to a high order?21 

Again, the answer is no. Recall that people with a common prior but with 
different information may disagree on their posterior probabilities for some 
event E, even though these posteriors are mutually known to an arbitrarily high 
order (Geanakoplos and Polemarchakis (1982)). Using this, one may construct 
an example with arbitrarily high order mutual knowledge of the overall conjec- 
tures, common knowledge of rationality and payoff functions, and a common 
prior, where different players have different individual conjectures about some 
particular player j. Thus there isn't even a clear candidate for a Nash equilib- 
rium.22 

The question remains whether (sufficiently high order) mutual knowledge of 
the overall conjectures implies Nash equilibrium of the individual conjectures 
when the players do happen to agree on them. Do we then get Nash equilib- 
rium? Again, the answer is no; this is shown in Example 5.2. 

21Set K2E= K1KE, K3E= KK2E, and so on. If s e KmE, call E mutually known to order m 
at s. 

22 This is not what drives Example 5.1; since the individual conjectures are commonly known 
there, they must agree (Aumann (1976)). 
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Finally, Example 5.3 shows that the common prior assumption is really 
needed: Rationality, payoff functions, and the overall conjectures are commonly 
known, and the individual conjectures agree; but there is no common prior, and 
the agreed-upon individual conjectures do not form a Nash equilibrium. 

Summing up, one must consider the overall conjectures; and nothing less than 
common knowledge of these conjectures, together with a common prior, will do. 

Also, one may construct examples showing that in Theorems A and B, mutual 
knowledge of rationality cannot be replaced by the simple fact of rationality, and 
that knowing one's own payoff function does not suffice-all payoff functions 
must be mutually known. 

Except in Example 5.3, the belief systems in this section have common priors, 
and these are used to describe them. In all the examples, the game being played 
is (as in Section 3) fixed throughout the belief system, and so is commonly 
known. Each example has three players, Rowena, Colin, and Matt, who choose 
the row, column, and matrix (west or east) respectively. As in Section 3, each 
type is denoted by the same letter as its action, and a subscript is added. 

EXAMPLE 5.1: Here the individual conjectures are commonly known and 
agreed upon, rationality is commonly known, and there is a common prior, and 
yet we don't get Nash equilibrium.23 Consider the game of Figure 3, with 
theories induced by the common prior in Figure 4. At each state, Colin and 
Matt agree on the conjecture U + jD about Rowena, and this is commonly 
known. Similarly, it is commonly known that Rowena and Matt agree on the 
conjecture 'L + 'R about Colin, and that Rowena and Colin agree on 2 W+ 2E 

about Matt. All players are rational at all states, so rationality is common 
knowledge at all states. But (2U+ 1D, 1L + 1R, 1W+ 1E) is not a Nash 
equilibrium, because if these were independent mixed strategies, Rowena could 
gain by moving to D. 

L R L R 

U 1,1,1 0,0,0 U 0,0,0 1,1,1 

D 1,0,0 1,1,1 D 1,1,1 | ,O, | 

W E 

FIGURE 3 

L1 R, L, R, 

F77717771 u1 ILIII 

j|? jj4 D1 L4LL 
Wi El 

FIGURE 4 

23 Examples 2.5, 2.6, and 2.7 of Aumann (1974) display correlated equilibria that are not Nash, 
but they are quite different from Example 5.1. First, the context there is global, as opposed to the 
local context considered here (Section 7i). Second, even if we do adapt those examples to the local 
context, we find that the individual conjectures are not even mutually known, to say nothing of being 
commonly known; and when there are more than two players (Examples 2.5 and 2.6), the individual 
conjectures are not agreed upon either. 
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Note that the overall conjectures are not commonly (nor even mutually) 
known at any state. For example, at (U1, L1, W1), Rowena's conjecture is 
(4LW+ 'RE), but nobody else knows that that is her conjecture. 

EXAMPLE 5.2: Here we have mutual knowledge of the overall conjectures, 
agreement of individual conjectures, common knowledge of rationality, and a 
common prior, and yet the individual conjectures do not form a Nash equilib- 
rium. Consider the game of Figure 5. For Rowena and Colin, this is simply 
"matching pennies;" their payoffs are not affected by Matt's choice. So at a 
Nash equilibrium, they must play 'H + 'T and 'h + 't respectively. Thus 
Matt's expected payoff is 2 for W, and 2 for E; so he must play E. Hence 
(H + 2T, 2h + 2t, E) is the unique Nash equilibrium of this game. 

Consider now the theories induced by the common prior in Figure 6. Rowena 
and Colin know which of the three large boxes contains the true state, and in 
fact this is commonly known between the two of them. In each box, Rowena and 
Colin "play matching pennies optimally;" their conjectures about each other are 

H + 2T and 2h + 2t. Since these conjectures obtain at each state, they are 
commonly known (among all three players); so it is also commonly known that 
Rowena and Colin are rational. 

As for Matt, suppose first that he is of type W1 or W2. Each of these types 
intersects two adjacent boxes in Figure 6; it consists of the diagonal states in the 
left box and the off-diagonal ones in the right box. The diagonal states on the 
left have equal probability, as do the off-diagonal ones on the right; but on the 
left it is three times on the right. So Matt assigns the diagonal states three times 
the probability of the off-diagonal states; i.e., his conjecture is 8Hh + -Tt + 
8Th + 8Ht. Therefore his expected payoff from choosing W is 8 *3 + 3 3 + 8 

O + - 0 = 2-, whereas from E it is only 2 (as all his payoffs in the eastern 
matrix are 2). So W is indeed the optimal action of these types; so they are 

h t h t 

H 1,0,3 0,1,0 H 1,0,2 0,1,2 

T 0,1,0 1,0,3 T 0,1,2 1,0,2 

W E 

FIGURE 5 

hi t, h2 t2 h3 t3 

HI| 9x W, |9x E, 

T1 9X El 9X W1 (X= 1/52) 

H2 3X W2 3X W1 

T2 3X W1 3X W2 

H3 x W3 X W2 

T3 X W2 | X W3 6 

FIGURE 6 
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h, t 

H1 1 1 3 1 1 1 2 1 2 1 8 2 1 2 1 8 

T 1 1 1 1 1 3 
1 2l 212 8 212 8, 

Wi 

FIGURE 7 

rational. It may be checked that also El and W3 are rational. Thus the 
rationality of all players is commonly known at all states. 

Consider now the state s = (H2, h2, W2) (the top left state in the middle 
box). Rowena and Colin know at s that they are in the middle box, so they know 
that Matt's type is W1 or W2. We have just seen that these two types have the 
same conjecture, so it follows that Matt's conjecture is mutually known at s. 
Also Rowena's and Colin's conjectures are mutually known at s (Rowena's is 
2hW + 2tW, Colin's is 1HW + 2 TW). 

Finally, the individual conjectures derived from Matt's overall conjecture 
3Hh + 3Tt + 1Th + 1Ht are 21H + 1T for Rowena and 1h + 1t for Colin. These 
are the same as Rowena's and Colin's conjectures about each other. Since Matt 
plays W throughout the middle box, both Rowena and Colin conjecture W for 
Colin there. Thus throughout the middle box, individual conjectures are agreed 
upon. 

To sum up: There is a common prior; at all states, the game is commonly 
known and all players are commonly known to be rational. At the top left state 
in the middle box, the overall conjectures of all players are mutually known, and 
the individual conjectures are agreed: CR = 1H + 1 T, ac = h + 1t, rM = W. 

But (CR, cc, aM) is not a Nash equilibrium. 
One can construct similar examples in which the mutual knowledge of the 

conjectures is of arbitrarily high order, simply by using more boxes; the result 
follows as before. 

EXAMPLE 5.3: Here we show that one cannot dispense with common priors in 
Theorem B. Consider again the game of Figure 5, with the theories depicted in 
Figure 7 (presented in the style of Figure 2). At each state there is common 
knowledge of rationality, of the overall conjectures (which are the same as in the 
previous example), and of the game. As before, individual conjectures are in 
agreement. And as before, the individual conjectures (1H + 1T, 1h + 1t, W) do 
not constitute a Nash equilibrium. 

6. GENERAL (INFINITE) BELIEF SYSTEMS 

For a general definition of a belief system, which allows it to be infinite,24 we 
specify that the type spaces Si be measurable spaces. As before, a theory is a 

24 Infinite belief systems are essential for a complete treatment: The belief system required to 
encode a given coherent hierarchy of beliefs (see footnote 15) is often uncountably infinite. 
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probability measure on S- = xj S., which is now endowed with the standard 
product structure.25 The state space S = XjSj, too, is endowed with the product 
structure. An event is now a measurable subset of S. The "action functions" a 
((2.3)) are assumed measurable; so are the payoff functions gi ((2.4)), as 
functions of si, for each action n-tuple a separately. Also the "theory functions" 
(2.2) are assumed measurable, in the sense that for each event E and player i, 
the probability p(E; si ) is measurable as a function of the type si. It follows that 
the conjectures Xi are also measurable functions of si. 

With these definitions, the statements of the results make sense, and the 
proofs remain correct, without any change. 

7. DISCUSSION 

a. Belief Systems. An interactive belief system is not a prescriptive model; it 
does not suggest actions to the players. Rather, it is a formal framework-a 
language-for talking about actions, payoffs, and beliefs. For example, it en- 
ables us to say whether a given player is behaving rationally at a given state, 
whether this is known to another player, and so on. But it does not prescribe or 
even suggest rationality; the players do whatever they do. Like the disk operat- 
ing system of a personal computer, the belief system simply organizes things, so 
that we can coherently discuss what they do. 

Though entirely apt, use of the term "state of the world" to include the 
actions of the players has perhaps caused confusion. In Savage (1954), the 
decision maker cannot affect the state; he can only react to it. While convenient 
in Savage's one-person context, this is not appropriate in the interactive, 
many-person world under study here. To describe the state of such a world, it is 
fitting to consider all the players simultaneously; and then since each player 
must take into account the actions of the others, the actions should be included 
in the description of the state. Also the plain, everyday meaning of the term 
"state of the world" includes one's actions: Our world is shaped by what we do. 

It has been objected that since the players' actions are determined by the 
state, they have no freedom of choice. But this is a misunderstanding. Each 
player may do whatever he wants. It is simply that whatever he does do is part of 
the description of the state. If he wishes to do something else, he is heartily 
welcome to it; but then the state is different. 

Though including one's own action in the state is not a new idea,26 it may still 
leave some readers uncomfortable. Perhaps this discomfort stems from a notion 
that actions should be part of the solution, whereas including them in the state 
might suggest that they are part of the problem. 

The "problem-solution" viewpoint is the older, classical approach of game 
theory. The viewpoint adopted here is different-it is descriptive. Not why the 

25 The o-field of measurable sets is the smallest o-field containing all the "rectangles" x. *T. 
where Tj is measurable in Sj. 

26 See, e.g., Aumann (1987a). 
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players do what they do, not what should they do; just what do they do, what do 
they believe. Are they rational, are they irrational, are their actions-or beliefs 
-in equilibrium? Not "why," not "should," just what. Not that i does a because 
he believes b; simply that he does a, and believes b. 

The idea of belief system is due to John Harsanyi (1967-68), who introduced 
the concept of I-game to enable a coherent formulation of games in which the 
players needn't know each other's payoff functions. I-games are just like belief 
systems, except that in I-games a player's type does not determine his action 
(only his payoff function). 

As indicated above, belief systems are primarily a convenient framework to 
enable us-the analysts-to discuss the things we want to discuss: actions, 
payoffs, beliefs, rationality, equilibrium, and so on. As for the players them- 
selves, it's not clear that they need concern themselves with the structure of the 
model. But if they, too, want to talk about the things that we want to talk about, 
that's OK; it's just as convenient a framework for them as it is for us. In this 
connection, we note that the belief system itself may always be considered 
common knowledge among the players. Formally, this follows from the work of 
Mertens and Zamir (1985); for an informal discussion, see Aumann (1987a, 
p. 9 ff.). 

b. Knowledge and Belief: In this paper, "know" means "ascribe probability 1 
to." This is sometimes called "believe," while "know" is reserved for absolute 
certainty with no possibility at all for error. Since our conditions are sufficient, 
the results are stronger with probability 1 than with absolute certainty. If 
probability 1 knowledge of certain events implies that a is a Nash equilibrium, 
then a fortiori, so does absolute certainty of those events. 

c. Knowledge of One's Own Type: It is implicit in our set-up that each player i 
knows his own type si-that is, he knows his theory, his payoff function gi, and 
his action ai. 

Knowledge of one's theory is not a substantive restriction; the theory consists 
of beliefs, and it is tautologous that one knows what one's beliefs are (a formal 
expression of this is Lemma 2.6). 

Knowledge of one's payoff function is a more subtle matter. On the face of it, 
it would seem quite possible for a player's payoff to depend on circumstances 
known to others but not to himself. In our set-up, this could be expressed by 
saying that a player's payoff might depend on the types of other players as well 
as his own. To avoid this, one may interpret gi(a) as expressing the payoff that i 
expects when a is played, rather than what he actually gets. And since one 
always knows one's own expectation, one may as well construct the system so 
that knowledge of one's own payoff is tautological. 

We come finally to knowledge of one's own action. If one thinks of actions as 
conscious choices, as we do here, this is very natural-one might almost say 
tautologous. That players are aware of-"know"-their own conscious choices 
is implicit in the word "conscious." 
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Of course, if explicit randomization is allowed, then the players need not be 
aware of their own pure actions. But even then, they are aware of the mixtures 
they choose; so mutatis mutandis, our analysis applies to the mixtures. See 
Section 1 for a brief discussion of this case; it is not our main concern here, 
where we think of i's mixed actions as representing the beliefs of other players 
about what i will do. 

d. Knowledge of Conjectures: Both our theorems assume some form of knowl- 
edge (mutual or common) of the players' conjectures. Though knowledge of what 
others will do is undoubtedly a strong assumption, one can imagine circum- 
stances in which it would obtain. But can one know what others think? And if 
so, can this happen in contexts of economic interest? 

In fact, it might happen in several ways. One has to do with players who are 
members of well-defined economic populations, like insurance companies and 
customers, or sellers and buyers in general. For example, someone is buying a 
car. She knows that the salesman has statistical information about customers' 
bargaining behavior, and she even knows what that statistical information is. So 
she knows the salesman's conjecture about her. The conjecture may even be 
commonly known by the two players. But it is more likely that though the 
customer knows the salesman's conjecture about her, she does not know that he 
knows that she knows, and indeed perhaps he doesn't; then the knowledge of 
the salesman's conjecture is only mutual. 

No doubt, this story has its pros and cons; we don't want to make too much of 
it. It is meant only to show that a player may well know another's conjecture in 
situations of economic interest. 

e. Knowledge of Equilibrium: Our results state that a specified (mixed) strategy 
n-tuple o- is an equilibrium; they do not state that the players know it to be an 
equilibrium, or that this is commonly known. In Theorems A and B, though, it is 
in fact mutual knowledge to order 1-but not necessarily to any higher 
order-that o- is a Nash equilibrium. In the preliminary observation, it need not 
even be mutual knowledge to order 1 that of is a Nash equilibrium; but this 
does follow if, in addition to the stated assumptions, one assumes mutual 
knowledge of the payoff functions. 

f. Common Knowledge of the Model: Binmore and Brandenburger (1990, p. 
119) have written that "in game theory, it is typically understood that the 
structure of the game... is common knowledge." In the same vein, Aumann 
(1987b, p. 473) has written that "the common knowledge assumption underlies 
all of game theory and much of economic theory. Whatever be the model under 
discussion, . . . the model itself must be common knowledge; otherwise the model 
is insufficiently specified, and the analysis incoherent." This seemed sound when 
written, but in the light of recent developments-including the present work27 

27 Specifically, that common knowledge of the payoff functions plays no role in our theorems. 
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-it no longer does. Admittedly, we do use a belief system, which is, in fact, 
commonly known. But the belief system is not a "model" in the sense of being 
exogenously given; it is merely a language for discussing the situation (see 
Section 7a). There is nothing about the real world that must be commonly 
known among the players. When writing the above, we thought that some real 
exogenous framework must be commonly known; this no longer seems appropri- 
ate. 

g. Independent Conjectures: The proof of Theorem B implies that the individ- 
ual conjectures of each player i about the other players j are independent. 
Alternatively, one could assume independence, as in the following: 

REMARK 7.1: Let o- be an n-tuple of mixed strategies. Suppose that at some 
state, it is mutually known that the players are rational, that the game g is being 
played, that the conjecture of each player i about each other player j is oj, and 
that it is independent of i's conjecture about all other players. Then o- is a Nash 
equilibrium in g. 

Here we assume mutual rather than common knowledge of conjectures and 
do not assume a common prior. On the other hand, we assume outright that the 
individual conjectures are agreed upon, and that each player's conjectures about 
the others are independent. We consider this result of limited interest in the 
context of this paper; neither assumption has the epistemic flavor that we are 
seeking. Moreover, in the current subjectivist context, we find independence 
dubious as an assumption (though not necessarily as a conclusion). See Aumann 
(1987a, p. 16). 

h. Converses: We have already mentioned (at the end of Section 1) that our 
conditions are not necessary, in the sense that it is quite possible to have a Nash 
equilibrium even when they are not fulfilled. Nevertheless, there is a sense in 
which the converses hold: Given a Nash equilibrium in a game g, one can 
construct a belief system in which the conditions are fulfilled. For the prelimi- 
nary observation, this is immediate: Choose a belief system where each player i 
has just one type, whose action is i's component of the equilibrium and whose 
payoff function is gi. For Theorems A and B, we may suppose that as in the 
traditional interpretation of mixed strategies, each player chooses an action by 
an independent conscious randomization according to his component oi of the 
given equilibrium o-. The types of each player correspond to the different 
possible outcomes of the randomization; each type chooses a different action. 
All types of player i have the same theory, namely, the product of the mixed 
strategies of the other n - 1 players appearing in 0, and the same payoff 
function, namely gi. It may then be verified that the conditions of Theorems A 
and B are met. 
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These "converses" show that the sufficient conditions for Nash equilibrium in 
our theorems are not too strong, in the sense that they do not imply more than 
Nash equilibrium; every Nash equilibrium is attainable with these conditions. 
Another sense in which they are not too strong-that the conditions cannot be 
dispensed with or even appreciably weakened-was discussed in Section 5. 

i. Related Work: This paper joins a growing epistemic literature in noncooper- 
ative game theory. For two-person games, Tan and Werlang (1988) show that if 
the players' payoff functions, conjectures, and rationality are all commonly 
known, then the conjectures constitute a Nash equilibrium.28 Brandenburger 
and Dekel (1989) take this further. They ask, "when is Nash equilibrium 
equivalent to common knowledge of rationality? When do these two basic ideas, 
one from game theory and the other from decision theory, coincide?" The 
answer they provide is that in two-person games, a sufficient condition for this is 
that the payoff functions and conjectures be commonly known.29 That is, if the 
payoff functions and the conjectures are commonly known, then rationality is 
commonly known if and only if the conjectures constitute a Nash equilibrium. 
The "only if" part of this is precisely the above result of Tan-Werlang.30'31 

Our Theorem A improves on the Tan-Werlang result in that it assumes only 
mutual knowledge where they assume common knowledge. 

Aumann (1987a) is also part of the epistemic literature, but the question it 
addresses is quite different from that of this paper. It asks about the distribution 
of action profiles over the entire state space when all players are assumed 
rational at all states of the world and there is a common prior. The answer is 
that it represents a correlated (not Nash!) equilibrium. Conceptually, that paper 
takes a global point of view; its result concerns the distribution of action profiles 
as a whole. Correlated equilibrium itself is an essentially global concept; it has 
no natural local formulation. In contrast, the viewpoint of the current paper is 
local. It concerns the information of the players, at some specific state of the 
world; and it asks whether the players' actions or conjectures at that state 
constitute a Nash equilibrium. Matters like knowledge that is mutual but not 

28 This is a restatement of their result in our formalism and terminology, which differ substan- 
tially from theirs. In particular, two players' "knowing each other" in the sense of Tan and Werlang 
implies that in our sense, their conjectures are common knowledge. 

9For example, if there is an accepted convention as to how to act in a certain situation (like 
driving on the right), then that convention constitutes a Nash equilibrium if and only if it is 
commonly known that everyone is acting rationally. 

30 We may add that Armbruster and Boege (1979) also treat two-person games in this spirit. 
31 One may ask whether our theorems can be extended to equivalence results in the style of 

Brandenburger-Dekel. The answer is yes. For two-person games, it can be shown that if the payoff 
functions and the conjectures are mutually known, then rationality is mutually known if and only if 
the conjectures constitute a Nash equilibrium; this extends Theorem A. Theorem B may be 
extended in a similar fashion, as may the preliminary observation. The "only if' parts of these 
extensions coincide with the theorems established in the body of this paper. 

The "if' parts of these extensions are interesting, but perhaps not as much as the "if' part of the 
Brandenburger-Dekel result: Mutual knowledge of rationality is weaker than common knowledge, 
and so it is less appealing as a conclusion. That is one reason that we have not made more of these 
extensions. 
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common, or players who are rational but may ascribe irrationality to one 
another, do not come under the purview of Aumann (1987a). 

Brandenburger and Dekel (1987, Proposition 4.1) derive Nash equilibrium in 
n-person games from independence assumptions, as we do32 in Proposition 7.1. 
As we have already noted (Section 7g), such assumptions lack the epistemic 
flavor that interests us here. 

In brief: The aim of this paper has been to identify sufficient epistemic 
conditions for Nash equilibrium that are as spare as possible; to isolate just what 
the players themselves must know in order for their conjectures about each 
other to constitute a Nash equilibrium. For two-person games, our Theorem A 
goes significantly beyond that done previously in the literature on this issue. For 
n-person games, little had been done before. 
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