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Discrete Choice Model: Overview

The Choice Set

• The set of options that are available to the decision maker.

Derivation

• Define choice probabilities and derive them from the
utility-maximizing behavior.

• Derive logit model.
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Discrete Choice Model: The Choice Set

Discrete choice models describe decision makers’ choices among
alternatives.
The set of alternatives, called the choice set, needs to exhibit three
characteristics.

• The alternatives must be mutually exclusive
• Choosing one alternative necessarily implies not choosing any of

the other alternatives.
• The choice set must be exhaustive

• All possible alternatives are included.

• The number of alternatives must be finite
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Discrete Choice Model: The Choice Set

The third condition, namely, that the number of alternatives is
finite, is actually restrictive.

Main difference from regression models.

With regression models, the dependent variable is continuous - an
infinite number of possible outcomes.
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Discrete Choice Model: Derivation of Choice Probabilities

Discrete choice models are usually derived under an assumption of
utility-maximizing behavior by the decision maker.

• Thurstone (1927) originally developed the concepts in terms of
psychological stimuli, leading to a binary probit model of
whether respondents can differentiate the level of stimulus.

• Marschak (1960) interpreted the stimuli as utility and provided
a derivation from utility maximization.

Following Marschak, models that can be derived in this way are
called random utility models (RUMs).
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Discrete Choice Model: RUMs

Random utility models (RUMs) are derived as follows.

• A decision maker, labeled n, faces a choice among J alternatives.
• The decision maker would obtain a certain level of utility (or

profit) from each alternative.
• The utility that decision maker n obtains from alternative j is
Unj, j = 1, . . . , J.

• This utility is known to the decision maker but not by the
researcher.

• The decision maker chooses the alternative that provides the
greatest utility.

• The behavioral model is therefore: decision maker n chooses
alternative i if and only if Uni > Unj,∀j ̸= i.
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Discrete Choice Model: RUMs

Consider now the researcher.

• The researcher does not observe the decision maker’s utility.
• The researcher observes

• some attributes of the alternatives as faced by the decision
maker, labeled xnj, ∀j,

• some attributes of the decision maker, labeled sn,

• The researcher can specify a function that relates these
observed factors to the decision maker’s utility.

• The function is denoted Vnj = V
(
xnj, sn

)
,∀j and is often called

representative utility.
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Discrete Choice Model: RUMs

• Since there are aspects of utility that the researcher does not
or cannot observe, Vnj ̸= Unj.

• Utility is decomposed as Unj = Vnj + εnj, where εnj captures the
factors that affect utility but are not included in Vnj.

• The distribution of εnj depends critically on the researcher’s
specification of Vnj.
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Discrete Choice Model: RUMs

• The researcher does not know εnj ∀j and therefore treats these
terms as random.

• The joint density of the random vector ε′n = ⟨εn1, . . . , εnJ⟩ is
denoted f (εn).

• With this density, the researcher can make probabilistic
statements about the decision maker’s choice.

• The probability that decision maker n chooses alternative i is

Pni = Prob
(
Uni > Unj ∀j ̸= i

)
= Prob

(
Vni + εni > Vnj + εnj ∀j ̸= i

)
= Prob

(
εnj − εni < Vni − Vnj ∀j ̸= i

)
.
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Discrete Choice Model: RUMs

Using the density f (εn), this cumulative probability can be rewritten
as

Pni = Prob
(
εnj − εni < Vni − Vnj ∀j ̸= i

)
=

∫
ε

I
(
εnj − εni < Vni − Vnj ∀j ̸= i

)
f (εn)dεn,

where I(·) is the indicator function, equaling 1 when the expression
in parentheses is true and 0 otherwise.

This is a multidimensional integral over the density of the
unobserved portion of utility, f (εn).
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Discrete Choice Model: RUMs

• Different discrete choice models are obtained from different
specifications of this density f (εn), that is, from different
assumptions about the distribution of the unobserved portion
of utility.

• The integral takes a closed form only for certain specifications
of f (·).

• Logit has closed-form expressions for this integral. They are
derived under the assumption that the unobserved portion of
utility is distributed iid extreme value.
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Discrete Choice Model: Identification of Choice Models

Only Differences in Utility Matter

• The choice probability is Pni = Prob
(
Uni > Unj ∀j ̸= i

)
=

Prob
(
Uni − Unj > 0 ∀j ̸= i

)
, which depends only on the

difference in utility, not its absolute level.
• Adding a constant to the utility of all alternatives does not

change the decision maker’s choice.

The Overall Scale of Utility Is Irrelevant

• The model U0
nj = Vnj + εnj ∀j is equivalent to U1

nj = λVnj + λεnj ∀j
for any λ > 0.

• Multiplying each alternative’s utility by a constant also does
not change the decision maker’s choice.
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Discrete Choice Model: Logit

• By far the easiest and most widely used discrete choice model
is logit. Its popularity is due to the fact that the formula for the
choice probabilities takes a closed form and is readily
interpretable.

• Originally, the logit formula was derived by Luce (1959) from
assumptions about the characteristics of choice probabilities,
namely the independence from irrelevant alternatives (IIA).

• Marschak (1960) showed that these axioms implied that the
model is consistent with utility maximization.

• The relation of the logit formula to the distribution of
unobserved utility was developed by Marley, as cited by Luce
and Suppes (1965), who showed that the extreme value
distribution leads to the logit formula.

• McFadden (1974) completed the analysis by showing the
converse: that the logit formula for the choice probabilities
necessarily implies that unobserved utility is distributed
extreme value.
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Discrete Choice Model: Logit

• A decision maker, labeled n, faces J alternatives.
• The utility that the decision maker obtains from alternative j is

decomposed as Unj = Vnj + εnj ∀j.
• The logit model is obtained by assuming that each εnj is

independently, identically distributed extreme value. The
distribution is also called Gumbel and type I extreme value. The
density for each unobserved component of utility is

f
(
εnj

)
= e−εnje−e

−εnj

• The cumulative distribution is

F
(
εnj

)
= e−e

−εnj

14



Discrete Choice Model: Logit

• The variance of this distribution is π2/6. By assuming the
variance is π2/6, we are implicitly normalizing the scale of
utility.

• The mean of the extreme value distribution is not zero;
however, the mean is immaterial, since only differences in
utility matter, and the difference between two random terms
that have the same mean has itself a mean of zero.

• The difference between two extreme value variables is
distributed logistic. That is, if εnj and εni are iid extreme value,
then ε∗nji = εnj − εni follows the logistic distribution

F
(
ε∗nji

)
=

eε
∗
nji

1 + eε
∗
nji
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Discrete Choice Model: Logit

We now derive the logit choice probabilities, following McFadden
(1974). The probability that decision maker n chooses alternative i is

Pni = Prob
(
Vni + εni > Vnj + εnj ∀j ̸= i

)
= Prob

(
εnj < εni + Vni − Vnj ∀j ̸= i

)
.

If εni is considered given, this expression is the cumulative
distribution for each εnj evaluated at εni + Vni − Vnj, which is
exp

(
− exp

(
−
(
εni + Vni − Vnj

)))
.

Since the ε ’s are independent, this cumulative distribution over all
j ̸= i is the product of the individual cumulative distributions:

Pni | εni =
∏
j ̸=i

e−e
−(εni+Vni−Vnj)
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Discrete Choice Model: Logit

Of course, εni is not given, and so the choice probability is the
integral of Pni | εni over all values of εni weighted by its density:

Pni =
∫ ∏

j ̸=i

e−e
−(εni+Vni−Vnj)

 e−εnie−e
−εnidεni.

Some algebraic manipulation of this integral results in a succinct,
closed form expression:

Pni =
eVni∑
j eVnj
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Discrete Choice Model: Logit

Representative utility is usually specified to be linear in parameters:
Vnj = β′xnj, where xnj is a vector of observed variables relating to
alternative j. With this specification, the logit probabilities become

Pni =
eβ′xni∑
j eβ

′xnj
.

Under fairly general conditions, any function can be approximated
arbitrarily closely by one that is linear in parameters.

Importantly, McFadden (1974) demonstrated that the log-likelihood
function with these choice probabilities is globally concave in
parameters β, which helps in the numerical maximization
procedures.
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Discrete Choice Model: Logit

The logit probabilities exhibit several desirable properties.

• First, Pni is necessarily between zero and one, as required for a
probability.

• Second, the choice probabilities for all alternatives sum to one:∑J
i=1 Pni =

∑
i exp (Vni) /

∑
j exp

(
Vnj

)
= 1.

• Third, the relation of the logit probability to representative
utility is sigmoid, or S-shaped, as shown in Figure below. This
shape has implications for the impact of changes in
explanatory variables.
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Discrete Choice Model: Logit

The logit model exhibits independence from irrelevant alternatives,
or IIA.

• For any two alternatives i and k, the ratio of the logit
probabilities is

Pni
Pnk

=
eVni/

∑
j eVnj

eVnk/
∑

j eVnj

=
eVni
eVnk = eVni−Vnk

• This ratio does not depend on any alternatives other than i and
k. That is, the relative odds of choosing i over k are the same no
matter what other alternatives are available or what the
attributes of the other alternatives are.

• Since the ratio is independent from alternatives other than i
and k, it is said to be independent from irrelevant alternatives.
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Logit: Estimation

• Consider first the situation in which the sample is exogenously
drawn, that is, is either random or stratified random with the
strata defined on factors that are exogenous to the choice
being analyzed.

• We also assume that the explanatory variables are exogenous
to the choice situation. That is, the variables entering
representative utility are independent of the unobserved
component of utility.

• A sample of N decision makers is obtained for the purpose of
estimation. Since the logit probabilities take a closed form, the
traditional maximum-likelihood procedures can be applied.
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Logit: Estimation

• The probability of person n choosing the alternative that he
was actually observed to choose can be expressed as∏

i

(Pni)
yni

where yni = 1 if person n chose i and zero otherwise. Note that
since yni = 0 for all nonchosen alternatives and Pni raised to
the power of zero is 1, this term is simply the probability of the
chosen alternative.

• Assuming that each decision maker’s choice is independent of
that of other decision makers, the probability of each person in
the sample choosing the alternative that he was observed
actually to choose is

L(β) =
N∏
n=1

∏
i

(Pni)
yni ,

where β is a vector containing the parameters of the model.
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Logit: Estimation

• The loglikelihood function is then

LL(β) =
N∑
n=1

∑
i

yni lnPni

• and the estimator is the value of β that maximizes this function.
• McFadden (1974) shows that LL(β) is globally concave for

linear-inparameters utility, and many statistical packages are
available for estimation of these models.

• At the maximum of the likelihood function, its derivative with
respect to each of the parameters is zero:

dLL(β)
dβ = 0

The maximum likelihood estimates are therefore the values of
β that satisfy this first-order condition. 24



Marginal Effect

Consider the binary logit model,

pi = Pr (yi = 1 | x) = eβ0+β1x1i+···+βpxpi

1 + eβ0+β1x1i+···+βpxpi

=
1

1 + e−(β0+β1x1i+···+βpxpi)

With some algebraic transformations,

log

(
pi

1 − pi

)
= β0 + β1x1i + · · ·+ βpxpi

The marginal effect for x1 is given by the expression:

∂ Pr (yi = 1 | x)
∂x1

= β1
eβ0+β1x1i+···+βpxpi(

1 + e−(β0+β1x1i+···+βpxpi)
)2
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Marginal Effect

• Nonlinear - as it has to be since the outcome must be bounded
between 0 and 1.

• The direction of the change is given by the sign of β1.
• The effect of x1 depends on the value of all other covariates in

the model even if the underlying model does not include
interactions.
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Marginal Effect: Numerical Derivative

One-sided derivative

f ′ (x = x0) ≈
f (x0 + h)− f (x0)

h

Two-sided derivative

f ′ (x = x0) ≈
f (x0 + h)− f (x0)− [f (x0 − h)− f (x0)]

2h

=
f (x0 + h)− f (x0 − h)

2h
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Marginal Effect: Average Marginal Effect

• Use birth weight data from Wooldridge (bcuse bwght)
• Create an indicator for low birth weight.
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Marginal Effect: Average Marginal Effect

log

(
lwi

1 − lwi

)
= β0 + β1cigsi + β2faminci + β3motheduci
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Marginal Effect: Average Marginal Effect

• Estimate the logit model

log

(
pi

1 − pi

)
= β0 + β1x1i + · · ·+ βpxpi

• Increase the value of the variable x1 by a ßmallämount
h : x1 = x1 + h.
For each observation i, calculate predictions ŷ1i in the
probability scale
keeping all other covariate values

(
x2i, . . . , xpi

)
as observed.

• Repeat for x0 = x0 − h
For each observation i, calculate predictions ŷ0i in the
probability scale

• For each observation i, calculate the difference of the two
predictions divided by 2h : (ŷi1 − ŷi0) /2h

• The average of this difference is the numerical derivative:
E
[
ŷ1i−ŷ0i

2h

]
≈ ∂ Pr(yi=1|x;β)

∂x1
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Marginal Effect: Average Marginal Effect

• Stata uses an algorithm to ensure numerical precision
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Marginal Effect: Average Marginal Effect

• What about 10 extra cigarettes?
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Marginal Effect: Marginal Effect at the Mean (MEM)

Marginal Effect at the Mean (MEM)

• We can also calculate marginal effects at the mean (of each
covariate)

• There is some discussion about which way is better (see
Williams, 2012)

• The difference will be so small that it is better to spend mental
resources somewhere else.
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Marginal Effect: Marginal Effect at the Mean (MEM)
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Marginal Effect: Marginal Effect at the Mean (MEM)
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Interaction Term: Logit

Logit Model

log

(
p

1 − p

)
= β0 + β1edu + β2male + β3edu ∗ male + ε

1. Difference male - female for educated:

log

(
pme

1 − pme

)
− log

(
pfe

1 − pfe

)
= β2 + β3

2. Difference male - female for uneducated:

log

(
pmu

1 − pmu

)
− log

(
pfu

1 − pfu

)
= β2

3. The difference of differences (2)-(3) is:[
log

(
pme

1 − pme

)
− log

(
pfe

1 − pfe

)]
−
[
log

(
pmu

1 − pmu

)
− log

(
pfu

1 − pfu

)]
= β3

Difference-in-difference in the log-odds scale. 36



Interaction Term: Marginal Effect

Marginal Effects

Only two effects? The model has three coefficients. Where is the
interaction?
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Interaction Term: Marginal Effect

How Stata calculates marginal effects?

• For cigs, a continuous variable, it’s using the two-sided
derivative increasing cigs by a little bit and calculating
predictions.
It’s increasing cigs in both the main effect and the interaction.
Then it takes an average so the marginal effect of cigs is the
numerical derivative for both inc=1 and inc=0 combined.

• For the marginal effect of inc, it’s doing the same going from 0
to 1, averaging over the values of cigs

To get the marginal effect of cigs separately for inc=1 and inc=0, we
have to be more specific.
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Interaction Term: More Specific

• A small increase in cigs increases the probability of low birth
weight by 0.6 percentage points for low income type.

• While increase in cigs has no significant effect for high income
type. 39



Interaction Term: DID in Linear

Regression Model

y = β0 + β1time + β2treated + β3time ∗ treated + ε

Source: https://www.publichealth.columbia.edu/research/population-health-
methods/difference-difference-estimation
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Interaction Term: DID in Non-Linear

Let u = F (β1x1 + β2x2 + β12x1x2 + Xβ)

• When the interacted variables are both continuous

∂2F(u)
∂x1∂x2

=
∂ {(β1 + β12x2) f (u)}

∂x2

= β12f (u) + (β1 + β12x2) (β2 + β12x1) f ′(u)

where f (u) = F′(u) and f ′(u) = F′′(u).

• When the interacted variables are both dummy variables

∆2F(u)
∆x1∆x2

=
∆ {F (β1 + β2x2 + β12x2 + Xβ)− F (β2x2 + Xβ)}

∆x2

=F (β1 + β2 + β12 + Xβ)
− F (β1 + Xβ)− F (β2 + Xβ) + F(Xβ)
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Interaction Term: Logit Formula

For the logit model,

F(u) = 1
1 + e−(β1x1+β2x2+β12x1x2+Xβ)

When the interacted variables are both dummy variables, the
interaction effect is the discrete double difference:

∆2F(u)
∆x1∆x2

=
1

1 + e−(β1+β2+β12+Xβ)

− 1
1 + e−(β1+Xβ)

− 1
1 + e−(β2+Xβ)

+
1

1 + e−Xβ
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Interaction Term: SEs

Ai and Norton (2003) derive the standard errors for the interaction
effect in logit and probit models, applying the Delta method.

For the case of two dummy variables, the asymptotic variance of the
estimated interaction effect is estimated consistently by

∂

∂β′

{
∆2F(u)
∆x1∆x2

}
Ω̂β

∂

∂β

{
∆2F(u)
∆x1∆x2

}
where Ω̂β is a consistent covariance estimator of β̂.

For continuous variables, we replace the discrete difference
operator ∆ with the partial derivative operator.
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Interaction Term: Command in Stata
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Interaction Term: Check

/* manual estimation */
logit outcome treated time did, nolog

replace treated = 0
replace time = 0
replace did = 0
predict double y00 if e(sample)

(repeated steps omitted)

gen ie = y11-y01-y10+y00
sum ie
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LPM vs Logit

We have often used binary ("dummy") variables as explanatory
variables in regressions.

• It’s possible to use OLS:

y = β0 + β1x1 + · · ·+ βkxk + u

where y is the dummy variable. This is called the linear
probability model (LPM).

• Estimating the equation:

P̂(y = 1 | x) = ŷ = β̂0 + β̂1x1 + · · ·+ β̂kxk

ŷ is the predicted probability of having y = 1 for the given
values of x1 . . . xk.
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LPM vs Logit: Problems in LPM

First Problems with LPM:

• Possible to get ŷ < 0 or ŷ > 1. This makes no sense-we can’t
have a probability below 0 or above 1 .

• This is a fundamental problem with the LPM that we can’t patch
up.
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LPM vs Logit: Problems in LPM

Second Problem with LPMd: SEs are not right

• Recall that in the linear model we assume
Y ∼ N (β0 + β1X1 + · · ·+ βpXp, σ2) or equivalently, ϵi ∼ N (0, σ2)

• That is, Y distributes normal conditional on Xs or the error
distributes normal with mean 0

• Obviously, a 1/0 variable can’t distribute normal, and ϵi can’t be
normally distributed either
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LPM vs Logit: Heteroskedasticity

• The variance of a 1/0 (binary) depends on the values of X so
there is always heteroskedasticity: var(y | x) = p(x)[1 − p(x)]

• We can correct SEs in LPMs using the robust option
(Huber-White SEs; aka sandwich estimator)

• Still, we do know that SEs are not totally correct because they
do not distribute normal either, even is we somehow correct for
heteroskedasticity

But at the very least, use the robust option by default.

LPM is the wrong but super useful model because changes can be
interpreted in the probability scale.
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LPM vs Logit: Solution

Solution: Use the logit or probit model.

• These models are specifically made for binary dependent
variables and always result in 0 < ŷ < 1.

• This is the main feature of a logit/probit that distinguishes it
from the LPM - predicted probability of y = 1 is never below 0
or above 1.
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LPM vs Logit: Solution

Another feature for the logit or probit model.

• The relation of the logit probability to representative utility is
sigmoid, or S-shaped.

• When the representative utility of an alternative is very low, a
small increase in the utility of the alternative has little effect on
the probability of its being chosen.

• The same when the representative utility of an alternative is
very high.

• When the probability is close to 0.5, meaning a 50-50 chance of
the alternative being chosen, the increase in representative
utility has the greatest effect on the probability of its being
chosen.

• In this case, a small improvement tips the balance in people’s
choices, inducing a large change in probability.
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Thanks!

53



Derivation of Logit

We have

Pni =
∫ ∞

s=−∞

∏
j ̸=i

e−e
−(s+Vni−Vnj)

 e−se−e
−s
ds,

where s is εni. Our task is to evaluate this integral. Noting that Vni−
Vni = 0 and then collecting terms in the exponent of e, we have

Pni =
∫ ∞

s=−∞

∏
j

e−e
−(s+Vni−Vnj)

 e−sds

=

∫ ∞

s=−∞
exp

−
∑
j

e−(s+Vni−Vnj)
 e−sds

=

∫ ∞

s=−∞
exp

−e−s
∑
j

e−(Vni−Vnj)
 e−sds.
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Derivation of Logit

Define t = exp(−s) such that − exp(−s)ds = dt. Note that as s
approaches infinity, t approaches zero, and as s approaches
negative infinity, t becomes infinitely large. Using this new term,

Pni =
∫ 0

∞
exp

−t
∑
j

e−(Vni−Vnj)
 (−dt)

=

∫ ∞

0
exp

−t
∑
j

e−(Vni−Vnj)
dt

=
exp

(
−t

∑
j e

−(Vni−Vnj)
)

−
∑

j e
−(Vni−Vnj)

∣∣∣∣∣∣
∞

0

=
1∑

j e
−(Vni−Vnj)

=
eVni∑
j eVnj

Go back
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