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Instrumental Variable (IV)

to deal with

Measurement Error (ME)
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Gillen, Snowberg & Yariv (2019)

• Measurement errors (ME) in a lab
• Participant’s attention and focus
• Rounding due to finite choice menus

• This paper illustrates the issue and proposes a mix of statistical
tools (duplicate elicitations and IV approach) and design
recommendations

• Other ways to solve: improve elicitation techniques, multiple
rounds, ...

3



Outline

• Gender gap in competition (?)

=⇒ risk attitudes and overconfidence account for the gap
• Linearly include controls
• Principal component analysis
• Instrumental variables

• Low correlation between different methods of measuring risk (?)

=⇒ measures of risk attitudes are highly correlated
• Obviously related instrumental variables (ORIV)

• Compound risk and ambiguity are separate phenomena (???)

=⇒ very little difference btw the two attitudes
• Obviously related instrumental variables (ORIV)
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Measurement Error

Definition
The model X = X∗ + νX with X∗ and νX independent and E[νX] = 0 is
known as classical measurement error.

Definition
We say that there is endogeneity in the linear model Y = βX + ε

if β is the parameter of interest and E[Xε] ̸= 0.
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Measurement Error

Suppose that we are interested in to estimate the relationship
between the two variables, Y∗ and X∗.

But we can only observe variables measured with independent and
identically distributed error,

Y = Y∗ + νY and X = X∗ + νX

with E[νk] = 0, Var[νk] = σ2
νk

, and E[νYνX] = 0.
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Measurement Error

The ideal regression model would be

Y∗ = α∗ + β∗X∗ + ε∗.

Instead, we can only estimate

Y = α+ βX + ε

where α is a constant and ε is a mean-zero random noise.

In this case, we have an endogeneity problem.
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Measurement Error

Why?

Y∗ = α∗ + β∗X∗ + ε∗ =⇒ Y − νY = α∗ + β∗(X − νX) + ε∗

=⇒ Y = α∗ + β∗X + (ε∗ − β∗νX + νY)︸ ︷︷ ︸
=ε

Hence

E[Xε] = E[(X∗ + νX)(ε
∗ − β∗νX + νY)] = −β∗σ2

νX
̸= 0

if β∗ ̸= 0 and σ2
νX

̸= 0.
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Measurement Error

Annotating finite-sample estimates with hats and population
moments without hats, we have

β̂ =
Ĉov[Y, X]

V̂ar[X]
=

Ĉov[α∗ + β∗X∗ + ε∗ + νY , X∗ + νX]

V̂ar[X∗ + νX]

and
E[β̂] = plimn→∞β̂ = β∗

(
σ2
X∗

σ2
X∗ + σ2

νX

)
︸ ︷︷ ︸

<1

< β∗.

This is called measurement error bias or attenuation bias.
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Q. Against false positive... Is this a big problem?
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Simulated Example

Error as a percentage of Var[X] and Var[Y]
0% 10% 20% 30% 40% 50%

Ĉorr[X, Y] 1.00 0.90∗∗∗ 0.80∗∗∗ 0.70∗∗∗ 0.60∗∗∗ 0.50∗∗∗

(0.00) (0.02) (0.04) (0.05) (0.06) (0.08)
Ĉorr[E[X], E[Y]] 1.00 0.95∗∗∗ 0.89∗∗∗ 0.82∗∗∗ 0.75∗∗∗ 0.66∗∗∗

(0.00) (0.01) (0.02) (0.03) (0.04) (0.06)
ORIV Ĉorr[X, Y] 1.00 1.00 1.00 1.00 1.00 1.00

(0.00) (0.01) (0.02) (0.04) (0.06) (0.10)

* Coefficients and standard errors are averages from 10,000 simulated
regressions (N = 100).

=⇒ Even a bit of ME causes significant deviations from the true correlation
of 1, i.e., Corr[X∗, Y∗] = 1.
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Two Replicated Measures

Suppose that we elicit two replicated measures of X∗, i.e.,

Xa = X∗ + νaX and Xb = X∗ + νbX

with νaX , νbX i.i.d. random variables, and E[νaXνbX ] = 0.
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Two-Stage Least Squares

Apply two-stage least squares (2SLS) to instrument Xa with Xb,

Xa = π0 + π1Xb + εX =⇒ π̂1 =
Ĉov[Xa, Xb]

V̂ar[Xb]
≈ V̂ar[X∗]

V̂ar[Xb]
.

Then estimate Y = α+ β(π̂0 + π̂1Xb) + εY .

β̂ =
Ĉov[α∗ + β∗X∗ + ε∗ + νY , π̂0 + π̂1Xb]

V̂ar[π̂0 + π̂1Xb]
≈ β∗π̂1V̂ar[X∗]

(π̂1)2V̂ar[Xb]
→p β

∗.

Thus, β̂ is a consistent estimate of β∗.
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Instrumentation strategies

Q. Do we instrument Xa with Xb, or Xb with Xa?
• They may produce different results (see Table 5 in the paper).

A. The obviously related IV (ORIV) estimator consolidates the
information from these different formulations.
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ORIV

The ORIV regressions estimates a stacked model to consolidate the
information from the two available instrumentation strategies:[

Y
Y

]
=

[
α1
α2

]
+ β

[
Xa
Xb

]
+ ε,

instrumenting [
Xa
Xb

]
with W =

[
Xb 0N
0N Xa

]

where N is the number of participants and 0N is an N× 1 zero matrix.
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ORIV

This is equivalent to estimating a first stage for both
instrumentation strategies, then estimating[

Y
Y

]
=

[
α1
α2

]
+ β

[
X̂a
X̂b

]
+ ε.

The stacked regression will produce an estimated of β∗ that is the
average of the estimates from the two instrumentation approaches.
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ORIV

Proposition 1
ORIV produces consistent estimates of β∗.

Proposition 2
The ORIV estimator satisfies asymptotic normality under standard
conditions. The estimated standard errors, when clustered by
participant, are consistent estimates of the asymptotic standard
errors.
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Errors in Outcome and Explanatory Variables

Suppose that Ya = Y∗ + νaY , Yb = Y∗ + νbY , with E[νaY ] = E[νbY ] = 0.
Ya
Ya
Yb
Yb

 =


α1
α2
α3
α4

+ β


Xa
Xb
Xa
Xb

+ ε, with W =


Xb 0N 0N 0N
0N Xa 0N 0N
0N 0N Xb 0N
0N 0N 0N Xa

 .

* The existence of ME in Y does not change propositions 1 and 2, although
estimated standard errors will increase.
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Estimating Correlations

Note that

β̂ =
Ĉov[X, Y]

V̂ar[X]
=⇒ ρ̂XY = β̂

√√√√ V̂ar[X]
V̂ar[Y]

.

We cannot use Var[X] = Var[X∗] + Var[νX].

Instead, use Cov[Xa, Xb] = Cov[X∗ + νaX, X∗ + νbX] = Var[X∗].
Thus,

ρ̂∗XY = β̂∗

√√√√ Ĉov[Xa, Xb]
Ĉov[Ya, Yb]

.
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Estimating Correlations

Proposition 3
ρ̂∗XY is consistent with an asymptotically normal distribution, where
standard errors can be derived using the delta method.

These standard errors can be consistently estimated using a
bootstrap to construct confidence intervals.
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Designing Experiments for ORIV

Assumption. MEs are independent across elicitations.

Q. How to design an experiment to achieve this?

A. The paper suggests:

1. Duplicated elicitations should use different numerical values.
2. When using an MPL, the response grid should be constructed so

that implied values are not the same.
3. Duplicated items should be placed in different parts of the

study.
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Measures of Risk

• Project
• Allocate 100 or 200 tokens btw a safe option and a project (e.g.,

returning 3 tokens w.p. 0.4 or nothing otherwise).
• ?

• Qualitative
• Self-rate, on a scale of 0 − 10, in terms of willingness to take risk.
• ?

• Lottery menu
• Choose btw six 50/50 lotteries with different stakes.
• ?

• MPLs
• E.g., 100 tokens w.p. 10

20 ; 150 tokens w.p. 15
30 .

Overconfidence

Compound and Ambiguity
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Correlation Results

Raw Correlation Corrected for ME
Project Qualitative Lottery Project Qualitative Lottery

Qualitative 0.26∗∗∗ 0.40∗∗∗

(0.029) (0.043)
Lottery 0.47∗∗∗ 0.25∗∗∗ 0.71∗∗∗ 0.40∗∗∗

(0.029) (0.032) (0.046) (0.052)
Risk MPL 0.19∗∗∗ 0.13∗∗∗ 0.22∗∗∗ 0.30∗∗∗ 0.19∗∗∗ 0.38∗∗∗

(0.032) (0.033) (0.030) (0.048) (0.047) (0.053)

1. The corrected correlations are substantially higher.
2. Some measures are noticeably more correlated.

• Project is most correlated with others (e.g., Project & Lottery).
• MPL & Qualitative are least correlated.
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Misspecified Controls and ME

Y: Competition
D: Gender
X: Controls for risk aversion and overconfidence

Consider a regression model:

Y = αD+ X′β + ε.

Consider the model:

• Y∗ = X∗;
• D and X∗ are correlated;

• Overconfidence & gender (?)
• Risk aversion & gender (??)

• X = X∗ + ν.

We may have an erroneous conclusion that Y and D are correlated,
even when controlling for X. e.g., simulation 23



Replication Results

Chose to Compete (N = 783)
(1) (2) (3)

Male 0.19∗∗∗ 0.11∗∗∗ 0.048
Risk aversion: MPL #1 0.042∗∗∗
Overplacement: CRT 0.026∗∗∗

Risk aversion: project #2 0.067∗∗∗
Perceived performance: CRT −0.042∗∗∗

* Guessed tournament rank, Tournament performance, Performance
difference are controlled in (2) and (3).

• (1) and (2) replicate ?.
• A different set of controls in (3) provides different result.

• Statistical significance of controls is not a good indicator of
whether a trait is fully controlled for.
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Three Approaches to Solve

1. Include multiple measures for each of the possible controls X.
• Cannot eliminate the effects of ME without a large enough

number of controls. But how many?

2. Include principal components of the multiple controls.
3. Instrument each control with a duplicate.

• Two controls are enough.

The paper suggests that the IV approach is preferable whenever
feasible.
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Regression Results

Chose to Compete (N = 783)
(1) (Sol 1) (Sol 2) (Sol 3)

Male 0.19∗∗∗ 0.050 0.041 0.0063
6 risk aversion controls F = 4.9
12 overconfidence controls F = 1.8
Five Principal components F = 37
Instrumental variables χ2

7 = 24

* (Sol 1) has 76 controls in total including Guessed tournament rank,
Tournament performance, Performance difference.

=⇒ Estimated coefficients of gender variable is no more statistically
significant.
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Analysis of Variance
(ANOVA)

27



Motivation

Figure 4 from ?
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Assumptions

Suppose that there are k groups of interest.

Assumptions (?):

1. The data must be measured either on interval or ratio scale.
2. The samples must be independent.
3. The dependent variable must be normally distributed.
4. The population from which the samples have been drawn must

be normally distributed.
5. The variances of the population must be equal

(σ2
1 = · · · = σ2

k = σ2).
6. The errors are independent and normally distributed.

Hypothesis:

H0 : µ1 = · · · = µk.

Ha : At least one µi is different. 29
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One-Way ANOVA

Consider a between-subject design (1 ∼ k treatments).
Each treatment j has nj number of (i.i.d.) observations.
Let n =

∑k
j=1 nj be the total number of observations.

Define

Xij: i-th observation in treatment j

X̄j =
∑nj

i=1 Xij
nj

: sample mean in treatment j (j = 1, . . . , k).

X̄ =
∑k

j=1
∑nj

i=1 Xij
n : grand sample mean.

TSS =
∑k

j=1
∑nj

i=1(Xij − X̄)2: Total sum of squares.
SSb =

∑k
j=1 nj(X̄j − X̄)2: Sum of squares between groups.

SSw =
∑k

j=1
∑nj

i=1(Xij − X̄j)2: Sum of squares within groups.

• TSS = SSb + SSw
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One-Way ANOVA

TSS =
∑k

j=1
∑nj

i=1(Xij − X̄)2: Total sum of squares .

SSb =
∑k

j=1 nj(X̄j − X̄)2: Sum of squares between groups.

SSw =
∑k

j=1
∑nj

i=1(Xij − X̄j)2: Sum of squares within groups.

• MSSb = SSb
k−1 : Mean sum of squares for between groups.

• MSSw = SSw
n−k : Mean sum of squares for within groups.

Test statistic:
F =

MSSb
MSSw

∼ Fk−1,n−k.
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One-Way ANOVA

Under the null, both MSSb and MSSw are unbiased estimator of σ2.

If H0 does not hold, then

• MSSb is NOT an unbiased estimator of σ2 (biased upward).
• MSSw is an unbiased estimator of σ2.

Details

32



ANOVA Table

Sources of variation SS df MSS F-value
Between groups SSb k− 1 MSSb = SSb

k−1 F = MSSb
MSSw

Within groups SSw n− k MSSw = SSw
n−k

Total TSS n− 1
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Example

Switch points from three different MPLs (MPL 0, MPL 1, MPL 2):

=⇒ Switch points from at least one MPL are different.
34



Beyond One-Way ANOVA

• Two-Way ANOVA: Compare more than one group
• E.g., (stata) anova switch_average treatment gender

Screenshot

• Analysis of covariance (ANCOVA): Controls for covariates
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Regression with Dummy Variables

Regress Y on dummy variables can do the same thing!

For example,
Switchi = β0 + δ1Di,1 + δ2Di,2 + εi

where

Di,k =
{

0 if MPL 0
1 if MPL k

.
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Example

1. Switch points btwn MPL0 and MPL1 are significantly different.
2. Switch points btwn MPL0 and MPL2 are not sig. different.
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Discussion

1. We can put more structures when regressing w/ dummy
variables.

• Control variables, cluster se, nonlinear regression, ...

2. When regressing w/ dummy variables, we need a control
treatment.

• E.g., MPL1 vs MPL2?
• If we want to compare two groups, maybe do pairwise

comparison with corrections?
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ANOVA vs Regression w/ Dummy Variables

My takeaways are...

• To show the overall difference across multiple groups, use
ANOVA.

• To put more structures (control variables, cluster se, nonlinear
regression), regress with dummy variables with a proper
specification.

• E.g., we often do t-test to show the overall difference between
two groups, and then run regressions to have further analysis.
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The End
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Appendix

• Overestimation and overplacement
• How many they think they answered correctly.
• Where they think they are in the performance distribution of all

participants
• Overprecision

• How confident they are of their guess (six-point qualitative scale).
• Perception of academic performance

• Where in the grade distribution of their entering cohort they
belieive they would fall over the next year.

Caltech Cohort Study: Risk measures
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Appendix

• Compound MPL
• Same as MPL except that the number of balls is uniformly drawn.

• Ambiguous MPL
• Same as MPL except that the composition of the urn was chosen

by the dean of undergraduate students of Caltech.

Caltech Cohort Study: Risk measures
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Appendix: Simulated Example

Y: Participation in dangerous sports
D: Gambling
X: Risk attitude (experimentally measured)

Consider a model:

• Y∗ = X∗;
• X∗ ∼ N[0, 1] and Y = Y∗ + ζ where ζ ∼ N[0, 1].

• D = 0.5 · X∗ + η where η ∼ N[0,0.9];
• X = X∗ + ν where ν ∼ N[0, σ2

ν ].

Consider a regression model:

Y = αD+ βX + ε

Model
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Appendix: Simulated Example

Tabelle 1: Simulated Regressions

ME as a Percent of Var[X], i.e., σ2
ν

σ2
ν+σ2

X∗

0% 10% 20% 30% 40% 50%

α̂
.00
(.11)

.06
(.11)

.11
(.12)

.16
(.12)

.21∗
(.12)

.26∗∗∗

(.12)

β̂
1.00∗∗∗

(.12)
.87∗∗∗
(.11)

.75∗∗∗
(.11)

.64∗∗∗
(0.10)

.54∗∗∗
(.10)

.44∗∗∗
(.09)

True model: α = 0 and β = 1.
Model
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Appendix: F-statistic for One-Way ANOVA

Consider Xij = µj + εij, εij ∼ N(0, σ2) and independent.
We can rewrite it as

Xij = µ+ αj + εij

where µ = 1
k
∑k

j=1 µj, and αj is called sample effect.
Under nj = m, we have

E[SSb] = (k− 1)σ2 +m
k∑
j=1

α2
j and E[SSw] = k(m− 1)σ2.

Hence, MSSb is an unbiased estimator of σ2 only if the null
(α1 = · · · = αk = 0) is true, while MSSw is an unbiased estimator
regardless of the null.
In particular, MSSb gets larger as αj increases.

Since MSSb/σ2 ∼ χ2
k−1, MSSw/σ2 ∼ χ2

n−k, and they are independent
(by Cochran theorem), F = MSSb

MSSw ∼ Fk−1,n−k. Slide: One-Way ANOVA 39



Appendix: Two-Way ANOVA

Slide: Beyond One-Way ANOVA
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