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Let’s start by reviewing the asymptotic results for OLS.

Model
For i = 1, 2, . . . ,n,

yi = x′iβ + ϵi

where yi and ϵi are scalar, and xi and β are k × 1 column vectors.

Assumptions

(OLS 0) (yi, x′i)i=1,...,n is an i.i.d. sequence.
(OLS 1) E[xix′i ] is finite and nonsingular.
(OLS 2) E[xiϵi] = 0.

• β̂ − β = ( 1
n
∑

i xix′i)
−1( 1

n
∑

i xiϵi)
p→ (E[xix′i ])

−1E[xiϵ
′
i] = 0
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By CLT and Slutsky’s theorem,√
n(β̂ − β) ∼ N(0, (E[xix′i ])

−1E[xix′iϵ
2
i ](E[xix′i ])

−1).

• The variance of the estimator β̂ is
V(β̂) = n−1(E[xix′i ])

−1E[xix′iϵ
2
i ](E[xix′i ])

−1

Homoskedasticity: Cov(ϵi, ϵj) = 0, and Var(ϵi|xi) = σ2.

• Under homoskedasticity, the middle term E[xix′iϵ
2
i ] = σ2E[xix′i ].

This simplifies our variance:

V(β̂)homoskedasticity = n−1σ2(E[xix′i ])
−1

• Feasible estimator:

V̂(β̂)homoskedasticity = σ̂2(X′X)−1

where σ̂2 = (n − k − 1)−1ϵ̂′ϵ̂.
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Heteroskedasticity: Cov(ϵi, ϵj) = 0, and Var(ϵi|xi) = σ2(xi).

• Under heteroskedasticity, the (Eicker(1967)-)Huber (1967)- White
(1980) robust estimator is

V̂(β̂)HW = (X′X)−1
∑

i

xix′i ϵ̂
2
i (X

′X)−1
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Doing this in practice

• What are the options for estimating the variance? (Long & Ervin,
2000)

V̂(β̂)HW = (X′X)−1
∑

i

xix′i ϵ̂
2
i (X

′X)−1 (HC0)

V̂(β̂)robust = (X′X)−1
∑

i

n
n − kxix′i ϵ̂

2
i (X

′X)−1 (HC1)

V̂(β̂)HC2 = (X′X)−1
∑

i

(1 − hii)
−1xix′i ϵ̂

2
i (X

′X)−1 (HC2)

V̂(β̂)HC3 = (X′X)−1
∑

i

(1 − hii)
−2xix′i ϵ̂

2
i (X

′X)−1 (HC3)

where hii is the diagonal element of the “hat matrix” (X(X′X)−1X′).
Note: HC1 is just a d.o.f. adjustment to HC0 (n/(n − k))

V̂ determines our confidence intervals. Thus, our size & power
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Doing this in practice

• Let’s say A <= B if B − A is PSD (B is more conservative)

HC0 <= HC1 <= HC2 <= HC3

Woodridge ran simulations to show HC2-HC1 is PSD (n=200, k=3,
1,000,000 replications, always true).

• Simulation studies show that HC2 and HC3 lead to better—with
small n, possibly much better—confidence intervals than HC1.

• The Stata default with vce(robust) uses HC1.
• The R default with sandwich uses HC3. For R, see estimateR,

clubSandwich and Kolesar’s github repo.
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Related: Young (2019)

• A QJE paper (595 Google cites):
we need “randomization tests”, instead of regressions, to get
correct p-values.

• look at 53 experimental papers from the journals of the AEA
• compare randomization tests to conventional tests

• individual significance results: 13-22 percent fewer
• joint significance results: 33-49 percent fewer
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Related: A post on Data Colada...

• The QJE study cited used HC1 when comparing with
randomization inference in experiments.

• The datacolada post shows that using HC1 and HC3 can be very
different when sample sizes are not large.

• But HC3 turns out to work quite well even with pretty small n.
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Main Takeaway

For Stata users:

10



Clustering and generalizing E[ϵϵ′|X]

Ωhomoskedasticity =


σ2

. . .
. . .

σ2



Ωheteroskedasticity =


σ2

1
. . .

. . .
σ2

n


• We’ve ignored any correlation structure in Ω.
• In many cases, we don’t have that. Instead, Ω has clusters.

• units are people, and clusters are cities, states or countries
• units are choices, and clusters are subjects, groups or sessions 11



Clustering and generalizing E[ϵϵ′|X]

Let Ci denote unit i ’s cluster assignment.

• A simple example:

Ωij =


σ2 if i = j
ρσ2 if Ci = Cj & i ̸= j
0 if Ci ̸= Cj & i ̸= j

Ωcluster =


σ2 ρσ2

ρσ2 σ2

. . .
σ2 ρσ2

ρσ2 σ2


e.g., if we study individual choices, it might be ok to assume
away the correlation between different subjects.

• A more unstructured example: Ωij = σij if Ci = Cj. 12



Let the number of clusters be G, indexed by g

V̂(β̂)LZ = (X′X)−1

(∑
g

X′
g,nϵ̂g,nϵ̂

′
g,nXg,n

)
(X′X)−1 (Liang & Zeger, 1986)

• This makes us think more generally, it’s about getting the
structure of Ω right. (So better to err on the conservative side)

• However, A recent QJE paper (Abadie, Athey, Imbens &
Wooldridge, 2023) argues that this intuition is not correct.

13



Related: Abadie, Athey, Imbens & Wooldridge (2023)

Misconceptions:

• “The presence of within-cluster correlation implies the need for
clustering.”

• “Being as conservative as necessary.”
• Suppose we want to use the sample average to estimate the

population mean. Suppose the population can be partitioned into
clusters, e.g., in geographical units. If outcomes are positively
correlated in clusters, the cluster variance will be larger than the
robust variance.
But there’s no need to cluster...

• “Researchers have only two choices: to cluster or not to cluster.”
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Related: Abadie, Athey, Imbens & Wooldridge (2023)

Main Takeaways:

• “The decision on when and how to cluster standard errors
depends on the nature of the sampling and the assignment
processes only, not on the presence of within-cluster error
components in the outcome variable.”

• The traditional advice of being as conservative as necessary is
likely misguided.

• They suggest new ways to estimate variance: causal cluster
variance (CCV) and two-stage cluster bootstrap (TSCB).

• These are designed for applications with large number of
observations and substantial variation in treatment assignment
within clusters.

• Fixed effects do NOT remove need for clustering.
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Doing this in practice

• There are ongoing debates on clustering...
• If we know the appropriate cluster level, we can implement this

using the cluster command in Stata:

reg y x, cluster(g)

For experimentalists: Cluster by

• Subject?
• Session?
• Other??
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Fixed Effects vs Random Effects

yit = x′itβ + ui + eit

where yit, ui and eit are scalar, and xit and β are k× 1 column vectors.

Key Difference:

• Random effects: ui is part of the error.
Need to assume no correlation between ui and xit.
Cov(ui, xit) = 0 for t = 1, . . . , T
(or E[ci|xi1, . . . , xiT] = E[ci])

• Fixed effects: ui is part of the intercept.
ui can be arbitrarily correlated with xit.
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Random effects

RE approach exploits the implied correlation structure of errors.

Let vit = ui + eit. Stacking for T periods, we have yi = xiβ + vi. Define
Ω = E[viv′

i |xi].
Assumptions

(RE 1) E[eit|xi1, . . . , xiT] = 0 and E[ui|xi1, . . . , xiT] = 0.
(RE 2) E[eie′

i |xi,ui] = σ2
eIT and E[u2

i |xi] = σ2
u

Ω =


σ2

u + σ2
e σ2

u · · · σ2
u

σ2
u σ2

u + σ2
e σ2

u

σ2
u

. . . σ2
u

σ2
u · · · σ2

u σ2
u + σ2

e


• β̂RE = (

∑
i x′iΩ̂

−1xi)
−1(
∑

i x′iΩ̂
−1yi).
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Feasible GLS estimation of RE model

Step 1. Run a pooled OLS of yit on xit and get the residuals v̂it.
Step 2. Estimate σ2

v = σ2
u + σ2

e by σ̂2
v = 1

nT−k
∑

i
∑

t v̂2
it.

Step 3. Estimate σ2
u using cross terms only:

σ̂2
u = 1

nT(T−1)/2−k
∑n

i=1
∑T−1

t=1
∑T

s=t+1 v̂itv̂is.

Step 4. Form Ω̂ using σ̂2
v and σ̂2

u.
Step 5. Estimate β by GLS: β̂RE = (

∑
i x′iΩ̂

−1xi)
−1(
∑

i x′iΩ̂
−1yi)
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Fixed effects

Assumptions

(FE 1) E[eit|xi1, . . . , xiT] = 0.
(FE 2) E[eie′

i |xi,ui] = σ2
eIT .

There are several derivations of the estimator.

• Add individual specific dummies: y = Xβ + Du + e. Then OLS
estimation of β proceeds by the Frisch–Waugh–Lovell theorem.
Define y∗ = y − D (D′D)−1 D′y and X∗ = X − D (D′D)−1 D′X.

β̂FE = (X∗′X∗)−1X∗′y∗

• De-mean/differencing: β̂FE = β̂within
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Doing this in practice

• We can use the Hausman test to choose RE vs FE. (H0 is in favor
of “random effects”)

• In stata, RE or FE estimation:

xtset

xtreg y x, re

xtreg y x, fe

Note that the default panel structure in Stata has two
dimensions (individual i and time t). There are packages for
higher dimensions, e.g. in Changkuk’s MPL paper, he has
“individual”, “product” and “round”.

• Estimating FE using dummies is very flexible when we want to
control different levels of fixed effects. But the # of regressors
can be very large.
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Final thoughts

• Many ways of estimating variance: analytical/ bootstrap
• With iid data, if we worry about heteroskedasticity, there are

HC0, HC1 (HW), HC2, HC3... When sample size is small, we’d
better use HC2 or HC3.

• With data that is not iid, clustering can adjust the variance. We
need to motivate why and how to cluster.

• Random effects or fixed effects are on the model level. It’s
helpful, e.g., when we want to control some individual-specific
effects.

• Individual-specific effects are treated as part of the error in RE
models, while as part of the intercept in FE models.
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