ExpEcon Methods: Multiple Hypotheses Corrections

ECON 8877 P.J. Healy First version thanks to Floyd Carey

Updated 2023-11-17

Multiple Hypothesis Corrections

Suppose you run two tests of the same hypothesis. Each has 0.05 Type-I error.

So, use a lower α :

For Pr(R) = 0.05 use $\alpha \approx 0.025321$. If you have *k* tests: $1 - (1 - \alpha)^n = 0.05 \Rightarrow \alpha^* = 1 - (1 - 0.05)^{1/k}$ which is > 0.05/k Suppose you run two tests of the same hypothesis. Each has 0.05 Type-I error.

So, use a lower α :

For Pr(R) = 0.05 use $\alpha \approx 0.025$ k tests: $1 - (1 - k\alpha) = 0.05 \Rightarrow k\alpha = 0.05 \Rightarrow \alpha^* = 0.05/k$ Suppose you run two tests of the same hypothesis. Each has 0.05 Type-I error.

So, use a lower α :

No correction needed!

Using $\alpha^* = 0.05/k$ would be way too conservative!

Setup:

- *k* tests. Nulls: H_0^1, \ldots, H_0^k
- α_f is your adjusted *p*-value on each
- FWER (Family-Wise Error Rate) is Pr(R) on at least one test

Bonferonni Correction: $\alpha_f = \alpha/k$

- The most popular (and conservative)
- Under independence $FWER = 1 (1 \frac{\alpha}{k})^k \approx \alpha$
- Safe: appropriate even with negative correlation
- Tradeoff: high chance of Type-II error (failure to reject false H_0)

Sidak Correction: $\alpha_f = 1 - (1 - \alpha)^{1/k}$

• Exact correction for independent tests

The Holm-Bonferroni Correction

- A more powerful (i.e., higher β) correction that still controls the FWER is the Holm-Bonferroni correction (Holm, 1979).
- For this correction, order the p-values in the family from lowest to highest $(p_1 \le p_2 \le \ldots \le p_k)$.

The Holm-Bonferroni Correction

- A more powerful (i.e., higher β) correction that still controls the FWER is the Holm-Bonferroni correction (Holm, 1979).
- For this correction, order the p-values in the family from lowest to highest $(p_1 \le p_2 \le \ldots \le p_k)$.
- Then follow the algorithm:
- 1. Is $p_1 < \frac{\alpha}{k}$?
 - No: Do not reject any H_o^i (as in Bonferonni). Stop.
 - Yes: Reject H_0^1 and continue to step 2.
 - Note: There are now k 1 tests remaining.
- 2. Is $p_2 < \frac{\alpha}{k-1}$?
 - No: Do not reject H_0^2 through H_0^k . Stop.
 - Yes: Reject H_0^2 as well and continue. k 2 tests remain.
- j. Is $p_j < \frac{\alpha}{k+1-j}$?
 - No. Do not reject H_o^j through H_o^k . Stop.
 - Yes: Reject H_o^j as well and continue.

Can use a Sidak version assuming independence: $1 - (1 - \alpha)^{1/(k+1-j)}$

The Hotchberg Step-Down Procedure

- Holm-Bonferonni: Reject H_0^1, \ldots, H_0^j where j is the smallest index for which $p_{j+1} \ge \frac{\alpha}{k+1-(j+1)}$
 - Reject up to the "first crossing" of the threshold
- Hotchberg procedure: Reject H_0^1, \ldots, H_0^j where *j* is the largest index for which $p_j \leq \frac{\alpha}{k+1-j}$
 - Reject up to the "last crossing" of the threshold
- Alternatively, first crossing when working top-to-bottom.
- This method is more powerful than the Holm-Bonferroni correction, but it sometimes does not control the FWER (see Dmitrienko et al., 2010 for details).
 - Not valid for negative correlation

Issues with the Holm and Hotchberg Corrections

- They assume the "worst-case scenario" for the joint distribution of the test statistics (i.e., independence)
- They are not balanced, so that there is the potential for a rejection of H_o for one test which has a higher unadjusted p-value than another test whose null hypothesis is not rejected.
- Romano and Wolf's (2010) method deals with these issues and creates a correction that is more powerful than either the Holm or Hotchberg corrections.

Balanced Resampling Using Bootstrapping

- Resampling methods used in Romano and Wolf (2010) can estimate the degree of dependence between the test statistics.
- This, combined with a "step-down"method like that used in Holm (1979), creates a more powerful correction.
- Furthermore, this method also creates balance, such that all tests contribute equally to error control.
- List et al. (2019) develop version of this correction for experimental studies which randomly assign treatments to experimental treatments.

I would use these methods!

- What is the "family" in the Family-Wise Error Rate? What tests should be "combined"?
 - A "family" is (frustratingly) loosely defined, but an intuitive way to think about it is a set of tests whose inference is getting at the same question.
 - An easy experimental example: suppose you have two treatments and a control group, and you want to determine if either of the treatments increased the mean, so you perform two t-tests. Both of those t-tests constitute a family.

When to Use Corrections?

- Some people non-statisticians say we should *never* use them (O'Keefe, 2003; Perneger, 1998; Rothman, 1990)
- Other people non-statisticians say we should *always* use them (Bennett et al., 2009; Goeman & Solari, 2014; Moyé, 1998; Ottenbacher, 1998)
- Still others say we should use them only in exploratory research (Armstrong, 2014; Cramer et al., 2016; Streiner, 2015)
- Finally, some say we should use them only in confirmatory research (Bender & Lange, 2001; Schochet, 2009; Stacey et al., 2012; Tutzauer, 2003; Wason et al., 2014)

When to Use Corrections? (Continued)

- In the economics literature, these corrections are rarely used. However, List et al. (2019) argue that there are 3 scenarios under which experimental economists *should* use some kind of correction:
- 1. When there are multiple outcomes for a given treatment that researchers wish to analyze for a given treatment
- 2. When there is heterogeneity or expected heterogeneity in an effect across different subgroups
- 3. When there are multiple treatments and we wish to compare the effect size relative to a control or the other treatments

When to Use Corrections? (Continued)

- Recently, a paper by Rubin (2021) advocated for correction based on the *type* of multiple testing that occurs.
- The Jelly Bean Example (Munroe, 2011):
- 1. disjunction (union-intersection) testing: *neither* green jelly beans *nor* red jelly beans causes acne.
- 2. conjunction (intersection-union) testing: *either* green jelly beans *or* red jelly beans do not cause cane.
- 3. individual testing: red jelly beans cause do not acne; green jelly beans do not cause acne

Conclusion

- On one hand, allowing researchers to choose which paradigm to use creates an incentive problem
- On the other, we cannot decrease the Type-1 Error probability without increasing the Type-2 Error probability.
- It depends on what the experiments' goals are, the relative importance of Type-1 and Type-2 errors, and ultimately comes down to a few judgment calls.
- Pre-registration forces us to think more deeply about what questions we want to answer and how we'll answer them