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Siegel & Castellan’s Book

Siegel & Castellan (1988) Nonparametric Statistics for the Behavioral
Sciences, 2nd ed.
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Siegel & Castellan’s Book

The back jacket of 2nd Edition:

What do your data look like?

1. Nominal/Categorical
• Pass/fail, gender, race...

2. Ordinal
• Type/ability

3. Interval
• Score on a test
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Siegel & Castellan’s Book

The back jacket of 2nd Edition:

What do you want to test?

1. One Sample
• Value of a statistic (µ = 0)
• Fit of a sample to a distribution (X ∼ N(0, 1))
• Properties of a sample (runs test, symmetry test)

2. Comparing Two or More Samples
2.1 Matched samples

• “Sample of differences” (µdiff = 0)
2.2 Independent samples

• Comparing statistics (µ1 = µ2)

3. Measuring Association Between Two Samples
3.1 Various notions of “correlation”
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Contingency Tables

Comparing samples with categorical data
(or ordinal, discarding order info)

Category Control Treatment
High A B
Low C D

H0: A/C = B/D (category is independent of treatment)
Fisher’s Exact Test:
Prob of (A,B, C,D) under H0: Hypergeometric dist’n
Calculate prob of all tables “more extreme” (less equal) than this
Exact test b/c sampling distribution is known for any n

Problem: calculation intensive! Only for small tables.
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Contingency Tables

The Chi-Squared Test (for contingency tables):

OBSERVED Male Female
Pass 30 70
Fail 70 30

EXPECTED Male Female
Pass 50 50
Fail 50 50

(O − E)2/E Male Female
Pass 8 8
Fail 8 8

Test statistic T =
∑ (O−E)2

E . As n → ∞ we have T ∼ χ2
(r−1)(c−1)

6



Contingency Tables

Partitioning the D.O.F.

OBSERVED Black White Asian
Pass 70 70 30
Fail 30 30 70

χ2 test rejects H0. But which race is different?
Tempted to test all 2 × 2 subtables, but they’re not independent

Black White
Pass 70 70
Fail 30 30

Black + White Asian
Pass 140 30
Fail 60 70

As many subtables as there are d.o.f.
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Fisher vs. Chi-Squared

• Use Fisher if your computer can do it
• Chi-Squared test: invalid of E ≤ 5 in any cell

• Combine cells?
• Continuity correction (maybe automatic)
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Binomial/Proportion Test

What fraction of people passed this test? H0: p = p0
xi ∈ {0, 1}, i = 1, 2, . . . ,n
y =

∑
i xi, p̂ = y/n

Recall binomial distribution: Pr[Y = k] =
(n

k
)
pk

0(1 − p0)
n−k

One-sided test: Pr[Y ≥ y] =
∑n

k=y
(n

k
)
pk

0(1 − p0)
n−k

Two-sided test (if y > p0n): Pr[Y ≥ y] + Pr[Y ≤ p0n − (y − p0n)]

Large samples: use Normal approximation w/ continuity correction
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Tests of Association

Requires paired data! n = m

• Pearson

rX,Y =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
√∑

i(yi − ȳ)2
=

ˆCov(X, Y)
σ̂(X)σ̂(Y) ∈ [−1, 1]

• interval scale
• approximately normally distributed.
• linear relationship between the two variables.
• minimal outliers
• homoscedasticity of the data.

• Spearman
• Simply Pearson, but on rank values
• Still needs interval scale
• No Normality assumption
• Monotonic (but non-linear) relationship
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Tests of Association

• Kendall rank correlation
• Interval or ordinal
• Form pairs (xi, yi) vs. (xj, yj)
• Define:

• nc = of pairs that “move together” (xj > xi & yj > yi)
• nd = of pairs that “move oppositely”
• n1 = of pairs where xi = xj
• n2 = of pairs whre yi = yj

• n̄ = n(n−1)
2 =

∑n−1
i=1 i

• Test statistic: τ =
nc−nd√

(n̄−n1)(n̄−n2)
∈ [−1, 1]

• Distribution of τ under H0 known for small n
• Approximately normal for large n

• Preferred to Spearman for small n or outliers
• Direct interpretation

• Cramer
• Ordinal or categorical
• Simply an adjustment to the χ2 statistic, ranging 0 to 1
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Part 1: Distributional Tests



Distributional Tests

Distributional tests determine how likely a sample is to have come
from a pre-specified distribution or how likely two samples are to
have been drawn from the same distribution.

The most well-known (and general) of these tests is the
Kolmogorov-Smirnov (KS) test.
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One-Sample Kolmogorov-Smirnov Test

• The one-sample KS test compares the cumulative distribution
of a sample of size n (Sn(x)) to a pre-specified cumulative
distribution function (F0(x)).

Sn(x) = k/n

• where k = the number of observations ≤ x.
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One-Sample Kolmogorov-Smirnov Test (Continued)

• The test is based entirely on the largest deviation between
F0(x) and Sn(x), denoted as Dn.

Dn = sup
x

|F0(x)− Sn(x)|

• Under the null hypothesis that the sample is drawn from F0(x),
limn→∞ Dn = 0.

• the null hypothesis is rejected if
√

nDn > Kα, where Kα is found
such that Pr(K ≤ Kα) = 1 − α and K is the Kolmogorov
distribution.
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One-Sample Kolmogorov-Smirnov Test Figure

Abbildung 1: *

The red line is F0(x), the blue line is Sn(x), and the black line is Dn

(Bscan, CC0, via Wikimedia Commons) 15



Example: One-Sample Kolmogorov-Smirnov Test

• Suppose that there are 5 different salsas where each
subsequent salsa is spicier (i.e., the salsa denoted by xn+1 is
spicier than the salsa denoted by xn).

• Further, suppose that the null hypothesis is that preferences
over salsa spiciness is uniformly distributed in the population
(i.e., F0(x) = x

5 ).

• In a sample of 10 subjects (n = 10), one subject prefers the least
spicy salsa, 5 subjects prefer the second most spicy salsa, and 4
subjects prefer the spiciest salsa.
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Example: One-Sample Kolmogorov-Smirnov Test (Continued)

• The difference between F0(x) and S10(x) is maximized at x = 3.
• F0(3) = 3

5 and S10(3) = 1
10 .

• Therefore, Dn = 3
5 − 1

10 = .5.
•
√

nDn =
√

10 · .5 = 1.581
• K.01 = .48895
• Because

√
nDn = 1.581 > .48895 = K.01, we can reject the null

hypothesis that the sample was drawn from a population
whose preferences for salsa spiciness was uniformly
distributed with 99% confidence.
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Alternatives to the One-Sample KS Test

• Another test, which is based on the quadratic difference
between the pre-specified distribution instead of the maximum
difference is the Anderson-Darling (AD) test (Anderson &
Darling, 1952).

• The AD test is a modification of the Cramer-von Mises (CVM) test
(1928).

• The test statistic is:

W2
n = n

∫ ∞

−∞
[Sn(x)− F0(x)]2ψ(F0(X))dF0(x)

• Where Ψ = [F0(X)(1 − F0(X))]−1
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Power Comparison for KS and AD tests

[b] Boyerinas
(2016)

[b] Boyerinas
(2016)
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Other Alternatives to the One-Sample KS Test

• Suppose that you don’t know the exact null distribution against
which you’d like to compare your sample, but you know that the
null distribution should be normally distributed.

• You have a few options: The Lillefors (LF) test (Lillefors, 1967)
and the Shapiro-Wilk (SW) test (Shapiro & Wilk, 1965).

• The SW test is the most powerful, and the LF test is the least
powerful for a broad range of normal distributions (Razali &
Wah, 2011).
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The Shapiro-Wilk Test

• The SW test uses the test statistic:

W =
(
∑n

i=1 aix(i))2∑n
i=1(xi − x̄)2

• x̄ is the sample mean
• and ai = (a1, . . . ,an) =

mTV−1

(mTV−1V−1m)1/2
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The Shapiro-Wilk Test (Continued)

• where mi = (m1, . . . ,mn)
T are the expected values of order

statistics of independent and identically distributed random
variables sampled from the standard normal distribution

• and V is the covariance matrix of those order statistics.
• m is computed using GLS, assuming that x is normally

distributed.

µ̂ =
m′V−1(m1′ − 1m′)V−1x

1′V−11m′V−1m − (1′V−1m)2

σ̂ =
1′V−1(1m′ − m1′)V−1x

1′V−11m′V−1m − (1′V−1m)2

• In practice, ai is algorithmically approximated using Royston’s
(1994) AS R94 for 3 ≤ n ≤ 5000.
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Power Comparison for KS, LF, AD, and SW Tests

Razali & Wah, 2011 Razali & Wah, 2011
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The Two-Sample Kolmogorov-Smirnov Test

• Calculating the two-sample Kolmogorov-Smirnov test is similar
to the one-sample counterpart except we replace F0(x) with
Sm(x), where the second sample has m members.

• Here, Dn,m = supx |Sn(x)− Sm(x)| for the two-sided test and
Dn,m = supx[Sn(x)− Sm(x)] for the one-sided test.

• Siegel (1988) uses a heuristic that if n or m are less than 40,
then n must equal m, but I have not found this in other papers.
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Two-Sample Kolmogorov-Smirnov Test Figure

Abbildung 2: *

The red line is Sm(x), the blue line is Sn(x), and the black line is Dn

(Bscan, CC0, via Wikimedia Commons)
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The Two-Sample Kolmogorov-Smirnov Test (Continued)

• The two-sample test has different critical values from the
one-sample test, but I don’t think there is an analytical solution
for small samples (I couldn’t find one if there is!)

• There are tables for small samples, and for larger samples, the
equation for the critical value is c(α)

√
n+m
n·m

• where c(α) =
√
−ln(α2 ) ·

1
2 (Knuth, 1998)

26



Alternatives to the Two-Sample KS Test

• Nearly all of the alternatives to the two-sample KS test are
location-scale tests which incorporate both the sample means
and standard deviations. The two most popular of this class are
the Cucconi (C) test (1968) and the Lepage (L) test (1971).

• Both the C and the L tests are FAR more powerful than the
Two-Sample KS Test in a simulation using several canonical
distributions (Marozzi, 2009).

• That same paper indicates that the C test is slightly more
powerful than the L test.
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Alternatives to the Two-Sample KS Test (Continued)

• This increase in power for location-scale tests is partially due
to their assumptions on the alternative hypothesis.

• In location-scale tests, H0 is that F ≡ G and Ha is that
G(y) = F(ay + b) such that a ̸= 1 and/or b ̸= 0.

• In the two-sample KS test, H0 is unchanged, but Ha does not
specify an alternative distribution.
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Power Comparison for KS, C, and L Tests

Marozzi, 2009 29


	Part 1: Distributional Tests
	The One-Sample Kolmogorov-Smirnov Test
	Alternatives to the One-Sample KS Test
	The Two-Sample Kolmogorov-Smirnov Test
	Alternatives to the Two-Sample KS Test


