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Siegel & Castellan’s Book

Siegel & Castellan (1988) Nonparametric Statistics for the Behavioral
Sciences, 2nd ed.



Siegel & Castellan’s Book

The back jacket of 2nd Edition:

What do your data look like?

1. Nominal/Categorical

+ Pass/fail, gender, race...
2. Ordinal

+ Type/ability
3. Interval

» Score on a test



Siegel & Castellan’s Book

The back jacket of 2nd Edition:

What do you want to test?

1. One Sample
+ Value of a statistic ( = 0)
« Fit of a sample to a distribution (X ~ N(0,1))
+ Properties of a sample (runs test, symmetry test)
2. Comparing Two or More Samples
2.1 Matched samples
- “Sample of differences” (i = 0)
2.2 Independent samples
+ Comparing statistics (uq = p2)
3. Measuring Association Between Two Samples
34 Various notions of “correlation”



Contingency Tables

Comparing samples with categorical data
(or ordinal, discarding order info)

Category | Control | Treatment
High A B
Low C D

Ho: A/C = B/D (category is independent of treatment)

Fisher’s Exact Test:

Prob of (A, B, C, D) under Ho: Hypergeometric dist'n

Calculate prob of all tables “more extreme” (less equal) than this
Exact test b/c sampling distribution is known for any n

Problem: calculation intensive! Only for small tables.



Contingency Tables

The Chi-Squared Test (for contingency tables):

OBSERVED | Male | Female
Pass 30 70
Fail 70 30

EXPECTED | Male | Female
Pass 50 50
Fail 50 50

(O —E)?/E | Male | Female
Pass 8 8
Fail 8 8

Test statistic T =5 @. As n — oo we have T ~ Xfr_1)(c_1)



Contingency Tables

Partitioning the D.O.F.

OBSERVED | Black | White | Asian
Pass 70 70 30
Fail 30 30 70

x? test rejects Ho. But which race is different?
Tempted to test all 2 x 2 subtables, but they're not independent

Black | White Black + White | Asian
Pass 70 70 Pass 140 30
Fail 30 30 Fail 60 70

As many subtables as there are d.o.f.



Fisher vs. Chi-Squared

+ Use Fisher if your computer can do it
+ Chi-Squared test: invalid of E < 5in any cell

+ Combine cells?
« Continuity correction (maybe automatic)



Binomial/Proportion Test

What fraction of people passed this test? Ho: p = po
x;€{0,1},i=1,2,....n

y=>iX,p=y/n

Recall binomial distribution: Pr[Y = k] = (})p&(1— po)"~*
One-sided test: Pr[Y > y] = > ¢ (7)p&(1— po)"*

Two-sided test (if y > pon): Pr[Y > y] + Pr[Y < pon — (y — pon)]

Large samples: use Normal approximation w/ continuity correction



Tests of Association

Requires paired data! n = m

* Pearson

oy = i R0 Y) _CovixY) o

Vi — X2V — )2 6(X)5(Y)

- interval scale
« approximately normally distributed.
« linear relationship between the two variables.
« minimal outliers
« homoscedasticity of the data.
» Spearman
« Simply Pearson, but on rank values
- Still needs interval scale
+ No Normality assumption
+ Monotonic (but non-linear) relationship
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Tests of Association

+ Kendall rank correlation

* Interval or ordinal

+ Form pairs (x;, y;) vs. (X;,})

- Define:
+ nc = of pairs that “move together” (x; > x; & y; > y;)
« ng = of pairs that “move oppositely”
+ n1 = of pairs where x; = X
+ ny = of pairs whre y; = y;
A= =

* Test statistic: 7 =

nc—ny

(A—ny)(i—n,) €[-1.1]
« Distribution of 7 under Ho, known for small n
« Approximately normal for large n
« Preferred to Spearman for small n or outliers
- Direct interpretation
« Cramer
« Ordinal or categorical
+ Simply an adjustment to the y* statistic, ranging o to 1

"



Part 1: Distributional Tests




Distributional Tests

Distributional tests determine how likely a sample is to have come
from a pre-specified distribution or how likely two samples are to
have been drawn from the same distribution.

The most well-known (and general) of these tests is the
Kolmogorov-Smirnov (KS) test.
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One-Sample Kolmogorov-Smirnov Test

+ The one-sample KS test compares the cumulative distribution

of a sample of size n (S,(x)) to a pre-specified cumulative
distribution function (Fy(x)).

Sn(x) = k/n

« where k = the number of observations < x.
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One-Sample Kolmogorov-Smirnov Test (Continued)

* The test is based entirely on the largest deviation between
Fo(x) and Sp(x), denoted as Dy,.

Dy = sup |Fo(X) — Sn(X)|
X

+ Under the null hypothesis that the sample is drawn from Fy(x),
limp_soo Dy = 0.

« the null hypothesis is rejected if \/nD, > K,, where K, is found
such that Pr(K < K,) =1— « and K is the Kolmogorov
distribution.
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One-Sample Kolmogorov-Smirnov Test Figure

Cumulative Probability

Abbildung 1: *

The red line is Fo(x), the blue line is S,(x), and the black line is D,
(Bscan, CCo, via Wikimedia Commons) 15



Example: One-Sample Kolmogorov-Smirnov Test

« Suppose that there are 5 different salsas where each
subsequent salsa is spicier (i.e., the salsa denoted by x,, is
spicier than the salsa denoted by xj,).

« Further, suppose that the null hypothesis is that preferences
over salsa spiciness is uniformly distributed in the population
(i.e., Fo(x) = %).

+ In a sample of 10 subjects (n = 10), one subject prefers the least
spicy salsa, 5 subjects prefer the second most spicy salsa, and 4
subjects prefer the spiciest salsa.



Example: One-Sample Kolmogorov-Smirnov Test (Continued)

« The difference between Fy(x) and S;o(x) is maximized at x = 3.
° Fo(3) = % and 510(3) = %.

 Therefore, D, = g — & = 5.

« v/NDp, = /10 - .5 = 1.581

* Ko = .48895

 Because /nD, = 1.581 > .48895 = K o, We can reject the null
hypothesis that the sample was drawn from a population
whose preferences for salsa spiciness was uniformly
distributed with 99% confidence.



Alternatives to the One-Sample KS Test

« Another test, which is based on the quadratic difference
between the pre-specified distribution instead of the maximum
difference is the Anderson-Darling (AD) test (Anderson &
Darling, 1952).

+ The AD test is a modification of the Cramer-von Mises (CVM) test
(1928).

+ The test statistic is:

oo

W2 =n / [50(X) — Fo(X)24(Fo(X))dFo(x)

+ Where W = [Fo(X)(1 — Fo(X))] "



Power Comparison for KS and AD test:

Figure 7. The CNA figure quick part

Figure 5. Simulated statistical power for normal distribution using AD (left) and KS Simulated statistical power for exponential distribution with pe=1 using AD (left) and KS
(right) tests (right) tests
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1

(right) tests
ML | Li

[b] o oz oo oo og
(2016)

Sample Size

2

Sample Size
—
Sample Sze

Sampl Size

19



Other Alternatives to the One-Sample KS Test

+ Suppose that you don’t know the exact null distribution against
which you'd like to compare your sample, but you know that the
null distribution should be normally distributed.

* You have a few options: The Lillefors (LF) test (Lillefors, 1967)
and the Shapiro-Wilk (SW) test (Shapiro & Wilk, 1965).

» The SW test is the most powerful, and the LF test is the least
powerful for a broad range of normal distributions (Razali &
Wah, 2011).
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The Shapiro-Wilk Test

» The SW test uses the test statistic:

W— (ZL aixgi)?
ZF:‘](XI' _)_()2
* X is the sample mean
Ty—1
- anda; = (a,...,a,) = m
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The Shapiro-Wilk Test (Continued)

« where m; = (m,,...,m,)" are the expected values of order
statistics of independent and identically distributed random
variables sampled from the standard normal distribution

« and V is the covariance matrix of those order statistics.

+ m is computed using GLS, assuming that x is normally

distributed.

m'vV=(m1 —am’)V="x
TV-11m'V—m — (YV—m)?

1YV (am" — m1)Vx
1TV=""1m’V—"'m — (1V—"m)?

=

Q>
I

+ In practice, a; is algorithmically approximated using Royston’s
(1994) AS Ry for 3 < n < 5000.
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Power Comparison for KS, LF, AD, and SW Test

Simulated Power
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Figure 2(a): Comparison of Power for Different Normality Tests against Gamma (4.5) (@ = 0.05)

Razali & Wah, 2011

Figure 2(b): Comparison of Power for Different Normality Tests against Gamma (1,5) (@ = 0.0¢

Razali & Wah, 2011
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The Two-Sample Kolmogorov-Smirnov Test

» Calculating the two-sample Kolmogorov-Smirnov test is similar
to the one-sample counterpart except we replace Fo(x) with
Sm(x), where the second sample has m members.

* Here, Dy m = supy |Sn(X) — Sm(x)| for the two-sided test and
Dn.m = sup,[Sn(X) — Sm(x)] for the one-sided test.

- Siegel (1988) uses a heuristic that if n or m are less than 40,
then n must equal m, but | have not found this in other papers.
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Two-Sample Kolmogorov-Smirnov Test Figure

Cumulative Probability
o o o
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Abbildung 2: *

The red line is Sy (x), the blue line is S,(x), and the black line is D,

(Bscan, CCo, via Wikimedia Commons) ®



The Two-Sample Kolmogorov-Smirnov Test (Continued)

+ The two-sample test has different critical values from the
one-sample test, but | don’t think there is an analytical solution
for small samples (I couldn’t find one if there is!)

 There are tables for small samples, and for larger samples, the
equation for the critical value is c(«)/ T

- where c(a) = /—In(2) - 3 (Knuth, 1998)
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Alternatives to the Two-Sample KS Test

+ Nearly all of the alternatives to the two-sample KS test are
location-scale tests which incorporate both the sample means
and standard deviations. The two most popular of this class are
the Cucconi (C) test (1968) and the Lepage (L) test (1971).

- Both the C and the L tests are FAR more powerful than the
Two-Sample KS Test in a simulation using several canonical
distributions (Marozzi, 2009).

« That same paper indicates that the C test is slightly more
powerful than the L test.
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Alternatives to the Two-Sample KS Test (Continued)

« This increase in power for location-scale tests is partially due
to their assumptions on the alternative hypothesis.

+ In location-scale tests, H, is that F = G and H, is that
G(y) = F(ay + b) such that a # 1and/or b # o.

+ In the two-sample KS test, Ho is unchanged, but H, does not
specify an alternative distribution.
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Power Comparison for KS, C, and L Tests

Table 5. Power estimates with & — 0.05 and (a1, ) = (30, 30).

Normal
= 0 0 05 1 05 0s 05
a1/oy 1 13 T i3 1 175 2.
c 0.050 0171 0.406 0.870 0355 0713 0.966
L 0.050 0.148 0.388 0.864 0357 0.642 0926
PG1 0.044 0.166 0.405 0878 0358 0713 0953
PG2 0.051 0172 0.408 0871 0357 0715 0.966
PG3 0.048 0.180 0417 0.880 0360 0.752 0982
PG4 0.050 0.184 0413 0870 0351 0752 0.082
XS 0.035 0.049 284 0.799 0320 328 0.493
cvM 0.050 0.079 0410 0.909 0451 0518 0.846

Uniform
- 0 0 05 1 0s 05
a1/o 1 13 13 13 175 25
c 0.050 0358 0476 03818 0.895 0.99
i 0.050 0258 0425 0819 0.790 0978
PG1 0.050 0421 0.554 0.887 0.962 1.000
G2 0.050 0360 0478 0.820 0.896 0.996
PG3 0.046 0.506 0532 0363 0.958 0.999
PG4 0.048 0512 0.484 0.775 0.956 1.000
XS 0.034 0.059 0255 0729 0424 0721
cvM 0.052 0.097 0375 0.890 0.609 0.967

Bimodal
= 0 0 0| 22 075 0.75 0.75
a1/oy 1 13 13 13 1 14 2
c 0.048 0304 0.550 0932 0246 0.543 0.968
L 0.049 0249 0523 0931 0253 0478 0915
PG1 0.047 0337 0.593 0967 0245 0.593 0985
G2 0.049 0306 0.553 0932 0247 0.546 0.968
PG3 0.047 0336 0.597 0959 0277 0.591 0.985
PG4 0.048 0341 0.541 0924 0232 0570 0.984
XS 0.033 0.064 0305 0.894 0188 0.260 0.508
VM 0.051 0.091 0.514 0976 0293 0331 0.740

Marozzi, 2009 29
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