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Permutation Tests



Example: The Permutation Test

How it works:

https://www.jwilber.me/permutationtest/
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https://www.jwilber.me/permutationtest/


Permutation Test

• Fisher (1935), Pitman (1937,1938)
• Resampling method where we use our data in different orders

(without replacement) to test for differences between
populations

• Example was for sample means
• Could do exact same for sample medians, modes, variances...

• Any statistic of a sample!
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Assumptions & Properties

• Only assumption: observations are exchangeable
• Joint dist’n: F(Y1, Y2, Y3) = F(Y3, Y1, Y2)

• Same marginals, “symmetric” correlation
• True if treatments are randomly assigned!

• Permutation test is always valid
• The issues arepower and exactness

• e.g., outliers can affect resampled distributions

4



Two-Sample Framework

Chung and Romano (2013)

• Sample 1: X1, . . . , Xm i.i.d. from P
• Sample 2: Y1, . . . , Yn i.i.d. from Q
• Let Z = (Z1, . . . , ZN) = (X1, . . . , Xm, Y1, . . . , Yn), N = m+ n
• Model/hypothesis: (P,Q) ∈ P
• Important example: P̄ = {(P,Q) : P = Q}
• Permutations: π : {1, . . . ,N} → {1, . . . ,N}, π ∈ GN

• Let Zπ = (Zπ(1), . . . , Zπ(N))
• Test statistic: Tm,n(Z) (eg, Tm,n(Z) = 1

m
∑m

i=1 Xi − 1
n
∑n

i=1 Yi)
• Tm,n(Zπ) calculated after permuting via π

• Order all Tm,n(Zπ): T(1)m,n ≤ T(2)m,n ≤ · · · ≤ T(N!)m,n
• Given α, threshold ranking is k∗ = (1 − α)N!
• Permutation test function:

ϕ(Z) =
{

1 Tm,n(Z) > T(k
∗)

m,n

0 Tm,n(Z) < T(k
∗)
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Two-Sample Framework

• If (P,Q) ∈ P̄ = {(P,Q) : P = Q} then the test is exact:

EP,Q[ϕ(X1, . . . , Xm, Y1, . . . , Yn)] = α

• But what if we assume (P,Q) ∈ P0 ⊃ P̄?
• Permuted data no longer has the same distribution as original

• Test may not even be asymptotically exact
• Example: P0 = {(P,Q) : µ(P) = µ(Q)}, Tm,n(Z) =

√
N(X̄m − Ȳn)

• Romano (1990): Rejection rate higher than α even with N→ ∞
unless

1. m/n→ 1 as N→ ∞, or
2. variances of P and Q are equal

• Unbalanced samples: Rejecting the null might actually be due
to different variances, not different means
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Chung and Romano (2013) Correction

Chung and Romano (2013) offer a correction:

Sm,n(Z) =
Tm,n(Z)
Vm,n

where
Vm,n(Z) =

√
N
m σ̂2

m(X1, . . . , Xm) +
N
n σ̂

2
n(Y1, . . . , Yn)

For testing difference in means:

Sm,n =

√
N(X̄m − Ȳn)
N
mS2

X +
N
nS2

Y

where

S2
X =

1
m− 1

m∑
i=1

(Xi − X̄m)2

Why? Distribution of Tm,n(Zπ) is asymptotically normal with mean 0 7



Chung and Romano (2013)

Chung and Romano (2013)

• Different adjustments for different statistics
• Based on variance of the large-sample distribution, which is

approximately normal
• Always divide Tm,n by an estimator of that asymptotic variance
• Paper gives guidance for testing medians
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Randomization Tests

• You run ALL possible combinations of the data, rather than just
a random subset

• Permutation test is a subset of randomization test
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Young (2019)

• Runs permutation tests for 53 different published AEA papers
• Finds 13-22% fewer significant results than the methods used in

the papers
• This increases to 33-49% for multiple effects
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Young (2019)

• Runs permutation tests on regression coefficients of the
previous paper

• Uses the Wald statistic and t-statistics
• Also runs bootstrap and jackknifes for all of these papers
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Young (2019)

• Key Takeaways: the design of experiments is really important
for whether the p-values of resampling vs. statistical testing are
similar

• Lots of treatments and interactions allows for more sensitivity
to outliers and creates more volatility causing these methods
to vary greatly
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Bootstrapping



Bootstrapping - Efrom (1979)

Goal: estimate a parameter of a distribution. e.g. median

• Resample your collected n-sized data with replacement to
produce M samples of n-sized data

• Each data point in your original sample has 1
n chance of being

chosen
• Plot the distribution of observed parameter values.
• Estimate: mean of bootstrap dist’n
• Standard error: std. deviation of boostrap dist’n
• Confidence interval: 5th to 95th quantile
• Completely non-parametric
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Bootstrapping Assumptions

• For the standard bootstrap method, observations are assumed
to be independent

• Block bootstrapping was developed to deal with correlated data

• Sample data needs to resemble the population its drawn from
and sufficiently large

• Do not need to know the real distribution
• Sufficiently large: enough data to get to around 200 samples,

but it’s better to run as many bootstrap samples until your
statistics converge
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Bootstrapping Consistency

• As long as the bootstrap variance converges, we have
convergence of the entire distribution

• It seems like the only case where it won’t is if the variance is
infinite
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Using Bootstrapped Estimates

• Bootstrapping itself is not a statistical test, but rather just
estimating different parts of a distribution

• You can then use these estimates in a hypothesis test

16



Bootstrapping Mean

• Compute sample mean. Is this truly the population mean?
• Step 1: Bootstrap some samples of the data
• Step 2: Find the mean of each of these samples
• Step 3: Plot these from smallest to largest to get a distribution

of the bootstrapped mean
• Step 4: Find the confidence interval of these means and that’s

your estimate
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Bootstrapping Standard Errors

• Sample standard error may not be enough to give you insight to
a statistical test - Monte Carlo Simulation

• Step 1: Bootstrap some samples of data
• Step 2: Calculate the statistic of interest that you want standard

errors for i.e. mean
• Step 3: Calculate the standard deviation of each of these

statistics
• Step 4: As the number of bootstrapped samples grows, this will

become the bootstrapped standard error
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Standard Deviation of Bootstrapped Statistics Calculation

σ̂B = (
∑B

b=1[θ̂
∗(b)−θ̂∗(·)]
B−1 )1/2 where θ̂∗(·) =

∑B
b=1 θ̂

∗(b)
B

As B → ∞, σ̂B → σ
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Bootstrapping Difference of Two Sample Means

• You have two samples: X and Y, with n and m observations. You
want to know if the means are the same.

• Step 1: Compute t = x̄−ȳ√
σ2
x
n +

σ2
y
m

• Step 2: Compute x’ and y’, where x′i = xi − x̄ + z̄ and
y′i = yi − ȳ + z̄ where z̄ is the mean of the joint sample

• Step 3: Draw bootstrapped sample of x’ and y’ and use those to
compute test statistic

• Step 4: p-value =
∑B

i=1 I[ti>t]
B

• Basically a permutation test, but sampling with replacement
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When to Use?

• When the sample size is too small for clear analysis
• When you do not have a clear understanding of the underlying

population distribution
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Example

Original Data: 13 8 1 11 7 4 15 12

Mean: 8.875, std err: 1.6844
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Example

Original Data: 13 8 1 11 7 4 15 12
Bootstrap 1: 11 11 15 15 8 11 11 4
Bootstrap 2: 4 15 1 4 4 8 13 11
Bootstrap 3: 12 1 7 8 15 1 7 4
Bootstrap 4: 12 12 7 8 8 1 15 1
Bootstrap 5: 15 8 12 1 8 1 7 11

Means: 10.75, 7.5, 6.875, 8, 7.875 SE: 1.4911
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Code

• Stata: bootstrap, reps(N): X Y Z
• Matlab: bootstrp(N,@stat,X,Y)
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Jackknifing

• Earlier resampling method than bootstrapping, where we no
longer use the whole sample for resampling

• Rather, we remove one datapoint and calculate whatever
statistic we want using the n-1 observations

• We do this for all possible samples of n-1, so we find a statistic
removing every possible observation once
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Jackknifing Assumptions

• Normally distributed data
• Small sample sizes may not be normal

• Our resampled values are necessarily correlated
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Bootstrap vs. Jackknife

• Jackknife gives a more conservative estimate of standard error,
but usually it’s not as accurate as the bootstrap

• Jackknife gives same results every time, whereas bootstraps
can change
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