ExpEcon Methods: Fay & Proschan (2010) Perspectives for Hypothesis Testing

ECON 8877 P.J. Healy First version thanks to Sungmin Park

Updated 2023-11-17

Two samples: $Y^{o} = (Y_{1}^{o}, ..., Y_{n}^{o})$ and $Y^{1} = (Y_{1}^{1}, ..., Y_{m}^{1})$. Which is "bigger"? Given data $X = (Y^{o}, Y^{1})$ and significance level α , reject H if...

Student's t-test: reject if

$$\left|\frac{\hat{\mu}_{1}-\hat{\mu}_{0}}{\hat{\sigma}\sqrt{\frac{1}{n_{1}}+\frac{1}{n_{0}}}}\right| > t_{n-2}^{-1}(1-\alpha/2)$$

where $\hat{\sigma}^2$ is the pooled sample variance, $n = n_1 + n_0$, and $t_d(\cdot)$ is the CDF of Student t distribution with degree of freedom d.

• Parametric. Test of means? Assumes normality?

Wilcoxon/Mann-Whitney rank-sum test: reject if

$$\sum_{i=1}^{n} \sum_{j=1}^{m} S(Y_{i}^{0}, Y_{j}^{1}) < U_{n_{0}, n_{1}}^{-1}(1-\alpha/2) \quad \text{where } S(x, y) = \begin{cases} 1, & \text{if } x > y, \\ \frac{1}{2}, & \text{if } x = y, \\ 0, & \text{if } x < y. \end{cases}$$

Non-parametric. Test of medians??? Assumes what???

Fay and Proschan [2010]

Question	 When is it appropriate to use Wilcoxon-Mann-Whitney (WMW) test or t-test to compare two samples? When is it valid & consistent? When is it optimal?
Answer	They are appropriate for different pairs

of null and alternative hypotheses ("perspectives")

Illustration

Illustration: 9th Grade Math Ability of Boys & Girls

Abbildung 1: Histograms of math ability

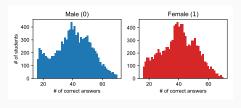


Tabelle 1: Summary statistics of math ability

		Sample (j)	
Statistic		Male (o)	Female (1)
Obs.	nj	10,887	10,557
Mean	$\hat{\mu}_{i}$	40.17	40.20
Median	,	40.44	40.36
Variance	$\hat{\sigma}_j^2$	152.00	134.74

Source: High School Longitudinal Study (HSLS) of 2009

- Assuming each obs is independent, should we use *t*-test? WMW test? To test what?
- Fay and Proschan (2010) say that the answer depends on your perspective(s).
- A perspective is a pair of null (*H*) and alternative (*K*) hypotheses.

Perspective (Shift in normal distribution)

Let Y denote a random variable. The **shift-in-normal perspective** is $H : \mathbb{E}_F(Y) = \mathbb{E}_G(Y)$ versus $K : \mathbb{E}_F(Y) \neq \mathbb{E}_G(Y)$, where F and G are two normal distributions with the same variance.

• **Student's** *t*-**test** (decision rule): Given data *X* and significance level *α*, reject *H* if

$$\left|\frac{\hat{\mu}_{1}-\hat{\mu}_{0}}{\hat{\sigma}\sqrt{\frac{1}{n_{1}}+\frac{1}{n_{0}}}}\right| > t_{n-2}^{-1}(1-\alpha/2), \text{ where } \hat{\sigma}^{2} \text{ is the pooled sample variance, } n = n_{1} + n_{0}, \text{ and } t_{d}(\cdot) \text{ is the CDF of Student } t \text{ distribution } the CDF of Student t distribution } the CDF of freedom d.$$

Under the above, Student's *t*-test is not only valid (α works as intended) but also uniformly most powerful (UMP) unbiased.
 It's also asymptotically most powerful (AMP).

Perspective (Behrens-Fisher) The Behrens-Fisher perspective is

 $H : \mathbb{E}_{F}(Y) = \mathbb{E}_{G}(Y)$ versus $K : \mathbb{E}_{F}(Y) \neq \mathbb{E}_{G}(Y)$,

where F and G are two normal distributions with possibly different variances.

- Under this relaxed perspective, Student's *t*-test is no longer valid.
- Instead, Welch's t-test is asymptotically valid and asymptotically most powerful:

$$\frac{\hat{\mu}_{1} - \hat{\mu}_{0}}{\sqrt{\frac{\hat{\sigma}_{1}^{2}}{n_{1}} + \frac{\hat{\sigma}_{0}^{2}}{n_{0}}}} > t_{d_{W}}^{-1}(1 - \alpha/2), \qquad \text{where } d_{W} = \frac{\left(\frac{\hat{\sigma}_{1}^{2}}{n_{1}} + \frac{\hat{\sigma}_{0}^{2}}{n_{0}}\right)^{2}}{\frac{(\hat{\sigma}_{1}^{2}/n_{1})^{2}}{n_{1} - 1} + \frac{(\hat{\sigma}_{0}^{2}/n_{0})^{2}}{n_{0} - 1}}$$

 \Rightarrow Each statistical test can have multiple valid perspectives. The authors call this idea the Multiple perspective decision rules (MPDR) framework

Perspective (Distributions equal or not)

H: F = G versus $K: F \neq G$,

where F and G are any two distributions.

- Under this perspective, the *t*-tests are asymptotically valid and the WMW test is valid. But neither are consistent! (power approaches 1 as $n \to \infty$)
- The WMW test (or Mann-Whitney U test or Wilcoxon rank-sum test) is to reject if

$$\sum_{i=1}^{n} \sum_{j=1}^{m} S(Y_{i}^{o}, Y_{j}^{1}) < U_{n_{o}, n_{1}}^{-1}(1-\alpha/2) \quad \text{where } S(x, y) = \begin{cases} 1, & \text{if } x > y, \\ \frac{1}{2}, & \text{if } x = y, \\ 0, & \text{if } x < y. \end{cases}$$

• Neither t-tests nor WMW test reject the null hypothesis for the 9th-graders' data

Philosophy behind the MPDR framework

- The Multiple perspective decision rules (MPDR) framework has practical value because it suits the nature of scientific theories.
- A scientific theory is often a vague idea or a qualitative result that can be described by more than one statistical model.
 - In biological sciences, for example, the Physicians' Health Study (PHS) aims to test a theory that says prolonged low-dose aspirin decreases cardiovascular mortality.
 - Researchers testing this theory assume a particular statistical model to formulate the null hypothesis, but that model is just one way of representing the data's randomness.
- So we should consider the set of possible statistical assumptions behind a scientific theory to assess which statistical tests (decision rules) are the most useful.

Framework

Terminology

Data	$X \in \mathcal{X}$, where \mathcal{X} is the sample space. Write X_n to denote number of observations n	
"Probability model"	A distribution $P \in \mathcal{P}$ on \mathcal{X} , where $\mathcal{P} = \{P_{\theta} \theta \in \Theta\}$ with a given parameter space Θ	
Null hypothesis	$H = \{P_{\theta} \theta \in \Theta_{H}\}$	
Alternative hypothesis	$K = \{P_{\theta} \theta \in \Theta_K\}$	$(\Theta_H \text{ and } \Theta_K \text{ are disjoint } Subsets of \Theta)$
"Assumption"	$A=(\mathcal{X},H,K)$	
Decision rule (test)	$\delta(X, \alpha) \in \{ O(not reject), 1(reject) \}, for all data X \in \mathcal{X} and significance level \alpha \in (O, O.5)$	

Terminology about decision rule (test) δ

"Power"
$$Pow[\delta(X_n, \alpha); \theta] = \Pr[\delta(X_n, \alpha) = 1; \theta]$$
 (Probability of rejecting)

"Size"
$$\alpha_n^* = \sup_{\theta \in \Theta_H} Pow[\delta(X_n, \alpha); \theta].$$
 (Max. prob. of rejecting given

null)

ValidityA test δ is valid if $\alpha_n^* \leq \alpha$ for all n.
A test δ is uniformly asymptotically valid (UAV) if
 $\limsup_{n \to \infty} \alpha_n^* \leq \alpha$.
A test δ is pointwise asymptotically valid (PAV) if,
for all $\theta \in \Theta_H$,
 $\limsup_{n \to \infty} Pow[\delta(X_n, \alpha); \theta] \leq \alpha$.

p-value $p(X) = \inf \{ \alpha' : \delta(X, \alpha') = 1 \}$ (the strictest α' that rejects)

Terminology about optimal decision rules

Bias A test δ is unbiased if, for all $\theta \in \Theta_{K}$, power \geq size.

Consistency A test δ is consistent if, for all $\theta \in \Theta_K$, the power approaches 1 as $n \to \infty$.

Optimality A test δ is uniformly most powerful (UMP) if, $\forall \delta'$ and $\forall \theta \in \Theta_{\kappa}$,

 $\mathsf{Pow}[\delta(\mathsf{X},\alpha);\theta] \ge \mathsf{Pow}[\delta'(\mathsf{X},\alpha);\theta].$

A test is UMP unbiased if it is UMP among all unbiased tests.

A test is asymptotically most powerful (AMP) if, as θ_n approaches θ_0 ,

 $\limsup_{n\to\infty} Pow[\delta(X_n,\alpha);\theta_n] - Pow[\delta'(X_n,\alpha);\theta_n] \ge 0$ as $\theta_n \in \Theta_K$ approaches $\theta_0 \in \Theta_H$.

11

Perspectives

Perspective (Difference in means; same null distribution)

$$H = \{F, G : F = G\}$$

$$K = \{F, G : \mathbb{E}_F(Y) \neq \mathbb{E}_G(Y)\}$$

- Weird ("focusing") perspective because it leaves out many pairs of distributions
- Still, the alternative hypotheses K is a pretty large set
- The WMW test is valid but inconsistent
- The paper doesn't mention how the t-tests fare, but they are likely inconsistent, too.
- So, don't take this perspective.

Perspective (Stochastic ordering)

Let Ψ_C denote the set of continuous distributions. Write $F <_{st} G$ if G has first-order stochastic dominance over F (i.e. $F(y) \ge G(y)$ for all y and F(y) > G(y) for some y).

 $H = \{F, G : F = G; F \in \Psi_C\}$

$${\it K} = \{{\it F}, {\it G}: {\it F} <_{\sf st} {\it G} ext{ or } {\it G} <_{\sf st} {\it F}; {\it F}, {\it G} \in {\it \Psi}_{\sf C}\}$$

- Under this perspective, the WMW test is valid and consistent (Mann and Whitney, 1947). It's also unbiased (Lehmann, 1951)
- The t-tests (both Student's and Welch's) are asymptotically valid and consistent
- So, both the WMW test and t-tests work under this perspective!

Perspective (Mann-Whitney Functional) Let $Y_F \sim F$ and $Y_G \sim G$. Define the Mann-Whitney functional ϕ as $\phi(F,G) = \Pr[Y_F > Y_G] + \frac{1}{2} \Pr[Y_F = Y_G]$ The Mann-Whitney functional perspective is $H = \{F, G : F = G; F \in \Psi_C\},$ $K = \{F, G : \phi(F, G) \neq \frac{1}{2}; F, G \in \Psi_C\}.$

- A natural perspective by construction. Especially appropriate for ordinal data
- The WMW test is valid and consistent, whereas the t-tests are inconsistent
- So don't use t-tests under this perspective. Use the WMW test

Perspective (Distribution equal or not)

```
H = \{F, G : F = G\}K = \{F, G : F \neq G\}
```

- The WMW test is valid but inconsistent. The t-tests are asymptotically valid but iconsistent.
- If you take this perspective, find a different test like Kolmogorov-Smirnov

Perspectives 5–8: Shifts & scale in distributions

Let Ψ_L , Ψ_C , and Ψ_{LG} denote the sets of logistic, continuous, and log-gamma distributions. Let Ψ_{D_k} denote the set of discrete distributions with sample space $\{1, 2, \ldots, k\}$

Perspective (Shift in logistic distribution)	Perspective (Shift in continuous distribution)
$H = \{F, G : F = G; F \in \Psi_L\}$	$H = \{F, G: F = G; F \in \Psi_C\}$

 $K = \{F, G: G(y) = F(y + \Delta); \Delta \neq 0; F \in \Psi_L \not k = \{F, G: G(y) = F(y + \Delta); \Delta \neq 0; F \in \Psi_C \$

Perspective (Shift in log-gamma distribution)

Perspective (Proportional odds)

$$\begin{split} H &= \{F, G : F = G; F \in \Psi_{LG}\} \\ K &= \{F, G : G(y) = F(y + \Delta); \Delta \neq 0; F \in \Psi_{L\emptyset}\} \\ K &= \{F, G : \frac{F(y)}{1 - F(y)} = \frac{G(y)}{1 - G(y)}\Delta; \Delta \neq 1; F \in \Psi_{L\emptyset}\} \end{split}$$

• The WMW test is valid and consistent. The t-tests are asymptotically

Perspective 11: Differences in means assuming normality with same variance

Perspective (Shift in normal distribution)

$$H = \{F, G : F = G; F \in \Psi_N\}$$

$$K = \{F, G : G(y) = F(y + \Delta); \Delta \neq 0; F \in \Psi_N\}$$

where Ψ_N is the set of normal distributions.

- The first perspective you've seen at the beginning.
- The WMW test and the Student's t-test are valid and consistent. The Student's t-test is optimal, because it is UMP unbiased and asymptotically most powerful. The Welch's t-test is asymptotically valid and consistent.

Perspective 14: Differences in means assuming normality with different variance

Perspective (Behrens-Fisher: Diference in normal means, different variances)

$$H = \{F, G : \mathbb{E}_F(Y) = \mathbb{E}_G(Y); F, G \in \Psi_N\}$$
$$K = \{F, G : \mathbb{E}_F(Y) \neq \mathbb{E}_G(Y); F, G \in \Psi_N\}$$

where Ψ_N is the set of normal distributions.

- Both the WMW test and the Student's t-test are invalid and inconsistent
- Welch's t-test is uniformly asymptotically valid and consistent
- So, use Welch's t-test if you take this perspective... but better ones exist:

Perspectives 12–13: Differences in means without assuming normality

Perspective (Finite variances)

$$\begin{split} H &= \{F, G: F = G; F \in \Psi_{fv}\} \\ K &= \{F, G: \mathbb{E}_F(Y) \neq \mathbb{E}_G(Y); F, G \in \Psi_{fv}\} \end{split}$$

where Ψ_{fv} is the set of distributions with finite variances.

- The WMW test is valid but inconsistent
- The t-tests are pointwise asymptotically valid and consistent

Perspective (Finite 4th moments)

 $H = \{F, G : F = G; F \in \Psi_{B_{\epsilon}}\}$

 $\textit{K} = \{\textit{F},\textit{G}: \mathbb{E}_{\textit{F}}(\textit{Y}) \neq \mathbb{E}_{\textit{G}}(\textit{Y}); \textit{F},\textit{G} \in \Psi_{\textit{B}_{e}}\}$

where $\Psi_{B_{\epsilon}}$ is the set of distributions with $Var(Y) \ge \epsilon > 0$ and $\mathbb{E}(Y^4) \le B < \infty$.

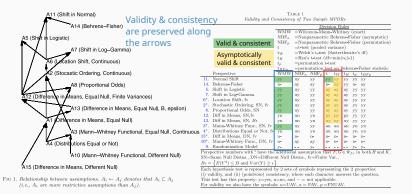
- The WMW test is valid but inconsistent
- The t-tests are uniformly asymptotically valid and consistent
- \Rightarrow t-tests are clearly preferable in large samples

Perspective (Difference in means; any distributions)

$$H = \{F, G : \mathbb{E}_F(Y) = \mathbb{E}_G(Y)\}$$
$$K = \{F, G : \mathbb{E}_F(Y) \neq \mathbb{E}_G(Y)\}$$

- There exists no valid decision rule with some power greater than its significant level
- If you take this loose perspective, nothing works!
- Your perspective needs more structure

If you want to see the full picture...



Discussion

So... WMW test or t-test?

- It's important to identify your perspective first! Be precise!
- *t*-test is usually only asymptotically valid...
- In the math ability example, maybe use Welch's t-test since $n,m \ge 10,000$
- But depending on the application, the WMW test may be more appropriate
 - For example, if the variable is ordinal. Also, the authors argue that the WMW test is often more powerful than the t-tests in small samples
- In any case, the decision should not depend on whether the data look normally distributed or not, because there are valid perspectives without the normality assumption
- But, stay tuned for the permutation test!

Literatur

Michael P. Fay and Michael A. Proschan. Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. *Statistics Surveys*, 4:1–39, 2010.

The End!

