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Introduction

A principal wants to learn something about the preferences of an
agent, but not the whole ordering
(Why not? complexity, costs, privacy, etc.)

Example: NYC school match: only list favorite 12 schools

Which properties of preferences can be elicited in an incentive
compatible way?
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Leading Example:

X = {x, y, z}. Let xyz denote x≻y≻z, e.g. Assume strict prefs.

All orderings:

{xyz, xzy, zxy, zyx, yzx, yxz}

A simple elicitation mechanism:
Pick from {x, y}

Paid what you choose

This type space is elicitable. Truth FOSD’s lie.
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{xyz, xzy, zxy, zyx, yzx, yxz}

Mechanism:
Pick from {x, y} and from {x, z}

We randomly pick one of your answers and pay it to you

This type space is elicitable. Truth FOSD’s lie.
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{{xyz, xzy}︸ ︷︷ ︸
pick x,x

, {zxy}︸ ︷︷ ︸
pick x,z

, {zyx, yzx}︸ ︷︷ ︸
pick y,z

, {yxz}︸ ︷︷ ︸
pick y,x

}

Mechanism:
Pick from {x, y} and from {x, z}

We randomly pick one of your answers and pay it to you

This type space is elicitable. Truth FOSD’s lie.
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{{xyz, yxz}︸ ︷︷ ︸
dislike z

, {xzy, zxy}︸ ︷︷ ︸
dislike y

, {yzx, zyx}︸ ︷︷ ︸
dislike x

}

There are no menus that generate this type space.
Generated by top two elements of X

But it is elicitable!

Mechanism:
Announce least favorite,

get paid 50-50 lottery over the other two options.

5



{{xyz, yxz}︸ ︷︷ ︸
dislike z

, {xzy, zxy}︸ ︷︷ ︸
dislike y

, {yzx, zyx}︸ ︷︷ ︸
dislike x

}

There are no menus that generate this type space.
Generated by top two elements of X

But it is elicitable!

Mechanism:
Announce least favorite,

get paid 50-50 lottery over the other two options.

5



{{xyz, yxz}︸ ︷︷ ︸
dislike z

, {xzy, zxy}︸ ︷︷ ︸
dislike y

, {yzx, zyx}︸ ︷︷ ︸
dislike x

}

There are no menus that generate this type space.
Generated by top two elements of X

But it is elicitable!

Mechanism:
Announce least favorite,

get paid 50-50 lottery over the other two options.

5



{{xyz, yxz}︸ ︷︷ ︸
dislike z

, {xzy, zxy}︸ ︷︷ ︸
dislike y

, {yzx, zyx}︸ ︷︷ ︸
dislike x

}

There are no menus that generate this type space.
Generated by top two elements of X

But it is elicitable!

Mechanism:
Announce least favorite,

get paid 50-50 lottery over the other two options.

5



Results

Preview of Main Results:
Generated by top k elements ⇒ elicitable ⇒ “convex”

yxz

xyz

xzyzxy

zyx

yzx

We get complete characterization when:

1. Restrict to neutral type spaces, or
2. Pay in acts, not lotteries (no objective probabilities)
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Some related literature

• Osband (1985), Lambert-Pennock-Shoham (2008), Lambert
(2018): Scoring rules to elicit properties of beliefs

• Gibbard (1977), Bahel and Sprumont (2019): Characterizing
strategy-proof random mechanisms

• Carroll (2012), Saito (2013): Sufficiency of local IC constraints

• ACH (2018, 2020): Characterizing IC mechanisms in experimental
environments
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The General Model
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Framework

• X - a finite set of alternatives
• Typical elements: x, y, z,w, . . .

• O - the set of strict orders over X
• Typical elements: ⪰,⪰′, . . .

Definition
A type space T = {t1, . . . , tk} is a partition of O.

- A type is any t ∈ T, so t = {⪰,⪰′, ...,⪰′′}

- Example: t = {all ⪰ satisfying the Independence axiom}

- Notation: t(⪰) ∈ T is the type containing ⪰
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Examples

X = {x, y, z}

• Entire ranking:
T = {{xyz}, {yxz}, {yzx}, {zyx}, {zxy}, {xzy}}

• First-best:
T = {{xyz, xzy}, {yxz, yzx}, {zyx, zxy}}

• Top-2:
T = {{xyz, yxz}, {xzy, zxy}, {zyx, yzx}}

• Best from {x, y}:
T = {{xyz, xzy, zxy}, {zyx, yzx, yxz}}

• Where you rank x:
T = {{xyz, xzy}, {zxy, yxz}, {yzx, zyx}}
(This type space is not “neutral”. Labels matter.)
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Mechanisms

∆(X) is the set of lotteries on X

Definition
A T-mechanism is any g : T → ∆(X).

• Why random payments?
• Allows use of the RPS mechanism (and more)
• With deterministic mechanisms very little can be elicited
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Elicitable type spaces

Recall that p strictly FOSD q relative to ⪰ (written p ≻∗ q) if

∀x ∈ X p({y : y ⪰ x}) ≥ q({y : y ⪰ x})

with strict inequality for at least one x

Definition
g is IC if for every ⪰∈ O and every t ̸= t(⪰)

g(t(⪰)) ≻∗ g(t).

Definition
A type space T is elicitable if there exists an IC T-mechanism.

Goal: Characterize elicitable type spaces (spoiler: we can’t)
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Top elements of menus

“What’s your favorite thing from X′?”

• Every menu X′ ⊆ X corresponds to a type space:

⪰,⪰′∈ t ⇐⇒ ⪰,⪰′ have the same favorite item in X′

Examples:
X′ = {x, y} =⇒ T = {{xyz, xzy, zxy}, {zyx, yzx, yxz}}

X′ = {x, y, z} =⇒ T = {{xyz, xzy}, {yxz, yzx}, {zyx, zxy}}

• The (deterministic) mechanism that pays the revealed top
element in X′ is IC
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RPS mechanisms

• One can elicit top elements of several menus X1, . . . , Xl ⊆ X

Examples:

X1 = {x, y, z}, X2 = {x, y}
=⇒ T = {{xyz, xzy}, {yzx, yxz}, {zxy}, {zyx}}

X1 = {x, y}, X2 = {x, z}, X3 = {y, z}
=⇒ T = {{xyz}, {yxz}, {yzx}, {zyx}, {zxy}, {xzy}}

• The corresponding IC mechanism randomly chooses a menu
and pays the announced top element

• This is widely used in experimental economics

What else is elicitable?
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Top sets of menus

The top-2 type space T = {{xyz, yxz}, {xzy, zxy}, {zyx, yzx}} does not
reveal top elements of menus but is elicitable

• How? If they announce “x and y” pay x and y with equal
probability, and z with less probability.

• Every X′ ⊆ X and k defines a type space by

⪰,⪰′∈ t ⇐⇒ ⪰,⪰′ have the same top k elements of X′

• This is elicitable by paying the uniform lottery over the set of
announced top-k elements

• Can elicit the top-ki elements of Xi ⊆ X, i = 1, . . . , l

Anything else??
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Example (based on Shapley, 1971)

X = {x, y, z,w}

Type space:
{xyzw, yxzw, xywz, yxwz}
{xzyw}, {xwyz}, {xzwy, xwzy}
{ywxz}, {yzxw}, {yzwx, ywzx}
{zxyw, zyxw}, {zywx, zwyx}, {zxwy, zwxy}
{wxyz,wyxz}, {wyzx,wzyx}, {wxzy,wzxy}

Claim
∃ IC mechanism, but type space is not generated by top sets.

There is a close connection between IC mechanisms and convex TU
cooperative games...
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So far...

{all T}

⊆

{T : elicitable}

⫋

{T : generated by top sets}

⫋
{T : generated by top elements}
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A convex type space - example

Necessary condition: convex type space
Example: T = {{xyz}, {yxz, yzx}, {zyx, zxy, xzy}}

u[y]

u[z] u[x]

xyz

xzyzxy

zyx

yzx yxz
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A non-convex type space - example

Example of a non-convex type space:
T = {{xyz, xzy}, {yxz, zxy}, {zyx, yzx}}

u[y]

u[z] u[x]

xyz

xzyzxy

zyx

yzx yxz
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Convexity is necessary

Proposition
If T is elicitable then it is convex.

Ex: Where do you rank x?
t = x is 2nd (dark gray)
t′ = x is 1st (off-white)

IC requires:
Eg(t)(u1) > Eg(t′)(u1)

Eg(t)(u2) > Eg(t′)(u2)

=⇒ Eg(t)(u′) > Eg(t′)(u′)

u[y]

u[z] u[x]

xyz

xzyzxy

zyx

yzx yxz u2•

u1
•

u′•
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Some non-convex type spaces

• Where do you rank x? (with |X| ≥ 3)

• What is the kth ranked alternative for 1 < k < |X| (e.g. median)

• Any binary T = {t1, t2}, except T = {{x ⪰ y}, {y ⪰ x}}.
In particular, tests of most axioms of preferences!
Usually: “If x ⪰ y then w ⪰ z (and y ⪰ x ⇒ z ⪰ w)”
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Visualizing Convexity: The Permutohedron
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Visualizing Convexity: The Permutohedron
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Convexity is not sufficient

T = {t1 = {xyz}, t2 = {yxz, yzx}, t3 = {zyx, zxy, xzy}}
IC requires:
g(t1)(x) > g(t2)(x)
g(t2)(x) = g(t3)(x)
g(t3)(x) = g(t1)(x)

=⇒ g(t1)(x) > g(t1)(x)

u[y]

u[z] u[x]

xyz

xzyzxy

zyx

yzx yxz
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Summary

{all T}

⫋

{T : convex}

⫋

{T : no bad cycles}

⊆

{T : elicitable}

⫋
{T : generated by top sets}

⫋

{T : generated by top elements}
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Neutral type spaces

• Permutation: π : X → X

• Let πT be T, but with every ⪰ permuted by π

Definition
T is neutral if πT = T for every π.

Neutral: “What do you rank 3rd?”
Not: “Where do you rank x?”

Proposition
Suppose T is neutral. Then the following are equivalent:
(1) T is elicitable
(2) T is convex
(3) T is generated by top sets
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Neutral type spaces

{all T}

⫋

{T : convex}

=

{T : elicitable}

=

{T : generated by top sets}

⫋
{T : generated by top elements}
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Robust elicitation

What if the agent has subjective beliefs about the likelihood of
realizations of the randomization device (or other kinds of
preferences over acts)?

• Now payments are Savage acts, not lotteries.

• Can’t pay a uniform lottery b/c can’t control beliefs

• This kills our ability to elicit top sets

Proposition
T is elicitable with acts iff it is generated by top elements.
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Elicitation under acts

{all T}

⫋

{T : convex}

⫋

{T : elicitable with lotteries}

⫋

{T : generated by top sets}

⫋
{T : generated by top elements}

=

{T : elicitable with acts}
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Multiple agents

• N = {1, . . . ,n} - agents
• Ti - agent’s i type space
• T = (T1, . . . , Tn) - a profile of type spaces
• g : T → ∆(X) - a mechanism

Proposition
T = (T1, . . . , Tn) is dominant-strategy-elicitable iff each Ti is
elicitable.
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Conclusion

• We formulate a notion of elicitability for properties of
preferences

• Some necessary conditions and some sufficient conditions for
elicitability, but no characterization

• We do have a characterization for neutral type spaces and for
robust elicitation (acts)

• Potential extensions: Weak orders, infinite sets of alternatives,
domain restrictions,...
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Thank You!
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