ExpEcon Methods:
 Incentive Compatible Belief Elicitation

ECON 8877
P.J. Healy

Updated 2023-11-01 at 17:41:12

Overview

- We often want to elicit the subject's belief about an event
- Opponent's action in a game
- Own absolute performance on a quiz/task
- Performance in the top half
- Guess the performance of someone else
- Bayesian updating tests
- But there are many ways proposed to do this!
- Quadratic scoring rule
- Logarithmic scoring rule
- Spherical scoring rule
- Binarized scoring rule
- BDM for probabilities
- Auction framing
- Two random variables framing
- MPL framing

Our Framework

- Always specify your framework! Savage? Segal? AA?
- Savage: need entire \succeq to learn beliefs
- That's too many questions!
- ...and requires probabilistic sophistication
- vNM/Segal: no subjective beliefs!
- AA: can compare against objective lotteries
- Having "belief" p means I'm indifferent between:

1. Getting $\$ x$ if E occurs
2. Getting $\$ x$ with probability p

- Call the indifference point $p(E, x)$
- Stakes independence (analogue of P_{4}):
- $p(E, x)=p(E, y)=p(E) \forall x, y>0$
- Question: Which AA/Seo axioms give this?
- Do we really even need this??

Setup

- Random variable $X: \Omega \rightarrow \mathbb{R}$
- Subject has belief $p(X=x)$ for each realization x
- Example: probability of event E
- Let $X_{E}=1$ if $\omega \in E, X_{E}=0$ otherwise (indicator)
- $p(E):=p\left(X_{E}=1\right)$

Proportions vs. Probabilities

Application: What fraction of opponents chose Cooperate?
Two options:

1. What fraction of people chose C ?

- Call the true fraction $\rho \in[0,1]$
- Subject has a belief over all of $[0,1]$
- Their belief is an entire PDF/CDF!!
- Later: we can elicit mean, median, mode, etc.

2. What's the probability a random opponent chose C?

- Now the truth is either o or 1
- Subject has a belief $p \in[0,1]$
- Here we just elicit a single probability

Scoring Rules

- Used to elicit $p(E)$
- Subject announces q
- State-contingent payment:

1. $\$ S(q, 1)$ if $X_{E}=1$
2. $\$ S(q, 0)$ if $X_{E}=0$

- True belief: p
- Expected payoff: $G(q \mid p)=p S(q, 1)+(1-p) S(q, o)$
- Scoring rule S is proper if

$$
p \in \arg \max _{q} G(q \mid p)
$$

and strictly proper if

$$
p=\arg \max _{q} G(q \mid p)
$$

- Under risk-neutral EU, proper \Rightarrow IC
- Let $G(p)=G(p \mid p)$ (used later)

Example: Quadratic Scoring Rule

The original scoring rule: Brier (1950)

- $S(q, 1)=\$ 1-\$(1-q)^{2}$
- $S(q, o)=\$ 1-\$(0-q)^{2}$
- General: $S\left(q, X_{E}\right)=1-\left(X_{E}-q\right)^{2}$

$$
\begin{aligned}
G(q \mid p) & =p\left[1-(1-q)^{2}\right]+(1-p)\left[1-(0-q)^{2}\right] \\
& =-p(1-q)^{2}-(1-p) q^{2} \\
\frac{\partial G(q \mid p)}{\partial q} & =2 p(1-q)-2(1-p) q=0 \\
& p(1-q)=(1-p) q \\
& q^{*}=p
\end{aligned}
$$

Can rescale it and it's still strictly proper:

- $S(q, 1)=\beta_{1}-\alpha(1-q)^{2}$
- $\mathbf{S}(\mathbf{q}, \mathrm{o})=\beta_{0}-\alpha(\mathrm{o}-\mathbf{q})^{2}$

Theory: Savage (1971)

(1954)

Elicitation of Personal Probabilities and Expectations

LEONARD J. SAVAGE*

Proper scoring rules, Le., devices of a cerritain class for elicititing a person's probablities and othor oxpectetions, are studied, mainly theoretically but with some peculctions about application, The relation of proper scoring rules to other econamic devices and to the foundations of the personaliatic theory of probability is brought out. The implications of various restrictions, especielly symmetry restrictions, on scoring ruler is explorad, usuolly with a minimum of regularity hypothesis

1. INTRODUCTION

1.1 Preface

This article is about a class of devices by means of which an idealized homo economicus-and therefore, with some approximation, a real person-can be induced to reveal his opinions as expressed by the probabilities that he associates with events or, more generally, his personal expectations of random quantities. My emphasis here is theoretical, though some experimental considerations will be mentioned. The empirical importance of such studies in many areas is now recognized. It was emphasized for the area of economics in an address by Trygve Haavelmo [28, p. 357]:
pertaining to it has grown up, some of which will be cited in context and most of which can be found through the references cited, especially the recent and extensive [52] and others that I call "key references."
Bruno de Finetti and I began to write the present article in the spring of 1960 , not yet aware of our predecessors and contemporaries. The impetus was de Finetti's for he had brought us to rediscover McCarthy's [37] insight about convex functions. We expected to make short work of our "little note," but it grew rapidly in many directions and became inordinately delayed. Now we find that the material in the present article is largely mine and that de Finetti has published on diverse aspects of the same subject elsewhere $[12,13,14,17]$. De Finetti has therefore withdrawn himself from our joint authorship and encouraged me to publish this article alone, though it owes so much to him at every stage, including the final draft
The article is written for a diverse audience. Conseanently andience. Conse-

Theory: Savage (1971)

Want to know subject's $\operatorname{Pr}(E)$ for some event E Pay using state-contingent payments ('bets')

Theory: Savage (1971)

Example: A \$100 bet on E

Theory: Savage (1971)

Example: A $\$ 100$ bet on E
A $\$ 100$ bet on $\neg E$

Theory: Savage (1971)

How you evaluate these depends on your "true" belief

Theory: Savage (1971)

How you evaluate these depends on your "true" belief Assume (for now) risk-neutral EU

Theory: Savage (1971)

How you evaluate these depends on your "true" belief Assume (for now) risk-neutral EU

Theory: Savage (1971)

These two bets separate beliefs into two groups

Theory: Savage (1971)

These two bets separate beliefs into two groups Revelation Principle: "Is $p \leq 0.5$ or is $p \geq 0.5$?"

Theory: Savage (1971)

We can get a finer elicitation by adding a constant bet!

Theory: Savage (1971)

We can get a finer elicitation by adding a constant bet! But what about risk aversion...?

Theory: Savage (1971)

Risk neutral

Theory: Savage (1971)

Risk averse

Theory: Savage (1971)

Risk seeking
Risk preferences \Rightarrow lack of identification;

Theory: Savage (1971)

Savage (1971) offers 2 solutions...

Theory: Savage (1971)

Solution \#1: make payments small (\$1.00)

Theory: Savage (1971)

Solution \#2: pay in probabilities Payment = \% chance of winning \$8 (e.g.)

Theory: Savage (1971)

"Binarized" payments (Hossain \& Okui 2013) Savage (1971) \rightarrow C. Smith (1961) \rightarrow Savage (1954)

Theory: Savage (1971)

Solution \#3: estimate risk prefs \& back out p Offerman et al. (2009), Andersen et al. (2014), etc.

Theory: Savage (1971)

Still assuming linear preferences: $(0.6 \times 100 \%)+(0.4 \times 0 \%)=60 \%$

Theory: Savage (1971)

Still assuming linear preferences: $(0.6 \times 100 \%)+(0.4 \times 0 \%)=60 \%$ "Subjective-Objective Reduction" (aka Binary Reduction)

Theory: Savage (1971)

"Subjective-Objective Reduction"
Experimental evidence is pretty negative (Selten et al. 1999, e.g.)

Theory: Savage (1971)

"Subjective-Objective Reduction"
...except in the case of scoring rules (Hossain \& Okui 2013, e.g.)

Theory: Savage (1971)

Now, let's add even more options to the menu...

Theory: Savage (1971)

Now, let's add even more options to the menu...

Theory: Savage (1971)

Now, let's add even more options to the menu...

Theory: Savage (1971)

Now, let's add even more options to the menu... $\uparrow \#$ bets \rightarrow can elicit an exact p

Theory: Savage (1971)

Convex upper envelope: $G(p)$ Each line is a tangent

Theory: Savage (1971)

Scoring Rule: Announce q.
If $\neg E$, pay $S(q, 0)$. If E, pay $S(q, 1)$.

Theory: Savage (1971)

Scoring Rule: Announce q.
Announcing $q \neq p$ gives a lower $(1-p) \cdot S(q, 0)+p \cdot S(q, \boldsymbol{1})$

Theory: Savage (1971)

Scoring Rule: Announce q.
Announcing $q \neq p$ gives a lower $(1-p) \cdot S(\boldsymbol{q}, \mathbf{o})+p \cdot \boldsymbol{S}(\boldsymbol{q}, \boldsymbol{1})$

Theory: Savage (1971)

Theory: Savage (1971)

Theorem (Savage/Schervish): A mechanism $S\left(p, X_{E}\right)$ is proper iff the resulting lines are the tangents of a convex function $G(p)$.

Theory: Savage (1971)

Any convex $G(p)$ will work.
Binarized Quadratic scoring rule (BSR), logarithmic, spherical...

Theory: Savage (1971)

$$
\begin{aligned}
& S(q, 0)=\left(1-(0-q)^{2}\right) \\
& S(q, 1)=\left(1-(1-q)^{2}\right)
\end{aligned}
$$

Issues With the Quadratic Scoring Rule

Concern \#1: IC calculation requires $\mathrm{S}-\mathrm{O}$ Reduction

$$
(0.4 \cdot 84 \%)+(0.6 \cdot 64 \%)=72 \%
$$

Issues With the Quadratic Scoring Rule

Concern \#2: $S^{\prime}(p, o)$ vs $S^{\prime}(p, 1)$
See Danz, Wilson \& Vesterlund (2020), e.g.

Issues With the Quadratic Scoring Rule

But see FOC: $p S^{\prime}(p, 1)+(1-p) S^{\prime}(p, o)=0$

$$
\Rightarrow p /(1-p)=-S^{\prime}(p, o) / S^{\prime}(p, 1)
$$

Issues With the Quadratic Scoring Rule

Relative slopes are pinned down by IC!
Corollary: For any IC scoring rule, $S^{\prime}(p, o) / S^{\prime}(p, 1)=-p /(1-p)$.

An Alternative Visualization

$$
\operatorname{Pr}(\$ 8 \mid \neg E)=s_{0}
$$

"Have a belief of 0.6 ": $u(1,0)=u(0.6,0.6)$
Define $R\left(s_{1}, s_{0} \mid p\right)=p \cdot s_{1}+(1-p) \cdot s_{0}$. Linear level curves.
S-0 Reduction: Have belief p and $u\left(s_{1}, s_{0}\right)=R\left(s_{1}, s_{0} \mid p\right)$

The BQSR

Binarized Quadratic Scoring Rule forms quarter-circle as you vary q Maximizing point given $u(\cdot) \equiv R(\cdot \mid 0.6)$ is $q^{*}=0.6$

The BQSR

Any strictly concave shape corresponds to some proper scoring rule

Necessity of S-O Reduction

Know: If S-O Reduction then every scaled BQSR is IC If $u(\cdot) \not \equiv R(\cdot \mid p)$ then \exists scaled BQSR that's not IC. Proposition: If every scaled BQSR is IC then $u(\dot{)} \equiv R(\cdot \mid p)$

Necessity of S-O Reduction

Know: If S-O Reduction then every scaled BQSR is IC If $u(\cdot) \not \equiv R(\cdot \mid p)$ then \exists scaled BQSR that's not IC. Proposition: If every scaled BQSR is IC then S-O Reduction

More Than One Event

- Suppose multiple events $E_{1}, E_{2}, \ldots, E_{m}$
- Want to elicit $p=\left(p_{1}, \ldots, p_{m}\right)$
- Let $X=i$ iff $\omega \in E_{i}$
- Announcement: $q=\left(q_{1}, \ldots, q_{m}\right)$

Quadratic Scoring Rule (scaled to $[0,1]$):

$$
S(q, i)=1-\frac{m}{m-1} \sum_{j=1}^{m}\left(\mathbb{1}_{\{X=j\}}-q_{j}\right)^{2}
$$

Scaled BQSR:

$$
\begin{aligned}
S(q, i) & =\beta_{i}-\alpha \sum_{j=1}^{m}\left(\mathbb{1}_{\{x=j\}}-q_{j}\right)^{2} \\
0 & <\beta_{j} \leq 1 \forall j \\
0 & <\alpha \leq \frac{m-1}{m} \min _{j} \beta_{j}
\end{aligned}
$$

Other Scoring Rules

(These are not necessarily scaled to $[0,1]$)

1. Spherical Scoring Rule (Roby 1964)

$$
S(q, i)=\frac{q_{i}^{2}}{\sqrt{\left.\sum_{j=1}^{m} q_{j}^{2}\right)}}
$$

2. Generalized Spherical Scoring Rule $(\lambda>1)$

$$
S(q, i)=\frac{q_{i}^{\lambda}}{\left(\sum_{j=1}^{m} q_{j}^{\lambda}\right)^{(\lambda-1) / \lambda}}
$$

3. Logarithmic Scoring Rule

$$
S(q, i)=\log q_{i}
$$

(goes to $-\infty$, can't be scaled to $[0,1]$)

Comparison of Scoring Rules

(Non-Proper) Linear Scoring Rule

$$
\begin{gathered}
S(q, 0)=1-q \quad S(q, 1)=q \\
\text { Same extremes as QSR }
\end{gathered}
$$

(Non-Proper) Linear Scoring Rule

(Non-Proper) Linear Scoring Rule

$$
S(q, o)=1-q
$$

$$
S(q, 1)=q
$$

But now symmetric slopes

(Non-Proper) Linear Scoring Rule

(Non-Proper) Linear Scoring Rule

Convex upper envelope: $G(p)$

$$
q^{*}=0 \text { if } p<50, q^{*}=100 \text { if } p>50
$$

Characterizations of the QSR

Selten (1998, ExpEcon v.1)

- Symmetry: $S(q, i)=S(\pi(q), \pi(i))$ for any permutation π
- Elongation Invariance: $S\left(\left(q_{1}, \ldots, q_{n}\right), i\right)=S\left(\left(q_{1}, \ldots, q_{n}, 0\right), i\right)$ (adding a null event)
- Neutrality: $G(q \mid p)=G(p \mid q)$
- Properness: S is proper

Theorem: A scoring rule satisfies these 4 axioms iff it is a scaled QSR

Characterizations of the QSR

- Suppose we impose a grid $\mathcal{G}=\left\{0, \frac{1}{k}, \frac{2}{k}, \ldots, \frac{k-1}{k}, 1\right\}$
- Require each $q_{i} \in \mathcal{G}$
- Midpoint Property: Optimal announcement is $q_{i}^{*}=\frac{r}{k}$ if and only if $p_{i} \in\left[\frac{r}{k}-\frac{1}{2 k}, \frac{r}{k}+\frac{1}{2 k}\right]$
- Ensures that the announced point is the closest grid point to the true belief.

Theorem: The Scaled QSRs are the only proper scoring rules with the midpoint property

Characterizations of the QSR

- We want to maximize the incentive not to deviate
- Local incentive not to deviate at $q=p$

$$
G^{\prime \prime}(q=p \mid p)=G^{\prime \prime}(p)
$$

- BQSR has $G^{\prime \prime} \equiv 2$
- Any binarized rule must have $G^{\prime}(0) \geq-1, G^{\prime}(1) \leq 1$
- All lines in the graph must have slope in $[-1,1]$
- Thus, $\int_{0}^{1} G^{\prime \prime}(p) d p=G^{\prime}(1)-G^{\prime}(0) \leq 2$
- Any other scoring rule has $G^{\prime \prime}(p)<2$ at some p

Theorem: The (unscaled) BQSR maximizes $\min _{p} G^{\prime \prime}(p)$
Related: Schlag, Tremewan \& van der Weele (2015)

A Different Scoring Rule

A new IC scoring rule

$$
G(p)=\frac{1}{2}\left(1+q^{2}\right)
$$

A Different Scoring Rule

$$
\begin{gathered}
S(q, 0)=\frac{1}{2}\left(1-q^{2}\right) \\
S(q, 1)=\frac{1}{2}\left(1-(1-q)^{2}\right)+\frac{1}{2}
\end{gathered}
$$

A Different Scoring Rule

A Different Scoring Rule

Magic Trick: I'll show this scoring rule can be IC without relying on S-O Reduction

Breaking Apart Reduction

Consider the S-O-Reduced $\operatorname{Pr}(\$ 8)$:

$$
\begin{aligned}
& p \cdot(\underbrace{\frac{1}{2}\left(1-(1-q)^{2}\right)+\frac{1}{2}}_{S(q, 1)})+(1-p) \cdot \underbrace{\frac{1}{2}\left(1-q^{2}\right)}_{S(q, 0)} \\
= & q \cdot p+(1-q)\left(\frac{1}{2} q+\frac{1}{2} 1\right)
\end{aligned}
$$

Breaking Apart Reduction

Consider the S-O-Reduced $\operatorname{Pr}(\$ 8)$:

$$
\begin{aligned}
&p \cdot \underbrace{\frac{1}{2}\left(1-(1-q)^{2}\right)+\frac{1}{2}}_{S(q, 1)})+(1-p) \cdot \underbrace{\frac{1}{2}\left(1-q^{2}\right)}_{S(q, 0)} \\
&=q \cdot p+(1-q)\left(\frac{1}{2} q+\frac{1}{2} 1\right) \\
& q \quad: \text { get a } \$ 8 \text { bet on } E \\
&(1-q) \quad: \text { get a lottery that pays } \$ 8 \mathrm{w} / \operatorname{prob}\left(\frac{1}{2} q+\frac{1}{2} 1\right)
\end{aligned}
$$

Breaking Apart Reduction

Consider the S-O-Reduced $\operatorname{Pr}(\$ 8)$:

$$
\begin{aligned}
& p \cdot(\underbrace{\frac{1}{2}\left(1-(1-q)^{2}\right)+\frac{1}{2}}_{S(q, 1)})+(1-p) \cdot \underbrace{\frac{1}{2}\left(1-q^{2}\right)}_{S(q, 0)} \\
= & q \cdot p+(1-q)\left(\frac{1}{2} q+\frac{1}{2} 1\right)
\end{aligned}
$$

$$
\begin{aligned}
q & : \text { get a } \$ 8 \text { bet on } E \\
(1-q) & : \text { get a lottery that pays } \$ 8 \mathrm{w} / \text { prob }\left(\frac{1}{2} q+\frac{1}{2} 1\right)
\end{aligned}
$$

Adding a second objective randomizing device

Breaking Apart Reduction

$$
q \cdot p+(1-q) \frac{q+1}{2}
$$

Imagine 100 rows. Announce $q \in[0,100]$. Payment:

Breaking Apart Reduction: Multiple Price List

Row\#	Option A	OR	Option B
1	$\$ 8$ if E	or	$\$ 8 \mathrm{w} /$ prob 1%
2	$\$ 8$ if E	or	$\$ 8 \mathrm{w} / \mathrm{prob} 2 \%$
\vdots	\vdots	\vdots	\vdots
q	$\$ 8$ if E	or	$\$ 8 \mathrm{w} / \mathrm{prob} \mathrm{q} \mathrm{\%}$
$q+1$	$\$ 8$ if E	or	$\$ 8 \mathrm{w} / \mathrm{prob} q+1 \%$
\vdots	\vdots	\vdots	\vdots
99	$\$ 8$ if E	or	$\$ 8 \mathrm{w} /$ prob 99%
100	$\$ 8$ if E	or	$\$ 8 \mathrm{w} /$ prob 100%

Equivalently: Choose Option A or Option B
Choice of q determines your choices

Breaking Apart Reduction: Multiple Price List

Row\#	Option A	OR	Option B
1	$\$ 8$ if E	or	$\$ 8 \mathrm{w} /$ prob 1%
2	$\$ 8$ if E	or	$\$ 8 \mathrm{w} / \mathrm{prob} 2 \%$
\vdots	\vdots	\vdots	\vdots
q	$\$ 8$ if E	or	$\$ 8 \mathrm{w} / \mathrm{prob} q \%$
$q+1$	$\$ 8$ if E	or	$\$ 8 \mathrm{w} / \mathrm{prob} q+1 \%$
\vdots	\vdots	\vdots	\vdots
99	$\$ 8$ if E	or	$\$ 8 \mathrm{w} /$ prob 99%
100	$\$ 8$ if E	or	$\$ 8 \mathrm{w} /$ prob 100%

"Multiple Price List" (MPL) version of BDM for probabilities Holt \& Smith (2016), others

Breaking Apart Reduction: Multiple Price List

Row\#	Option A	OR	Option B
1	$\$ 8$ if E	or	$\$ 8 \mathrm{w} /$ prob 1%
2	$\$ 8$ if E	or	$\$ 8 \mathrm{w} / \mathrm{prob} 2 \%$
\vdots	\vdots	\vdots	\vdots
q	$\$ 8$ if E	or	$\$ 8 \mathrm{w} / \mathrm{prob} \mathrm{q} \mathrm{\%}$
$q+1$	$\$ 8$ if E	or	$\$ 8 \mathrm{w} / \mathrm{prob} q+1 \%$
\vdots	\vdots	\vdots	\vdots
99	$\$ 8$ if E	or	$\$ 8 \mathrm{w} /$ prob 99%
100	$\$ 8$ if E	or	$\$ 8 \mathrm{w} /$ prob 100%

One row randomly selected for payment
If you lie, you get the less-preferred option on some rows

Breaking Apart Reduction: Multiple Price List

Row\#	Option A	OR	Option B
1	$\$ 8$ if E	or	$\$ 8 \mathrm{w} /$ prob 1%
2	$\$ 8$ if E	or	$\$ 8 \mathrm{w} / \mathrm{prob} 2 \%$
\vdots	\vdots	\vdots	\vdots
q	$\$ 8$ if E	or	$\$ 8 \mathrm{w} / \mathrm{prob} q \%$
$q+1$	$\$ 8$ if E	or	$\$ 8 \mathrm{w} / \mathrm{prob} q+1 \%$
\vdots	\vdots	\vdots	\vdots
99	$\$ 8$ if E	or	$\$ 8 \mathrm{w} /$ prob 99%
100	$\$ 8$ if E	or	$\$ 8 \mathrm{w} /$ prob 100%

One row randomly selected for payment
I.C. as long as subject respects statewise dominance

Breaking Apart Reduction: Multiple Price List

Row\#	Option A	OR	Option B
1	$\$ 8$ if E	or	$\$ 8 \mathrm{w} /$ prob 1%
2	$\$ 8$ if E	or	$\$ 8 \mathrm{w} / \mathrm{prob} 2 \%$
\vdots	\vdots	\vdots	\vdots
q	$\$ 8$ if E	or	$\$ 8 \mathrm{w} / \mathrm{prob} q \%$
$q+1$	$\$ 8$ if E	or	$\$ 8 \mathrm{w} / \mathrm{prob} q+1 \%$
\vdots	\vdots	\vdots	\vdots
99	$\$ 8$ if E	or	$\$ 8 \mathrm{w} /$ prob 99%
100	$\$ 8$ if E	or	$\$ 8 \mathrm{w} /$ prob 100%

Summary: Took a scoring rule, converted it into an MPL Now IC does not require S-O Reduction!

What Can Be Listified?

Proposition: $G(p)$ can be made into an MPL if and only if

1. $G^{\prime}(0)=0$
2. $G^{\prime}(1)=1$
3. $G(1)=1$

What Can Be Listified?

Proposition: $G(p)$ can be made into an MPL if and only if

1. $G^{\prime}(0)=0$
2. $G^{\prime}(1)=1$
3. $G(1)=1$

What Can Be Listified?

Proposition: $G(p)$ can be made into an MPL if and only if

1. $G^{\prime}(0)=0$
2. $G^{\prime}(1)=1$
3. $G(1)=1$

What Can Be Listified?

What's the difference across MPLs?
Varying probability of rows being chosen

Superiority of MPLs

We can argue that the MPLs are superior to the BQSRs:

Theorem:
All Scaled BQSRs are I.C.

$$
\Downarrow
$$

Subjective-Objective Reduction

Statewise Dominance
\downarrow
MPL is I.C. (regardless of dist'n on rows)

Equalizing Incentives

How to equalize incentives across scoring rules? e.g. suppose we know $p=0.3$

Equalizing Incentives

How to equalize incentives across scoring rules? e.g. suppose we know $p=0.3$

Equalizing Incentives

How to equalize incentives across scoring rules? Heads: use BSR. Tails: get \$8 w/ prob o.3.

Equalizing Incentives

- Let X be r.v. representing E
- $E \Rightarrow X=1$
- $\neg E \Rightarrow X=0$
- MPL:

$$
S(p, x)=\frac{1}{2}\left(1-(x-p)^{2}\right)+\frac{1}{2} x
$$

- Suppose researcher's best guess of p is p_{\circ}
- Adjusted BSR:

$$
S(p, x)=\frac{1}{2}\left(1-(x-p)^{2}\right)+\frac{1}{2} p_{\circ}
$$

Equalizing Incentives

- Let X be r.v. representing E
- $E \Rightarrow X=1$
- $\neg E \Rightarrow X=0$
- MPL:

$$
S(p, x)=\frac{1}{2}\left(1-(x-p)^{2}\right)+\frac{1}{2} x
$$

- Suppose researcher's best guess of p is p_{\circ}
- Adjusted BSR:

$$
S(p, x)=\frac{1}{2}\left(1-(x-p)^{2}\right)+\frac{1}{2} p_{\circ}
$$

Other Statistics of a Distribution

- Consider again general r.v. X
- BSR: $S(p, x)=\left(1-(x-p)^{2}\right)$
- Can we elicit a statistic of p ? Ex: mean, median, mode, ...
- Could elicit $\operatorname{Pr}(X=x)$ for every possible x... but that's a lot!
- The (single-report) BSR elicits the subject's mean for X
- BSR: $S(m, x)=\left(1-(x-m)^{2}\right)$
- Still paying in probabilities
- Still requiring S-O Reduction:

$$
\max _{m} \sum_{x} \operatorname{Pr}(X=x)\left(1-(x-m)^{2}\right)
$$

- Can we elicit the mean using an MPL?

MPL for The Mean of X

Row\#	Option A	OR	Option B
1	$X \%$ chance of $\$ 8$	or	1% chance of $\$ 8$
2	$X \%$ chance of $\$ 8$	or	2% chance of $\$ 8$
\vdots	\vdots	\vdots	\vdots
m	$X \%$ chance of $\$ 8$	or	$m \%$ chance of $\$ 8$
$m+1$	$X \%$ chance of $\$ 8$	or	$m+1 \%$ chance of $\$ 8$
\vdots	\vdots	\vdots	\vdots
99	$X \%$ chance of $\$ 8$	or	99% chance of $\$ 8$
100	$X \%$ chance of $\$ 8$	or	100% chance of $\$ 8$

Identical to two-state list: Option A is ($\$ 8$ if E) but, now requires linearity: "X\% chance" ~ " $\mathrm{E}[X] \%$ chance"

MPL for The Mean of X

Row\#	Option A	OR	Option B
1	$X \%$ chance of $\$ 8$	or	1% chance of $\$ 8$
2	$X \%$ chance of $\$ 8$	or	2% chance of $\$ 8$
\vdots	\vdots	\vdots	\vdots
m	$X \%$ chance of $\$ 8$	or	$m \%$ chance of $\$ 8$
$m+1$	$X \%$ chance of $\$ 8$	or	$m+1 \%$ chance of $\$ 8$
\vdots	\vdots	\vdots	\vdots
99	$X \%$ chance of $\$ 8$	or	99% chance of $\$ 8$
100	$X \%$ chance of $\$ 8$	or	100% chance of $\$ 8$

Now requires linearity: " $X \%$ chance" ~" $E[X] \%$ chance" but, given that, IC only requires statewise dominance

Equalizing Incentives with Mean Elicitation

- Researcher's best guess: mean is μ_{0}, variance is σ_{0}^{2}
- (Recall: $E\left[X^{2}\right]=\mu_{o}^{2}+\sigma_{o}^{2}$)
- BSR:

$$
S(p, x)=\left(1-(x-m)^{2}\right)
$$

- MPL:

$$
S(p, x)=\frac{1}{2}\left(1-(x-m)^{2}\right)+\frac{1}{2} x^{2}
$$

Equalizing Incentives with Mean Elicitation

- Researcher's best guess: mean is μ_{0}, variance is σ_{0}^{2}
- (Recall: $\left.E\left[X^{2}\right]=\mu_{o}^{2}+\sigma_{o}^{2}\right)$
- BSR:

$$
S(p, x)=\frac{1}{2}\left(1-(x-m)^{2}\right)+\frac{1}{2}\left(\mu_{o}^{2}+\sigma_{0}^{2}\right)
$$

- MPL:

$$
S(p, x)=\frac{1}{2}\left(1-(x-m)^{2}\right)+\frac{1}{2} x^{2}
$$

Eliciting the Median

- BSR elicits the mean... can we elicit the median?
- Linear scoring rule elicits the median!
- LSR:

$$
S(m, x)=(1-|x-m|)
$$

- Can this be listified?

MPL for The Median of X

Row\#	Option A	OR	Option B
1	$\$ 8$ if $X \geq 1$	or	50% chance of $\$ 8$
2	$\$ 8$ if $X \geq 2$	or	50% chance of $\$ 8$
\vdots	\vdots	\vdots	\vdots
m	$\$ 8$ if $X \geq m$	or	50% chance of $\$ 8$
$m+1$	$\$ 8$ if $X \geq m+1$	or	50% chance of $\$ 8$
\vdots	\vdots	\vdots	\vdots
99	$\$ 8$ if $X \geq 99$	or	50% chance of $\$ 8$
100	$\$ 8$ if $X \geq 100$	or	50% chance of $\$ 8$

Does NOT require linearity
Easily altered to elicit any quantile

Equalizing Incentives with Median Elicitation

- Suppose researcher's best guess of the median is $\mu_{0.5}$
- BSR:

$$
S(p, x)=(1-|x-m|)
$$

- MPL:

$$
S(p, x)=\frac{1}{2}(1-|x-m|)+\frac{1}{2} x
$$

Equalizing Incentives with Median Elicitation

- Suppose researcher's best guess of the median is $\mu_{0.5}$
- BSR:

$$
S(p, x)=\frac{1}{2}(1-|x-m|)+\frac{1}{2} \mu_{0.5}
$$

- MPL:

$$
S(p, x)=\frac{1}{2}(1-|x-m|)+\frac{1}{2} x
$$

Eliciting the Mode

- Eliciting the mode is simple \& stark:

$$
S(m, x)=\mathbb{1}_{x=m}
$$

- Generally: elicit most-likely interval of length d
- Announce any $[\underline{m}, \bar{m}]$ s.t. $\bar{m}-\underline{m}=d$

$$
S([\underline{m}, \bar{m}], x)=\mathbb{1}_{x \in[m, \bar{m}]}
$$

- Use this if X has many values, since $\operatorname{Pr}(x=m) \approx 0 \quad \forall m$

Scoring Rules for Quantiles

- We saw MPLs can be used to elicit quantiles
- Scoring rule for eliciting α quantile (Cervera \& Muñoz 1996):

$$
S(m, x)=\alpha m-(m-x) \mathbb{1}_{x \leq m}
$$

- Median is $\alpha=1 / 2$
- Proof: True distribution is $p(x)$

$$
\begin{aligned}
& \int S(m, x) p(x) d x=\alpha m-\int_{0}^{m}(m-x) p(x) d x \\
& \text { FOC : } \alpha-(m-m) p(m)-\int_{0}^{m} 1 p(x) d x=0
\end{aligned}
$$

- Announce m such that $\int_{0}^{m} p(x) d x=\alpha$

Eliciting Confidence Intervals

- We want to elicit the 95% confidence interval
- Separately elicit 2.5% quantile and 97.5% quantile
- Pay one elicitation randomly

The Lambert Characterization

Lambert, Pennock \& Shoham (2008)

- In general, a statistic is a mapping $\Gamma: \Delta(\Omega) \rightarrow \mathbb{R}$
- Examples: mean, median, mode, variance, kurtosis...
- What statistics can be elicited?

Theorem: A statistic Γ can be elicited via a strictly proper scoring rule if and only if $\Gamma^{-1}(r)$ is a convex set of distributions for every possible statistic value r

The Lambert Characterization

Mean: yes. Variance: no!

The Lambert Characterization

Median: yes!

The Lambert Characterization

Mode: yes!

The Lambert Characterization

$E\left[X^{2}\right]:$ yes! (Why do we care?? Next slide...)

The Lambert Characterization

- We can't elicit $\operatorname{Var}_{p}(X)$ with 1 report
- But we can elicit $E_{p}(X)$ and $E_{p}\left(X^{2}\right)$
- $\operatorname{Var}_{p}(X)=E_{p}\left(X^{2}\right)-E_{p}(X)^{2}$
- Or, suppose we observe two draws X_{1} and X_{2} from same dist'n
- Then $X_{1}-X_{2}$ is a new r.v.
- We can elicit $E_{p}\left(\left(X_{1}-X_{2}\right)^{2}\right)$
- $\operatorname{Var}_{p}(X)=E_{p}\left(\left(X_{1}-X_{2}\right)^{2}\right)$ (check this)

Survey of Experimental Results

Schotter \& Trevino (2014)
Does IC matter?

1. Nelson \& Bessler (1989)

- Only use risk-neutral subjects
- Compare BSR to non-IC Linear SR
- Early periods: same. Later: differences

2. Palfrey \& Wang (2009)

- QSR vs LogSR vs LinearSR in games
- Beliefs elicited via IC mechanism are better forecasts

Survey of Experimental Results

Schotter \& Trevino (2014)
Risk aversion and the standard QSR:

1. Armantier \& Treich (2013)

- Theoretical predictions for what should happen under risk aversion
- Observe predicted "flatness" in reports
- No incentives increases variance of reports

2. Offerman \& Sonnemans (2004)

- QSR performs same as flat fee

3. Hossain \& Okui (2013)

- BQSR outperforms QSR

Survey of Experimental Results

Schotter \& Trevino (2014)
Do people best-reply to stated beliefs in games?

1. Nyarko \& Schotter (2002): yes, BR is most likely
2. Rey-Biel (2009) 3×3 games: yes, 69.4%
3. Blanco et al. (2011) seq. PD: yes
4. Hyndman et al. (2013): yes, even days later
5. Danz et al. (2012) 3×3 : yes
6. Ivanov (2011): yes
7. Manski \& Neri (2013): yes
8. Costa-Gomes \& Weizsacker (2008)

- 143×3 games
- Trt: games-then-elicitations vs. both together
- Can we back out beliefs from actions and match stated beliefs?
- Result: NO

Survey of Experimental Results

Schotter \& Trevino (2014)
Does elicitation change subsequent behavior?

1. Nyarko \& Schotter (2002): no
2. Costa-Gomes \& Weizsacker (2008): no!
3. Ivanov (2011): no
4. Croson (2000) VCM: yes, lower contribution
5. Gachter \& Renner (2010) VCM: yes, higher contribution!
6. Rutstrom \& Wilcox (2009): yes. estimated parameters of a learning model vary between QSR and no elicitation
7. Healy (WP): mostly no

Survey of Experimental Results

Schotter \& Trevino (2014)

Does elicitation created hedging problems across tasks?

1. Blanco et al. (2010) seq PD: no
2. Armantier \& Treich (2013): very little

Healy \& Kagel

How to test IC of belief elicitation mechanisms?
Problem: We need to know their true belief!

- Usual technique: "Here's a fair coin. What's $\operatorname{Pr}(\mathrm{H})$?"
- Problem: too suspicious!
- One solution: Bayesian updating task
- Problem: people aren't Bayesian!
- Our idea: use team chat to look for evidence of conscious, intentional manipulation of reports
- Subjects are in a team of two
- Must submit the same belief report
- Chat interface to help them coordinate
- Do they talk about manipulating their report?
- Do they talk about deviating from the truth?

Experimental Design

6 "Blocks"

- Each block has 3 or 5 questions of the same type
- Instructions before each block
- Order of blocks randomized within INDIV and TEAM
- Order of questions randomized within each block
- Three mechanisms: MPL, BQSR, NoInfo
- Each subject sees only one mechanism
- INDIV first vs TEAMS first: no difference

The 11 Questions

This jar contains red and blue marbles.

The computer will randomly draw one marble from this jar.

Q1: How many RED marbles are there in the jar? \square (\$ if correct)

Q2: How many total marbles (of either color) are there in the jar? \square (\$ if correct)

Q3: What do you think is the probability (from $\mathbf{0 \%}$ to $\mathbf{1 0 0 \%}$) that a RED marble will be drawn? \square \%

The 11 Questions

The computer will flip a coin to choose one of these two jars:

Q1: What do you think is the probability (from $\mathbf{0 \%}$ to $\mathbf{1 0 0 \%}$) that the RED JAR was chosen? \square

The 11 Questions

Again, one of two jars is chosen by a coin flip. But now the jars contain 3 marbles:

To give you a clue of which jar was chosen, we drew a marble from the chosen jar.
The marble drawn was a BLUE marble.

Q1: Now what do you think is the probability (from 0\% to 100%) that the RED JAR was chosen? \square \%

The 11 Questions

Continuing on with the same chosen jar:

We put the first marble back into the chosen jar, shook it, and again drew a marble.
The second marble was also BLUE
(Thus, two BLUE marbles were drawn).
Q1: Now what do you think is the probability (from 0% to 100%) that the RED JAR was chosen? \square \%

The 11 Questions

In 2005 we asked a Carnegie Mellon undergraduate this question:
What is the capital of Australia?

Q1: What do you think is the probability (from $\mathbf{0 \%}$ to $\mathbf{1 0 0 \%}$) that they got this question right?

The 11 Questions

The computer will spin this spinner one time:

If the median is M, then you have $\geq 50 \%$ chance of getting $\geq \mathrm{M}$ points, and $\geq 50 \%$ chance of getting $\leq \mathrm{M}$ points.

Q1: I think the median \# of points for this spinner is \square pts

The 11 Questions

The computer will spin this spinner one time:

The median is the 'middle number.'
If the median is M, then you have $\geq 50 \%$ chance of getting $\geq \mathrm{M}$ points, and $\geq 50 \%$ chance of getting $\leq \mathrm{M}$ points.

Q1: I think the median \# of points for this spinner is \square pts

The 11 Questions

In 2005 we gave a Carnegie Mellon undergraduate student this quiz:

1. Who is credited with inventing the wristwatch in $1904 ?$
2. Laudanum is a form of what drug?
3. The psychoactive ingredient in marijuana is THC. What does THC stand for?
4. What chemical element has the atomic number five?
5. The study of the structural and functional changes in cells, tissues and organs that underlie disease is called what?
6. What does the suffix -itis mean?
7. The bilby, bandicoot, and quokka are all representatives of what mammalian subclass?
8. Which one of the 50 United States is the only one never to have experienced an earthquake?
9. What evolutionary biologists wrote: 'Creation science' has not entered the curriculum for a reason so simple and so basic that we often mention it: because it is false.?
10. What is the single most diverse phylum within the animal kingdom?

Each question was worth 10 points, for a total of 100 .
The median is the 'middle number.'
If the median is M , then you have $\geq 50 \%$ chance of getting $\geq \mathrm{M}$ points, and $\geq 50 \%$ chance of getting $\leq \mathrm{M}$ poil

Q1: I think the median score for this person (from 0 to 100) is

\square pts

The 11 Questions

The computer will spin this spinner one time:

If you multiply each number by its probability and add them up, you get the mean.

Q1: I think the mean \# of points for this spinner is \square pts

The 11 Questions

The computer will spin this spinner one time:

The mean is the 'avearge.'
If you multiply each number by its probability and add them up, you get the mean.

Q1: I think the mean \# of points for this spinner is \square pts

The 11 Questions

In 2005 we gave a Carnegie Mellon undergraduate student this quiz:

1. Who is credited with inventing the wristwatch in $1904 ?$
2. Laudanum is a form of what drug?
3. The psychoactive ingredient in marijuana is THC. What does THC stand for?
4. What chemical element has the atomic number five?
5. The study of the structural and functional changes in cells, tissues and organs that underlie disease is called what?
6. What does the suffix -itis mean?
7. The bilby, bandicoot, and quokka are all representatives of what mammalian subclass?
8. Which one of the 50 United States is the only one never to have experienced an earthquake?
9. What evolutionary biologists wrote: 'Creation science' has not entered the curriculum for a reason so simple and so basic that we often mention it: because it is false.?
10. What is the single most diverse phylum within the animal kingdom?

Each question was worth 10 points, for a total of 100 .
The mean of their score is the 'avearge.'
If you multiply each possible score by the probability they got that score and add them up, you get the mea

Q1: I think the mean of their score (from 0 to 100) is \square pts

How To Present the Mechanisms

"In the first place, the subject must understand the scoring rule... This is an important reason to present the rule through some vivid tabular or graphic device..."
-Savage (1971)

- BSR: Wilson \& Vespa (2019), Danz, Wilson \& Vesterlund (2022)
- MPL: Holt \& Smith (2016), Healy (2018)

The Mechanism Interfaces: MPL

Q3: What do you think is the probability (from 0% to 100%)
that a RED marble will be drawn?
60 \%

Time remaining: 199 PARTNER: current choice: $\square \square \square$ locked in
Pause timer: \square Skip 30s
Pause timer: Skip 30s

Your answer to Q3 determines what you choose in each row below.
One row will be chosen at random for payment.

Pick:	Option A	OR Option B	
Row 57:	($\$ 8$ if RED is drawn	OR $\bigcirc \$ 8$ with probability 57%	-
Row 58:	- $\$ 8$ if RED is drawn	OR $\bigcirc \$ 8$ with probability $\mathbf{5 8} \%$	
Row 59:	($\$ 8$ if RED is drawn	OR $\bigcirc \$ 8$ with probability $\mathbf{5 9 \%}$	
Row 60:	($\$ 8$ if RED is drawn	OR $\bigcirc \$ 8$ with probability 60%	
Row 61:	\$8 if RED is drawn	OR $\bigcirc \$ 8$ with probability 61%	
Row 62:	\$8 if RED is drawn	OR $\$ 8$ with probability 62%	
Row 63:	\$8 if RED is drawn	OR $\$ 8$ with probability 63%	
$0 \quad \text {, }$	ค...		-

Remember: you maximize your overall probability of getting \$8
when you report truthfully.
Confirm and lock in your choices:
Lock In Your Choices

Link

Note: subiects saw the same nhrase in all three treatments

The Mechanism Interfaces: BSR

Confirm and lock in your choices:
Lock In Your Choices

The Mechanism Interfaces: NoInfo

Q3: What do you think is the probability (from 0% to 100%) that a RED marble will be drawn? 60%
Time remaining: 199 PARTNER: current choice: $\square \square$:locked in
Pause timer: $\boldsymbol{\square}$ Skip 30s

Remember: you maximize your overall probability of getting $\$ 8$ when you report truthfully.

Confirm and lock in your choices:
Lock In Your Choices

Link

Note: subjects saw the same phrase in all three treatments

Teams Interface

Q1: Now what do you think is the probability (from $\mathbf{0 \%}$ to 100%) that the RED JAR was chosen?

30 \%

Time remaining: 194 PARTNER: current choice: Pause timer:Skip 30s

CHAT WINDOW

Partner's ID: 112-380
Your ID: 112-381
hello!
what probability should we put in?
um... you do realize that I'm you, right?
you're just creating this fake chat to put into your
presentation
yeah, of course, but you know... just go with it
ummmmm. 50% ???

112-380 moved on to Problem \#2 of 5
112-381 moved on to Problem \#2 of 5
how about on this problem? 33% ?
why are you still doing this? They don't need to see a whole long conversation

- Use chat window to communicate
- Must lock in the same number to proceed
- Can unlock \& change \Rightarrow "Silent agreement"
- If time runs out, one choice is randomly used

Logistics

- Usual OSU subject pool (ORSEE)
- Zoom meeting
- Less control of software environment \Rightarrow missing observations
- INDIV: 1.7\% TEAM: 8.3\%
- Venmo payments (option for in-person)
- \$12 show-up + possible \$8 "bonus." (59% won the bonus)
\# Subjects:

Mechanism:	MPL	BSR	NoInfo
INDIV First:	68	68	63
TEAMS First:	54	54	0
Pooled:	122	122	63

Objective-Easy \#1: \% Correct

\% Correct:

	MPL	BSR	Nolnfo
INDIV:	91.7%	96.6%	92.1%
TEAM:	94.8%	100%	96.4%

MPL seems a little worse. Are they trying to manipulate?

Objective-Easy \#1: Chats

ID\#289	MPL
ID\#295	
sorry I put wrong answer for 3	
$\mathbf{1 2 \| 2 0 \| 5 0 \%}$	$\mathbf{1 2 \| 2 0 \| 5 0 \%}$

Objective-Easy \#2: \% Correct

MPL BSR NoInfo

INDIV: 91.5\% 84.8\% 93.7\%
TEAM: 98.3\% 93.1\% 100\%

Now BSR seems a little worse?

Objective-Easy \#2: Chats

ID\#390 MPL	ID\#391
so theoretically it's 50 right but i think i said 48 last time just	
bc I'm in stats rn and we just did probability stuff about	
how smaller sample sizes are further from the probability	
so flipping it once might be 60-40 but 100 times is closer	
to 50-50	
but ya I'm good w just 50	
makes sense	
sure	
$\mathbf{4 9 \%}$	

Objective-Easy \#2: Chats

ID\#257	BSR	ID\#
id say 60		
cause heads is always more likely		
Thats just false		
55 is a compromise		
Which is also wrong but whatever		
55\%		55\%

ID\#357	BSR	ID\#365
(no chat)		
75%		75%

Objective-Easy \#3: \% Correct

\% Correct:

MPL BSR NoInfo

$\begin{array}{llll}\text { INDIV: } & 69.2 \% & 83.9 \% & 74.2 \% \\ \text { TEAM: } & 74.6 \% & 86.1 \% & 92.6 \%\end{array}$

Objective-Easy \#3: Chats

ID\#343	MPL	ID\#345		
well if it was 100, 0 and 50 the median would be 50 but its 60 and so id go w like 55?				
$\mathbf{5 5 \%}$				yeah

ID\#352	MPL
	ID\#353
55	I did 60
	55 is good
$\mathbf{5 5 \%}$	

Objective-Easy \#3: Chats

ID\#197	BSR		ID\#202
		what do	u think
hmm i don't remember what i said but maybe like 75 ? i'm not sure at all			
love it			
75\%		75\%	

ID\#302	BSR	ID\#308
$80 ?$		
yeah		
$\mathbf{8 0 \%}$		$\mathbf{8 0 \%}$

Absolute Error by Treatment

Abs. Err by Difficulty: Objective Questions

Chat Encoding

Two Types of Evidence of IC Failures:

Calculate Playing with the calculator

- May not end up deviating from their belief

Deviate Deviate from stated belief

- May not specify why they're deviating

Two independent chat encoders

Chat Encoding

Two Types of Evidence of IC Failures:

Calculate Playing with the calculator

- May not end up deviating from their belief Deviate Deviate from stated belief
- May not specify why they're deviating

Team-level data:			
Mechanism:	MPL	BSR	Nolnfo
Calculate	1	10	0
Deviate	1	1	0
Both	0	1	0

Chat Encoding

Two Types of Evidence of IC Failures:
Calculate Playing with the calculator

- May not end up deviating from their belief

Deviate Deviate from stated belief

- May not specify why they're deviating

Mechanism: Question:	Question-level data:MPL						Nolnfo All
	Obj-E	Obj-H	Subj	Obj-E	Obj-H	Subj	
Calculate	\bigcirc	o	1	1	4	10	0
Deviate	1	0	0	0	0	1	0
Both	0	0	0	0	0	1	0

Calculate \& Deviate: BSR

Capital of Australia

Deviate: MPL

Mean of Easy Spinner

Not Flagged: MPL

12/20/60\%			
ID\#352	MPL		ID\#353
	60\%		
12 red marbles, 20 total, so 60\%			
Yea but I am thinking should we really put the correct number for probability			
I mean yeah ithink Although its random, its the best "odds" then			
			alright
60\%		60\%	

Calculate: BSR

Capital of Australia

ID\#407	BSR		ID\#414
hi			
i noticed that the higher you make their percentage, the higher our probability percentage gets			
yeah that's true			
but the closer to 50, the more equal the probs			
i say we go for a big one			
85		85	

Calculate: BSR

Mean of Hard Quiz Score

Calculate: BSR

Mean of Hard Quiz Score

ID\#299 BSR	ID\#303
40 technically gives the best odds ok	
$\mathbf{4 0}$	
$\mathbf{4 0}$	

Calculate: BSR

Capital of Australia

ID\#359 BSR
this was one i wasnt sure
i originally thought a high number
i put 90\% but idk
i did 48 last time but we can jack up one of the probabilities
id do 90
Isnt it Syndey? that is pretty well known right? because it gives us 55\% chance of getting red and yes it is sydney everyone knows that because of finding nemo lol
$\mathbf{9 0}$

$$
\text { (90\% } \Rightarrow \text { Right: 55\%, Wrong: 15\%) }
$$

The Story

- Nolnfo performs just as well when easy, worst when hard
- Chats conclude they're not successfully manipulating
- Maybe slightly more attempts in BSR?
- Implication: Mechanism details can be distracting or useful
- Easy problems: details get in the way, \uparrow mistakes
- Harder problems: details maybe help focus, \downarrow mistakes

The Pittsburgh Paper

Danz, Vesterlund, Wilson (AER 2022)

Easy Task misreport \%:

- We had $<10 \%$ at 0.5 and 0.6
- Why do they see misreporting \& pull-to-center???

Danz Et Al. Choice Interface

Guess the chance that the selected urn is the Red Urn

Chance of the Red Urn: 30\%

If the selected urn is the Red Urn, your chance of winning $\$ 8$ is 51.00%.

If the selected urn is the Blue Urn. your chance of winning $\$ 8$ is 91.00%.

- Clickable slider \Rightarrow inexact answers \Rightarrow pull to center??
- True probability too small??
- Changes on every screen
- More susceptible to distraction by payment info?

Our Choice Interface: Nolnfo

What do you think is the probability (from 0% to 100%) that the RED JAR was chosen?
\square

Our Choice Interface: BQSR

The computer will roll a 10 -sided die to choose one of these two jars. The Red Jar is chosen if the die comes up 1 through 7 .

3 in 10

If I think the probability of the Red Jar is then my chances of getting $\$ 3$ would be:

Our Choice Interface: MPL

3 in 10
7 in 10
If I think the probability of the Red Jar is \square \%
then my choices would be:

Pick:	Option A OR Option B	
Row 0:	S 53 if the Red Jar is chosen or 53 with probsbility 0%	-
Row 1:	O 53 if the Red Jar is chosen or $\$ 3$ with probability 1%	
Row 2:	O 53 if the Red Jar is chosen or ${ }^{\text {a }} 33$ with probability 2%	
Row 3:	O 53 if the Red Jar is chosen or ${ }^{\text {a }} 33$ with probability 3%	
Row 4:	O 53 if the Red Jar is chosen or 53 with probability 4%	
Row 5:	O 53 if the Red Jar is chosen or 53 with probability 5%	
Row 6:	S 53 if the Red Jar is chosen or 53 with probability 6%	
Row 7:	S 83 if the Red Jar is chosen or ${ }^{\text {a }} 33$ with probability 7%	\checkmark

Remember: you maximize your overall probability of getting $\$ 3$
when you report truthfully.

Instructions Only

"Instructions-Only" Treatment

How I would actually do elicitation:

- Mechanism details in Sinstructions
- No details on decision screens

Details

Prolific + Qualtrics

US adults 18+
3 comprehension Q's

	Total n	\% Pass Comp. Test
MPL	99	92%
BQSR	99	86%
MPL-InstrOnly	100	90%
BQSR-InstrOnly	101	95%
NoInfo	103	98%
	χ^{2} test p-value: 0.015	

Robust Replication Results

Rate of Misreporting
100\%

80\%

60\%

40\%

Differences?

"Robust replication" vs. "exact replication"

Differences:

1. Pitt Lab adults vs. Prolific US adults
2. Clickable slider vs. text input
3. Different illustrations of the question
4. We scaled BQSR to make expected payment $=$ MPL
5. Instructions similar, not the same
6. Different calculator interfaces

A Non-IC Mechanism

Recall Linear Scoring Rule (LSR):

$$
\begin{array}{cc}
S(q, 0)=1-q & S(q, 1)=q \\
q^{*}=0 \text { if } p<50, a^{*}=100 \text { if } p>50
\end{array}
$$

A Non-IC Mechanism

Why test this?

1. Validating the chat methodology

- They should deviate...
- so do we see them chat about it?

2. Does incentive compatibility even matter?

- Maybe they don't pay attention!

A Non-IC Mechanism

Preliminary results:

- Chat data:
- Out of $30+$ subjects, only one mentions it
- And their partner dismisses it!
- Choice data:
- INDIV: a few more cases of 100 and o!!
- TEAM: no differences

I can’t get people to lie!!!
Really don't replicate Danz et al. (2022)

Tangential Results

Errors in Bayesian Updating

- One Blue Draw:
- $\operatorname{Pr}(R \mid b)=\operatorname{Pr}(R) * \operatorname{Pr}(b \mid R) .17 \%$
- Marble draw is uninformative. 50%
- Two Blue Draws:
- $\operatorname{Pr}(R \mid b b)=\operatorname{Pr}(R) * \operatorname{Pr}(b \mid R) * \operatorname{Pr}(b \mid R) .6 \%$
- Second draw gives no new info. Same as one.
- Marble draws are uninformative. 50\%
- Second draw was with replacement. o\%

Does The Truth Win?

"Truth-Wins" Norm:

2 Right: Both players were correct in INDIV
1 Right: One player was correct in INDIV
Team Right: Both players correct in TEAM ($n=73$ teams)

Does The Truth Win?

Team Right|2 Right:
26/29
Team Right|1 Right: 29/42
Team Right|o Right:
6/23

16/21
24/41
8/32

7/8
1 BLUE

26/47
3/39

Aggregating Beliefs

1. Prediction Markets

- Double-auction w/ Arrow securities

2. Market Scoring Rules
3. Parimutuel Betting Markets
4. The Delphi Method
5. Bayesian Truth Serum

Prediction Markets

- Double auction w/ Arrow securities (\$1 if E)
- Wave of popularity: Wolfers and Zitzewitz [2004]
- Iowa Electronic Markets [Berg et al., 1996]
- TradeSports \& InTrade
- In-house markets
- Google [Cowgill et al., 2009]
- HP [Ho and Chen, 2007]
- DARPA Policy Analysis Market [Hanson, 2007]
- Theory problem: does Walrasian equilibrium really aggregate info?
- Manski [2006]: No
- Other models: yes (cite needed!)

Market Scoring Rules

Hanson [2003], Ledyard et al. [2009]

- Start with public distribution p_{o}
- Player i moves it to some p_{1}
- Paid $S\left(p_{1}, x\right)-S\left(p_{o}, x\right)$
- IC since $S\left(p_{0}, x\right)$ doesn't depend on p_{1}
- Except for dynamic incentives...
- Player i "buys out" previous player

Pari-Mutuel Betting

- Bettor i bets $b_{i j}$ on horse j
- If horse k wins, bettor i gets

$$
\underbrace{\left(\sum_{i j} b_{i j}-T\right)}_{\text {net proceeds after take } T} \underbrace{\frac{b_{i k}}{\sum_{\iota} b_{\iota k}}}_{i^{\prime} \text { bet share on } k}
$$

- Koessler et al. [2002]: fully-revealing BNE if simultaneous, not seq.
- Behavioral observations:
- Mirages: Camerer and Weigelt [1991]
- Favorite-Longshot Bias: Snowberg and Wolfers [2006]
- End-Of-Day Risk Seeking (Camerer?)

Iterated Polls/Delphi Method

Simple procedure:

1. Privately ask everyone's prior
2. Reveal all priors (or aggregate) to everyone
3. Players update
4. Repeat m times (or until convergence)
5. Pay everyone via scoring rule for final p

- Naive play gives info aggregation
- Dynamic incentives? McKelvey and Page [1990]
- "Last moves" are incentive compatible

An Experimental Test

Healy et al. [2010]

- Compare DA, MktSR, Parimutuel, \& Poll
- Thin markets: $n=3$.
- $|\Omega|=2$ vs. $|\Omega|=8$, Traders see different \# of signals

Signal structure (common info):
Table 1 Distribution f for the Two-State Experiments

θ	$f(\theta)$	$f(H \mid \theta)$	$f(T \mid \theta)$
X	$1 / 3$	0.2	0.8
y	$2 / 3$	0.4	0.6

Table 2 Distribution f for the Eight-State Experiments

θ	$f(\theta)$	$T T T$	$T T H$	THT	THH	HTT	HTH	HHT	$H H H$
$X Y Z$	$1 / 6$	0.320	0.213	0.160	0.107	0.040	0.027	0.080	0.053
$X Z Y$	$1 / 6$	0.320	0.160	0.213	0.107	0.040	0.080	0.027	0.053
$Y X Z$	$1 / 6$	0.320	0.213	0.040	0.027	0.160	0.107	0.080	0.053
$Y Z X$	$1 / 6$	0.320	0.040	0.213	0.027	0.160	0.080	0.107	0.053
$Z X Y$	$1 / 6$	0.320	0.160	0.040	0.080	0.213	0.107	0.027	0.053
$Z Y X$	$1 / 6$	0.320	0.040	0.160	0.080	0.213	0.027	0.107	0.053

An Experimental Test

Measures of Performance:

Figure 2 Bayes-Inconsistent Outcomes with (A) Two States and
(B) More Than Two States

1. l_{2} distance from "full info posterior"
2. Bayes-Inconsistency

An Experimental Test

Distance to full-info posterior:

An Experimental Test

Distance to Bayes-consistency $(|\Omega|=8)$:

Table $10 \quad p$-Values of Mechanism-by-Mechanism Wilcoxon Tests Comparing the Severity of Bayes-Inconsistency, as Measured by the Distance Between the Mechanism Output Distribution and the Convex Hull of the Limit Posteriors

Eight states	Avg. dist	Dbl. auction	Mkt. scoring rule	Pari-mutuel	Poll
Avg. distance	-	0.447	0.362	0.398	0.312
Dbl. auction	0.447	-	0.001	0.107	< 0.001
Mkt. scoring rule	0.362	-	-	0.180	0.257
Pari-mutuel	0.398	-	-	-	0.008
Poll	0.312	-	-	-	-

Note. 10\% Significance ordering: DbIAuc \succeq Pari \succeq MSR \succeq Poll, DblAuc \succ MSR \succeq Poll, DblAuc \succeq Pari \succ Poll.

An Experimental Test

Measures of Performance:

Figure 1 Mirages with (A) Two States and (B) More Than Two States

(B)

3. Mirages
4. No trade!

An Experimental Test

Mirages and No Trade (| $\Omega \mid=8$):

Table 7 Number of Periods in Each Session (Out of 8) and Number of Periods Total (Out of 32) in Which Each Type of Catastrophic Failure Occurs in the Eight-State Experiments

	Dbl. auction		Mkt. scoring rule		Pari-mutuel		Poll	
	(S5, S6, S7, S8)	Tot.	(S3, S4, S1, S2)	Tot.	(S1, S2, S3, S4)	Tot.	(S7, S8, S5, S6)	Tot.
No trade	$(0,0,0,0)$	0	$(0,0,0,0)$	0	$(0,0,8,1)$	9	$(0,0,0,0)$	0
Mirage	$(3,1,4,4)$	12	(1, 1, 2, 3)	7	$(3,1,0,3)$	7	(0, 1, 2, 0)	3
None	($5,7,4,4$)	20	(7,7,6,5)	25	$(5,7,0,4)$	16	$(8,7,6,8)$	29

Note. Every mechanism is Bayes-inconsistent in every period.

An Experimental Test

Summary:

Table 11 Summary of Results

Summary	Two states				Eight states			
	Error	No trade	Mirage	Inconsistent	Error	No trade	Mirage	Inconsistent
Dbl. auction	\checkmark	\checkmark	\checkmark	\checkmark	\times	\checkmark	\times	\times
MSR	**	\checkmark						
Pari-mutuel	\checkmark	\times	\checkmark	\checkmark	\times	\times *	\checkmark	\times
Poll	\checkmark	\checkmark	\checkmark	$\times{ }^{*}$	\checkmark	\checkmark	\checkmark	\checkmark

Notes. A \checkmark indicates the mechanism was not significantly outperformed by some other mechanism in that measure and an \times indicates that it was. An \times^{*} denotes either marginal significance (all p-values less than but close to 0.10) or cases where proper statistical tests were unavailable.

Bayesian Truth Serum

Prelec [2004]

Method to get truthful answers to a survey question.

- Agents: $i \in\{1, \ldots, n\}$.
- Options/answers: $j \in\{1, \ldots, m\}$
- Each i announces:

1. their answer $t_{i} \in\{1, \ldots, m\}$
2. their distribution of other's answers $p_{i}(\cdot) \in \Delta(\{1, \ldots, m\})$

- Define:
- $l_{i j}=1$ iff $t_{i}=j$
- $\bar{x}_{j}=\frac{1}{n} \sum_{i} l_{i j}$

Actual average frequency of j

- $\bar{y}_{j}=\exp \left(\frac{1}{n} \sum_{i} \log \left(p_{i}(j)\right)\right)$

Geometric average predicted frequency of j

Bayesian Truth Serum

Incentives:

- "info score" for each option: $\iota(j)=\log \left(\frac{\bar{x}_{j}}{\bar{y}_{j}}\right)$
- prediction penalty: $\rho\left(p_{i}\right)=\sum_{j=1}^{m} \bar{x}_{j} \log \left(\frac{p_{i}(j)}{\bar{x}_{j}}\right)$

Payoff:

$$
\pi\left(t_{i}, p_{i}(\cdot)\right)=\iota(j)+\alpha \rho\left(p_{i}\right)
$$

Theorem: Assume opinions (t_{i}) are exchangeable and n is large. Then truth-telling is a Bayes-Nash equilibrium. Furthermore, among equilibria, it is the equilibrium that maximizes the expected info score

References: i

Literatur

Joyce Berg, Robert Forsythe, and Thomas Rietz. What makes markets predict well? Evidence from the Iowa Electronic Markets. In Understanding Strategic Interaction: Essays in Honor of Reinhard Selten. Springer, New York, 1996.

Colin F. Camerer and Keith Weigelt. Information Mirages in Experimental Asset Markets. Journal of Business, 64(4):463-493, 1991.

Bo Cowgill, Justin Wolfers, and Eric Zitzewitz. Using Prediction Markets to Track Information Flows: Evidence from Google. 2009.

Robin Hanson. Combinatorial Information Market Design. Information Systems Frontiers, 5(1):107-119, 2003.

References: if

Robin Hanson. The Policy Analysis Market: A Thwarted Experiment in the Use of Prediction Markest for Public Policy. Innovations, 2(3):73-88, 2007.

Paul J. Healy, Sera Linardi, J. Richard Lowery, and John O. Ledyard. Prediction Markets: Alternative Mechanisms for Complex Environments with Few Traders. Management Science, 56(11):1977-1996, November 2010. ISSN 0025-1909. doi: 10.1287/mnsc.1100.1226.

Teck-Hua Ho and Kay-Yut Chen. New Product Blockbusters: The Magic and Science of Prediction Markets. California Management Review, 50(1): 144-158, October 2007. ISSN 0008-1256, 2162-8564. doi: 10.2307/41166420.
Frederic Koessler, Charles Noussair, and Anthony Ziegelmeyer. Parimutuel Betting under Asymmetric Information. Journal of Mathematical Economics, 44:733-744, 2002.

John O. Ledyard, Robin D. Hanson, and Takashi Ishikida. An Experimental Test of Combinatorial Information Markets. Journal of Economic Behavior and Organization, 69:182-189, 2009.

References: ifi

Charles F. Manski. Interpreting The Predictions of Predictions Markets. Economics Letters, 91(3):425-429, 2006.
Richard D. McKelvey and Talbot Page. Public and Private Information: An Experimental Study of Information Pooling. Econometrica, 58(6): 1321-1339, 1990.
Dražen Prelec. A Bayesian truth serum for subjective data. Science (New York, N.Y.), 306(5695):462-466, 2004.

Erik Snowberg and Justin Wolfers. Explaining the Favorite-Longshot Bias: Is it Risk-Love, or Misperceptions? October 2006.
Justin Wolfers and Eric Zitzewitz. Prediction Markets. Journal of Economic Perspectives, 18(2):107-126, 2004.

