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Overview

• We often want to elicit the subject’s belief about an event
• Opponent’s action in a game
• Own absolute performance on a quiz/task
• Performance in the top half
• Guess the performance of someone else
• Bayesian updating tests

• But there are many ways proposed to do this!
• Quadratic scoring rule
• Logarithmic scoring rule
• Spherical scoring rule
• Binarized scoring rule
• BDM for probabilities

• Auction framing
• Two random variables framing
• MPL framing
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Our Framework

• Always specify your framework! Savage? Segal? AA?
• Savage: need entire ⪰ to learn beliefs

• That’s too many questions!
• ...and requires probabilistic sophistication

• vNM/Segal: no subjective beliefs!
• AA: can compare against objective lotteries

• Having “belief” p means I’m indifferent between:
1. Getting $x if E occurs
2. Getting $x with probability p

• Call the indifference point p(E, x)
• Stakes independence (analogue of P4):

• p(E, x) = p(E, y) = p(E) ∀x, y > 0
• Question: Which AA/Seo axioms give this?
• Do we really even need this??
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Setup

• Random variable X : Ω → R

• Subject has belief p(X = x) for each realization x
• Example: probability of event E

• Let XE = 1 if ω ∈ E, XE = 0 otherwise (indicator)
• p(E) := p(XE = 1)
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Proportions vs. Probabilities

Application: What fraction of opponents chose Cooperate?
Two options:

1. What fraction of people chose C?
• Call the true fraction ρ ∈ [0, 1]
• Subject has a belief over all of [0, 1]
• Their belief is an entire PDF/CDF!!
• Later: we can elicit mean, median, mode, etc.

2. What’s the probability a random opponent chose C?
• Now the truth is either 0 or 1
• Subject has a belief p ∈ [0, 1]
• Here we just elicit a single probability

5



Scoring Rules

• Used to elicit p(E)
• Subject announces q
• State-contingent payment:

1. $S(q, 1) if XE = 1
2. $S(q,0) if XE = 0

• True belief: p
• Expected payoff: G(q|p) = pS(q, 1) + (1 − p)S(q,0)
• Scoring rule S is proper if

p ∈ argmax
q

G(q|p)

and strictly proper if

p = argmax
q

G(q|p)

• Under risk-neutral EU, proper ⇒ IC
• Let G(p) = G(p|p) (used later) 6



Example: Quadratic Scoring Rule

The original scoring rule: Brier (1950)

• S(q, 1) = $1 − $(1 − q)2

• S(q,0) = $1 − $(0 − q)2

• General: S(q, XE) = 1 − (XE − q)2

G(q|p) = p[1 − (1 − q)2] + (1 − p)[1 − (0 − q)2]

= −p(1 − q)2 − (1 − p)q2

∂G(q|p)
∂q = 2p(1 − q)− 2(1 − p)q = 0

p(1 − q) = (1 − p)q
q∗ = p

Can rescale it and it’s still strictly proper:

• S(q, 1) = β1 − α(1 − q)2

• S(q,0) = β0 − α(0 − q)2 7



Theory: Savage (1971)

(1954) (1971)
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Theory: Savage (1971)

$0

$100

$0

$100

Pay
if ¬E

Pay
if E

Want to know subject’s Pr(E) for some event E
Pay using state-contingent payments (‘bets’)
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Theory: Savage (1971)
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Example: A $100 bet on E

Example: A $100 bet on ¬E
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Theory: Savage (1971)
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Theory: Savage (1971)

0 1“True” Belief (p)
$0

$100

$0

$100

Pay
if ¬E

Pay
if E

Bet
on E

0.6“True” belief:

$60

Bet on ¬E

$40

How you evaluate these depends on your “true” belief

Assume (for now) risk-neutral EU
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Theory: Savage (1971)

0 1$0

$100

$0

$100

Pay
if ¬E

Pay
if E

0.5Bet ¬E Bet E

These two bets separate beliefs into two groups

Revelation Principle: “Is p ≤ 0.5 or is p ≥ 0.5?”
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Theory: Savage (1971)

0 1$0

$100
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$75 $75

Bet ¬E $75 Bet E

We can get a finer elicitation by adding a constant bet!

But what about risk aversion...?
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Theory: Savage (1971)
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Risk neutral

Risk preferences ⇒ lack of identification

;
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;
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Theory: Savage (1971)

Pay
if ¬E

Pay
if E

0 1u($0)

u($100)
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u($75) u($75)

Bet ¬E $75 Bet E

u($75) u($75)

Bet ¬E $75 Bet E

u($75) u($75)

Bet ¬E Bet E

Risk seeking
Risk preferences ⇒ lack of identification; 14



Theory: Savage (1971)

Pay
if ¬E

Pay
if E

0 1u($0)

u($100)

u($0)

u($100)

u($0.00)

u($1.00)

u($0.00)

u($1.00)

0 · u($8)

1.00 · u($8)

0 · u($8)

1.00 · u($8)

0%

100%
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100%

u($75) u($75)

u($0.75) u($0.75)0.75 · u($8) 0.75 · u($8)75% 75%

Bet ¬E $75 Bet E

Savage (1971) offers 2 solutions...
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Theory: Savage (1971)
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Bet ¬E $75 Bet E

Solution #1: make payments small ($1.00)
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Theory: Savage (1971)
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Solution #2: pay in probabilities
Payment = % chance of winning $8 (e.g.) 15



Theory: Savage (1971)
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“Binarized” payments (Hossain & Okui 2013)
Savage (1971) → C. Smith (1961) → Savage (1954) 15



Theory: Savage (1971)

Pay
if ¬E

Pay
if E

0 1

u($0)

u($100)

u($0)

u($100)

u($0.00)

u($1.00)

u($0.00)

u($1.00)

0 · u($8)

1.00 · u($8)

0 · u($8)

1.00 · u($8)

0%

100%

0%

100%

u($75) u($75)u($0.75) u($0.75)0.75 · u($8) 0.75 · u($8)

75% 75%

Bet ¬E $75 Bet E

Solution #3: estimate risk prefs & back out p
Offerman et al. (2009), Andersen et al. (2014), etc. 15



Theory: Savage (1971)

Pay
if ¬E

Pay
if E

0 10%

100%

0%

100%

75% 75%

0.6

60%

Still assuming linear preferences: (0.6 × 100%) + (0.4 × 0%) = 60%
Booooo
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Theory: Savage (1971)
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if ¬E
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Still assuming linear preferences: (0.6 × 100%) + (0.4 × 0%) = 60%
“Subjective-Objective Reduction” (aka Binary Reduction)
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Theory: Savage (1971)

Pay
if ¬E

Pay
if E

0 10%
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0%

100%

75% 75%

0.6

60%

“Subjective-Objective Reduction”
Experimental evidence is pretty negative (Selten et al. 1999, e.g.)
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Theory: Savage (1971)

Pay
if ¬E

Pay
if E

0 10%

100%

0%

100%

75% 75%

0.6

60%

“Subjective-Objective Reduction”
...except in the case of scoring rules (Hossain & Okui 2013, e.g.)
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Theory: Savage (1971)

Pay
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if E
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0.075 0.275 0.50 0.725 0.925

84%
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84%

0.075 0.25 0.400.500.60 0.75 0.9250.60

G(p)

Now, let’s add even more options to the menu...
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Theory: Savage (1971)
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Now, let’s add even more options to the menu...
↑ # bets → can elicit an exact p 17



Theory: Savage (1971)

Pay
if ¬E

Pay
if E

0 10%

100%

0%

100%

75% 75%

0.125 0.50 0.825

91%

51%51%

91%

0.075 0.275 0.50 0.725 0.925

84%

64%64%

84%

0.075 0.25 0.400.500.60 0.75 0.925

0.60

G(p)

Convex upper envelope: G(p)
Each line is a tangent 17



Theory: Savage (1971)

Pay
if ¬E

Pay
if E

0 10%
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S(0.4,0)

S(0.4, 1)

0.4

S(0.6,0)

S(0.6, 1)
S(0.25,0)

S(0.25, 1)S(0.75,0)

S(0.75, 1)

G(p)

Scoring Rule: Announce q.
If ¬E, pay S(q,0). If E, pay S(q, 1).
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Theory: Savage (1971)
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Scoring Rule: Announce q.
Announcing q ̸= p gives a lower (1 − p) · S(q,0) + p · S(q, 1)
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Theory: Savage (1971)
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Booooo
G(p) = (1 − p) · S(p,0) + p · S(p, 1)
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Theory: Savage (1971)
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Theorem (Savage/Schervish): A mechanism S(p, XE) is proper iff
the resulting lines are the tangents of a convex function G(p).
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Theory: Savage (1971)
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Any convex G(p) will work.
Binarized Quadratic scoring rule (BSR), logarithmic, spherical...
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Theory: Savage (1971)
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S(q,0) = (1 − (0 − q)2)

S(q, 1) = (1 − (1 − q)2)
18



Issues With the Quadratic Scoring Rule

Pay
if ¬E

Pay
if E

0% 0%

64%

84%

0.40

72%

G(p)

Concern #1: IC calculation requires S-O Reduction
(0.4 · 84%) + (0.6 · 64%) = 72%
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Issues With the Quadratic Scoring Rule
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if ¬E

Pay
if E

0% 0%

99.75%

9.75%

0.05

93.75%

43.75%

0.25

19%
27.75%
36%

G(p)

Concern #2: S′(p,0) vs S′(p, 1)
See Danz, Wilson & Vesterlund (2020), e.g.
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Issues With the Quadratic Scoring Rule
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0.05
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43.75%

0.25

19%
27.75%
36%

G(p)

But see FOC: pS′(p, 1) + (1 − p)S′(p,0) = 0
⇒ p/(1 − p) = −S′(p,0)/S′(p, 1)
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Issues With the Quadratic Scoring Rule
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0% 0%

99.75%
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43.75%

0.25

19%
27.75%
36%

G(p)

Relative slopes are pinned down by IC!
Corollary: For any IC scoring rule, S′(p,0)/S′(p, 1) = −p/(1 − p).
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An Alternative Visualization

s1 = Pr($8|E)

Pr($8|¬E) = s0

1

1
45◦

u(·)

R(·|0.6)

(0.6,0.6)

(1,0)

“Have a belief of 0.6”: u(1,0) = u(0.6,0.6)
Define R(s1, s0|p) = p · s1 + (1 − p) · s0. Linear level curves.
S-O Reduction: Have belief p and u(s1, s0) = R(s1, s0|p) 20



The BQSR

s11

1

s0

q∗ = 0.6 = p
s(0.6,0)

s(0.6, 1)

u(·) ≡ R(·|0.6)

Binarized Quadratic Scoring Rule forms quarter-circle as you vary q
Maximizing point given u(·) ≡ R(·|0.6) is q∗ = 0.6
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The BQSR

s11

1

s0

q∗ = 0.6 = p
s(0.6,0)

s(0.6, 1)

u(·) ≡ R(·|0.6)

Any strictly concave shape corresponds
to some proper scoring rule
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Necessity of S-O Reduction

s11

1

s0 u(·)

BQSR 2 q∗ = 0.6 = p

BQSR 1

q∗ = 0.85 > p
p = 0.6

Know: If S-O Reduction then every scaled BQSR is IC
If u(·) ̸≡ R(·|p) then ∃ scaled BQSR that’s not IC.
Proposition: If every scaled BQSR is IC then u()̇ ≡ R(·|p)
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More Than One Event

• Suppose multiple events E1, E2, . . . , Em

• Want to elicit p = (p1, . . . ,pm)

• Let X = i iff ω ∈ Ei
• Announcement: q = (q1, . . . ,qm)

Quadratic Scoring Rule (scaled to [0, 1]):

S(q, i) = 1 − m
m − 1

m∑
j=1

(1{X=j} − qj)
2

Scaled BQSR:

S(q, i) = βi − α

m∑
j=1

(1{X=j} − qj)
2

0 < βj ≤ 1 ∀j

0 < α ≤ m − 1
m min

j
βj 23



Other Scoring Rules

(These are not necessarily scaled to [0, 1])

1. Spherical Scoring Rule (Roby 1964)

S(q, i) =
q2

i√∑m
j=1 q2

j )

2. Generalized Spherical Scoring Rule (λ > 1)

S(q, i) =
qλ

i
(
∑m

j=1 qλ
j )

(λ−1)/λ

3. Logarithmic Scoring Rule

S(q, i) = log qi

(goes to −∞, can’t be scaled to [0, 1])
24



Comparison of Scoring Rules
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(Non-Proper) Linear Scoring Rule

Pay
if ¬E

Pay
if E

0 10%
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80%

20%
30%

70%

90%

10%

70%

30%

60%

40%
50% 50%
40%

60%

20%

80%

10%

90%G(p)

S(q,0) = 1 − q S(q, 1) = q
Same extremes as QSR
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S(q,0) = 1 − q S(q, 1) = q
But now symmetric slopes
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(Non-Proper) Linear Scoring Rule
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if ¬E
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60%

40%
50% 50%
40%
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80%
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90%G(p)

Convex upper envelope: G(p)
q∗ = 0 if p < 50, q∗ = 100 if p > 50
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Characterizations of the QSR

Selten (1998, ExpEcon v.1)

• Symmetry: S(q, i) = S(π(q), π(i)) for any permutation π

• Elongation Invariance: S((q1, . . . ,qn), i) = S((q1, . . . ,qn,0), i)
(adding a null event)

• Neutrality: G(q|p) = G(p|q)
• Properness: S is proper

Theorem: A scoring rule satisfies these 4 axioms iff it is a scaled QSR
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Characterizations of the QSR

• Suppose we impose a grid G = {0, 1
k ,

2
k , . . . ,

k−1
k , 1}

• Require each qi ∈ G
• Midpoint Property: Optimal announcement is q∗

i = r
k if and only

if pi ∈ [ r
k − 1

2k ,
r
k + 1

2k ]

• Ensures that the announced point is the closest grid point to the
true belief.

Theorem: The Scaled QSRs are the only proper scoring rules with
the midpoint property
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Characterizations of the QSR

• We want to maximize the incentive not to deviate
• Local incentive not to deviate at q = p

G′′(q = p|p) = G′′(p)

• BQSR has G′′ ≡ 2
• Any binarized rule must have G′(0) ≥ −1, G′(1) ≤ 1

• All lines in the graph must have slope in [−1, 1]
• Thus,

∫ 1
0 G′′(p)dp = G′(1)− G′(0) ≤ 2

• Any other scoring rule has G′′(p) < 2 at some p

Theorem: The (unscaled) BQSR maximizes minp G′′(p)

Related: Schlag, Tremewan & van der Weele (2015)
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A Different Scoring Rule

Pay
if ¬E

Pay
if E

0%

50% 50%

0%

100%

42%

82%

32%

92%G(p)

A new IC scoring rule
G(p) = 1

2 (1 + q2)

30



A Different Scoring Rule

Pay
if ¬E

Pay
if E

0%

50% 50%

0%

100%

42%

82%

32%

92%G(p)
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A Different Scoring Rule

Pay
if ¬E

Pay
if E

0%

50% 50%

0%

100%

42%

82%

32%

92%G(p)

Magic Trick: I’ll show this scoring rule can be IC
without relying on S-O Reduction
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Breaking Apart Reduction

Consider the S-O-Reduced Pr($8):

p · ( 1
2 (1 − (1 − q)2) +

1
2︸ ︷︷ ︸

S(q,1)

) + (1 − p) · 1
2 (1 − q2)︸ ︷︷ ︸

S(q,0)

=q · p + (1 − q)
(

1
2q +

1
21

)

Booo
Booo

Adding a second objective randomizing device
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S(q,0)
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q : get a $8 bet on E
(1 − q) : get a lottery that pays $8 w/ prob

( 1
2 q + 1

2 1
)

Adding a second objective randomizing device
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Breaking Apart Reduction

q · p + (1 − q)q + 1
2

Imagine 100 rows. Announce q ∈ [0, 100]. Payment:

q


$8 if E $8 w/ prob q + 1%
$8 if E $8w/prob10%

...
$8 if E $8w/prob10%

 = q · p%

(1 − q)



$8 if E $8 w/ prob q + 1%
$8 w/ prob q + 2%

...
$8 w/ prob 99%
$8 w/ prob 100%


= (1 − q) ·

(
1
2q +

1
21

)
︸ ︷︷ ︸

Avg. prob. from q to 1

%
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Breaking Apart Reduction: Multiple Price List

Row# aaaaOption Aaaaa OR Option B
1 $8 if E or $8 w/ prob 1%
2 $8 if E or $8 w/ prob 2%
...

...
...

...
q $8 if E or $8 w/ prob q%

q + 1 $8 if E or $8 w/ prob q + 1%
...

...
...

...
99 $8 if E or $8 w/ prob 99%

100 $8 if E or $8 w/ prob 100%

Equivalently: Choose Option A or Option B
Choice of q determines your choices
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Breaking Apart Reduction: Multiple Price List

Row# aaaaOption Aaaaa OR Option B
1 $8 if E or $8 w/ prob 1%
2 $8 if E or $8 w/ prob 2%
...

...
...

...
q $8 if E or $8 w/ prob q%

q + 1 $8 if E or $8 w/ prob q + 1%
...

...
...

...
99 $8 if E or $8 w/ prob 99%

100 $8 if E or $8 w/ prob 100%

“Multiple Price List” (MPL) version of BDM for probabilities
Holt & Smith (2016), others

33



Breaking Apart Reduction: Multiple Price List

Row# aaaaOption Aaaaa OR Option B
1 $8 if E or $8 w/ prob 1%
2 $8 if E or $8 w/ prob 2%
...

...
...

...
q $8 if E or $8 w/ prob q%

q + 1 $8 if E or $8 w/ prob q + 1%
...

...
...

...
99 $8 if E or $8 w/ prob 99%

100 $8 if E or $8 w/ prob 100%

One row randomly selected for payment
If you lie, you get the less-preferred option on some rows
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Breaking Apart Reduction: Multiple Price List

Row# aaaaOption Aaaaa OR Option B
1 $8 if E or $8 w/ prob 1%
2 $8 if E or $8 w/ prob 2%
...

...
...

...
q $8 if E or $8 w/ prob q%

q + 1 $8 if E or $8 w/ prob q + 1%
...

...
...

...
99 $8 if E or $8 w/ prob 99%

100 $8 if E or $8 w/ prob 100%

One row randomly selected for payment
I.C. as long as subject respects statewise dominance
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Breaking Apart Reduction: Multiple Price List

Row# aaaaOption Aaaaa OR Option B
1 $8 if E or $8 w/ prob 1%
2 $8 if E or $8 w/ prob 2%
...

...
...

...
q $8 if E or $8 w/ prob q%

q + 1 $8 if E or $8 w/ prob q + 1%
...

...
...

...
99 $8 if E or $8 w/ prob 99%

100 $8 if E or $8 w/ prob 100%

Summary: Took a scoring rule, converted it into an MPL
Now IC does not require S-O Reduction!
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What Can Be Listified?

0 10%

100%

0%

100%

MPL

BSR

MPL2

MPL3

G(p)

Proposition: G(p) can be made into an MPL if and only if
1. G′(0) = 0 2. G′(1) = 1 3. G(1) = 1
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100%

0%

100%
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Proposition: G(p) can be made into an MPL if and only if
1. G′(0) = 0 2. G′(1) = 1 3. G(1) = 1
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What Can Be Listified?

0 10%

100%

0%

100%

MPL

BSR

MPL2

MPL3

G(p)

What’s the difference across MPLs?
Varying probability of rows being chosen

34



Superiority of MPLs

We can argue that the MPLs are superior to the BQSRs:

Theorem:

All Scaled BQSRs are I.C.

⇐
⇒

Subjective-Objective Reduction

=⇒
Statewise Dominance

=⇒

MPL is I.C. (regardless of dist’n on rows)
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Equalizing Incentives

0 10%

100%

0%

100%

0.3

MPL

BSR

1
2 BSR

1
2 BSR+ 1

2 0.3

How to equalize incentives across scoring rules?
e.g. suppose we know p = 0.3
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Equalizing Incentives

0 10%

100%

0%

100%

0.3

MPL

BSR

1
2 BSR

1
2 BSR+ 1

2 0.3

How to equalize incentives across scoring rules?
e.g. suppose we know p = 0.3
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Equalizing Incentives

0 10%

100%

0%

100%

0.3

MPL

BSR

1
2 BSR

1
2 BSR+ 1

2 0.3

How to equalize incentives across scoring rules?
Heads: use BSR. Tails: get $8 w/ prob 0.3.
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Equalizing Incentives

• Let X be r.v. representing E
• E ⇒ X = 1
• ¬E ⇒ X = 0

• MPL:
S(p, x) = 1

2 (1 − (x − p)2) +
1
2x

• Suppose researcher’s best guess of p is p0

• Adjusted BSR:

S(p, x) = 1
2 (1 − (x − p)2) +

1
2p0
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• ¬E ⇒ X = 0

• MPL:
S(p, x) = 1

2 (1 − (x − p)2) +
1
2x

• Suppose researcher’s best guess of p is p0

• Adjusted BSR:

S(p, x) = 1
2 (1 − (x − p)2) +

1
2p0

37



Other Statistics of a Distribution

• Consider again general r.v. X
• BSR: S(p, x) =

(
1 − (x − p)2)

• Can we elicit a statistic of p? Ex: mean, median, mode, ...
• Could elicit Pr(X = x) for every possible x... but that’s a lot!
• The (single-report) BSR elicits the subject’s mean for X

• BSR: S(m, x) =
(
1 − (x − m)2)

• Still paying in probabilities
• Still requiring S-O Reduction:

max
m

∑
x

Pr(X = x)(1 − (x − m)2)

• Can we elicit the mean using an MPL?
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MPL for The Mean of X

Row# aaaaOption Aaaaa OR Option B
1 X% chance of $8 or 1% chance of $8
2 X% chance of $8 or 2% chance of $8
...

...
...

...
m X% chance of $8 or m% chance of $8

m+1 X% chance of $8 or m+1% chance of $8
...

...
...

...
99 X% chance of $8 or 99% chance of $8

100 X% chance of $8 or 100% chance of $8

Identical to two-state list: Option A is ($8 if E)
but, now requires linearity: “X% chance” ∼ “E[X]% chance”
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MPL for The Mean of X

Row# aaaaOption Aaaaa OR Option B
1 X% chance of $8 or 1% chance of $8
2 X% chance of $8 or 2% chance of $8
...

...
...

...
m X% chance of $8 or m% chance of $8

m+1 X% chance of $8 or m+1% chance of $8
...

...
...

...
99 X% chance of $8 or 99% chance of $8

100 X% chance of $8 or 100% chance of $8

Now requires linearity: “X% chance” ∼ “E[X]% chance”
but, given that, IC only requires statewise dominance
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Equalizing Incentives with Mean Elicitation

• Researcher’s best guess: mean is µ0, variance is σ2
0

• (Recall: E[X2] = µ2
0 + σ2

0)
• BSR:

S(p, x) =

1
2

(1 − (x − m)2)

+
1
2 (µ

2
0 + σ2

0)

• MPL:
S(p, x) = 1

2 (1 − (x − m)2) +
1
2x2
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Eliciting the Median

• BSR elicits the mean... can we elicit the median?
• Linear scoring rule elicits the median!
• LSR:

S(m, x) = (1 − |x − m|)

• Can this be listified?

41



MPL for The Median of X

Row# aaaaOption Aaaaa OR Option B
1 $8 if X ≥1 or 50% chance of $8
2 $8 if X ≥2 or 50% chance of $8
...

...
...

...
m $8 if X ≥ m or 50% chance of $8

m+1 $8 if X ≥ m+1 or 50% chance of $8
...

...
...

...
99 $8 if X ≥ 99 or 50% chance of $8

100 $8 if X ≥ 100 or 50% chance of $8

Does NOT require linearity
Easily altered to elicit any quantile
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Equalizing Incentives with Median Elicitation

• Suppose researcher’s best guess of the median is µ0.5

• BSR:
S(p, x) =

1
2

(1 − |x − m|)

+
1
2µ0.5

• MPL:
S(p, x) = 1

2 (1 − |x − m|) + 1
2x
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Equalizing Incentives with Median Elicitation

• Suppose researcher’s best guess of the median is µ0.5

• BSR:
S(p, x) = 1

2 (1 − |x − m|) + 1
2µ0.5

• MPL:
S(p, x) = 1

2 (1 − |x − m|) + 1
2x
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Eliciting the Mode

• Eliciting the mode is simple & stark:

S(m, x) = 1x=m

• Generally: elicit most-likely interval of length d
• Announce any [m,m] s.t. m − m = d

S([m,m], x) = 1x∈[m,m]

• Use this if X has many values, since Pr(x = m) ≈ 0 ∀m
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Scoring Rules for Quantiles

• We saw MPLs can be used to elicit quantiles
• Scoring rule for eliciting α quantile (Cervera & Muñoz 1996):

S(m, x) = αm − (m − x)1x≤m

• Median is α = 1/2
• Proof: True distribution is p(x)∫

S(m, x)p(x)dx = αm −
∫ m

0
(m − x)p(x)dx

FOC : α− (m − m)p(m)−
∫ m

0
1 p(x)dx = 0

• Announce m such that
∫ m

0 p(x)dx = α
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Eliciting Confidence Intervals

• We want to elicit the 95% confidence interval
• Separately elicit 2.5% quantile and 97.5% quantile
• Pay one elicitation randomly
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The Lambert Characterization

Lambert, Pennock & Shoham (2008)

• In general, a statistic is a mapping Γ : ∆(Ω) → R

• Examples: mean, median, mode, variance, kurtosis...
• What statistics can be elicited?

Theorem: A statistic Γ can be elicited via a strictly proper scoring
rule if and only if Γ−1(r) is a convex set of distributions for every
possible statistic value r
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The Lambert Characterization

Mean: yes. Variance: no!
48



The Lambert Characterization

Median: yes!
49



The Lambert Characterization

Mode: yes!
50



The Lambert Characterization

E[X2]: yes! (Why do we care?? Next slide...)
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The Lambert Characterization

• We can’t elicit Varp(X) with 1 report
• But we can elicit Ep(X) and Ep(X2)

• Varp(X) = Ep(X2)− Ep(X)2

• Or, suppose we observe two draws X1 and X2 from same dist’n
• Then X1 − X2 is a new r.v.
• We can elicit Ep((X1 − X2)

2)

• Varp(X) = Ep((X1 − X2)
2) (check this)
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Survey of Experimental Results

Schotter & Trevino (2014)
Does IC matter?

1. Nelson & Bessler (1989)
• Only use risk-neutral subjects
• Compare BSR to non-IC Linear SR
• Early periods: same. Later: differences

2. Palfrey & Wang (2009)
• QSR vs LogSR vs LinearSR in games
• Beliefs elicited via IC mechanism are better forecasts
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Survey of Experimental Results

Schotter & Trevino (2014)
Risk aversion and the standard QSR:

1. Armantier & Treich (2013)
• Theoretical predictions for what should happen under risk

aversion
• Observe predicted “flatness” in reports
• No incentives increases variance of reports

2. Offerman & Sonnemans (2004)
• QSR performs same as flat fee

3. Hossain & Okui (2013)
• BQSR outperforms QSR

54



Survey of Experimental Results

Schotter & Trevino (2014)
Do people best-reply to stated beliefs in games?

1. Nyarko & Schotter (2002): yes, BR is most likely
2. Rey-Biel (2009) 3×3 games: yes, 69.4%
3. Blanco et al. (2011) seq. PD: yes
4. Hyndman et al. (2013): yes, even days later
5. Danz et al. (2012) 3×3: yes
6. Ivanov (2011): yes
7. Manski & Neri (2013): yes
8. Costa-Gomes & Weizsacker (2008)

• 14 3×3 games
• Trt: games-then-elicitations vs. both together
• Can we back out beliefs from actions and match stated beliefs?
• Result: NO
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Survey of Experimental Results

Schotter & Trevino (2014)
Does elicitation change subsequent behavior?

1. Nyarko & Schotter (2002): no
2. Costa-Gomes & Weizsacker (2008): no!
3. Ivanov (2011): no
4. Croson (2000) VCM: yes, lower contribution
5. Gachter & Renner (2010) VCM: yes, higher contribution!
6. Rutstrom & Wilcox (2009): yes. estimated parameters of a

learning model vary between QSR and no elicitation
7. Healy (WP): mostly no
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Survey of Experimental Results

Schotter & Trevino (2014)
Does elicitation created hedging problems across tasks?

1. Blanco et al. (2010) seq PD: no
2. Armantier & Treich (2013): very little
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Healy & Kagel

How to test IC of belief elicitation mechanisms?
Problem: We need to know their true belief!

• Usual technique: “Here’s a fair coin. What’s Pr(H)?”
• Problem: too suspicious!
• One solution: Bayesian updating task
• Problem: people aren’t Bayesian!
• Our idea: use team chat to look for evidence of conscious,

intentional manipulation of reports
• Subjects are in a team of two
• Must submit the same belief report
• Chat interface to help them coordinate
• Do they talk about manipulating their report?
• Do they talk about deviating from the truth?
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Experimental Design

MPL

PROB.
5 Qs

MEAN
3 Qs

MEDIAN
3 Qs

PROB.
5 Qs

MEAN
3 Qs

MEDIAN
3 Qs

INDIVIDUALS TEAMS

6 “Blocks”

• Each block has 3 or 5 questions of the same type
• Instructions before each block
• Order of blocks randomized within INDIV and TEAM
• Order of questions randomized within each block
• Three mechanisms: MPL, BQSR, NoInfo

• Each subject sees only one mechanism
• INDIV first vs TEAMS first: no difference 59



The 11 Questions
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How To Present the Mechanisms

“In the first place, the subject must understand the scoring rule...
This is an important reason to present the rule through some
vivid tabular or graphic device...”

–Savage (1971)

• BSR: Wilson & Vespa (2019), Danz, Wilson & Vesterlund (2022)
• MPL: Holt & Smith (2016), Healy (2018)
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The Mechanism Interfaces: MPL

Link

Note: subjects saw the same phrase in all three treatments
62

https://healy.econ.ohio-state.edu/exp/mpl/viewscreens.php?trt=MPL&problem=TEAM_PROB|3|3|5


The Mechanism Interfaces: BSR

Link

Note: subjects saw the same phrase in all three treatments

62

https://healy.econ.ohio-state.edu/exp/mpl/viewscreens.php?trt=BQSR&problem=TEAM_PROB|3|3|5


The Mechanism Interfaces: NoInfo

Link

Note: subjects saw the same phrase in all three treatments

62

https://healy.econ.ohio-state.edu/exp/mpl/viewscreens.php?trt=JUSTIC&problem=TEAM_PROB|3|3|5


Teams Interface

• Use chat window to communicate
• Must lock in the same number to proceed
• Can unlock & change ⇒ “Silent agreement”
• If time runs out, one choice is randomly used
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Logistics

• Usual OSU subject pool (ORSEE)
• Zoom meeting
• Less control of software environment ⇒ missing observations

• INDIV: 1.7% TEAM: 8.3%

• Venmo payments (option for in-person)
• $12 show-up + possible $8 “bonus.” (59% won the bonus)

# Subjects:
Mechanism: MPL BSR NoInfo
INDIV First: 68 68 63

TEAMS First: 54 54 0
Pooled: 122 122 63
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Objective-Easy #1: % Correct

Pr(Red) = 12/20 = 60%

% Correct:

MPL BSR NoInfo
INDIV: 91.7% 96.6% 92.1%
TEAM: 94.8% 100% 96.4%

MPL seems a little worse. Are they trying to manipulate?
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Objective-Easy #1: Chats

ID#181 MPL ID#187
i have 12 for red
and 8 for blue

12, 20, and 75%?
yes

75 sounds good with me
12|20|75% 12|20|75%

ID#289 MPL ID#295
sorry I put wrong answer for 3
12|20|50% 12|20|50%
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Objective-Easy #2: % Correct

Pr(Red) = 50%

% Correct:

MPL BSR NoInfo
INDIV: 91.5% 84.8% 93.7%
TEAM: 98.3% 93.1% 100%

Now BSR seems a little worse?
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Objective-Easy #2: Chats

ID#390 MPL ID#391
50%

so theoretically it’s 50 right but i think i said 48 last time just
bc I’m in stats rn and we just did probability stuff about
how smaller sample sizes are further from the probability
so flipping it once might be 60-40 but 100 times is closer
to 50-50
but ya I’m good w just 50

makes sense
should we do 49%

sure
49% 49%
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Objective-Easy #2: Chats

ID#257 BSR ID#260
50 ?

id say 60
Why

cause heads is always more likely
Thats just false

55 is a compromise
Which is also wrong but whatever

55% 55%

ID#357 BSR ID#365
(no chat)

75% 75%
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Objective-Easy #3: % Correct

Median = 60pts

% Correct:

MPL BSR NoInfo
INDIV: 69.2% 83.9% 74.2%
TEAM: 74.6% 86.1% 92.6%

70



Objective-Easy #3: Chats

ID#343 MPL ID#345
well if it was 100, 0 and 50 the median would be 50
but its 60 and so id go w like 55?

yeah
55% 55%

ID#352 MPL ID#353
I did 60

55
55 is good

55% 55%
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Objective-Easy #3: Chats

ID#197 BSR ID#202
what do u think

hmm i don’t remember what i said but maybe like 75?
i’m not sure at all

love it
75% 75%

ID#302 BSR ID#308
80?

yeah
80% 80%
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Absolute Error by Treatment
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Chat Encoding

Two Types of Evidence of IC Failures:

Calculate Playing with the calculator
• May not end up deviating from their belief

Deviate Deviate from stated belief
• May not specify why they’re deviating

Two independent chat encoders
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Chat Encoding

Two Types of Evidence of IC Failures:

Calculate Playing with the calculator
• May not end up deviating from their belief

Deviate Deviate from stated belief
• May not specify why they’re deviating

Team-level data:
Mechanism: MPL BSR NoInfo

Calculate 1 10 0
Deviate 1 1 0

Both 0 1 0
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Chat Encoding

Two Types of Evidence of IC Failures:

Calculate Playing with the calculator
• May not end up deviating from their belief

Deviate Deviate from stated belief
• May not specify why they’re deviating

Question-level data:
Mechanism: MPL BSR NoInfo

Question: Obj-E Obj-H Subj Obj-E Obj-H Subj All
Calculate 0 0 1 1 4 10 0

Deviate 1 0 0 0 0 1 0
Both 0 0 0 0 0 1 0

Subjects use the BSR calculator when clueless!
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Calculate & Deviate: BSR

Capital of Australia
ID#591 BSR ID#599
i said 90 bc Carnegie is a prestigious school and theyre
smart kiddos so they hv to know this easy answer
what do u think
should we go higher than 90

I think we should go higher
95/ 100?
95? 100? **

seems 100 gets the higher probability
yea with 55.9

**highest
should we do 100

yes
100 100
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Deviate: MPL

Mean of Easy Spinner
ID#181 MPL ID#187
the mean is 50 but i think we should do 60
sound good with me
i going say 60 lol

60 60
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Not Flagged: MPL

12/20/60%
ID#352 MPL ID#353

60%
12 red marbles, 20 total, so 60%
Yea but I am thinking should we really put the correct number

for probability
I mean yeah i think
Although its random, its the best “odds” then

alright
60% 60%
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Calculate: BSR

Capital of Australia
ID#407 BSR ID#414
hi

hi
i noticed that the higher you make their percentage,

the higher our probability percentage gets
yeah that’s true

but the closer to 50, the more equal the probs
i say we go for a big one

85 85
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Calculate: BSR

Mean of Hard Quiz Score
ID#298 BSR ID#312
it sounds like 50 but if i took this test i might get 3/4 right
it looks like pretty much any number i type in i get 51/5%
50 is fine ig

its the same no matter what we type is what ive seen
50 50

(X = M ⇒ 51.5%)
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Calculate: BSR

Mean of Hard Quiz Score
ID#299 BSR ID#303
40 technically gives the best odds
ok

40 40
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Calculate: BSR

Capital of Australia
ID#359 BSR ID#362
this was one i wasnt sure
i originally thought a high number
i put 90% but idk

i did 48 last time but we can jack up one of the probabilities
id do 90

Isnt it Syndey? that is pretty well known right?
because it gives us 55% chance of getting red and yes it is sydney

everyone knows that because of finding nemo lol
90 90

(90% ⇒ Right: 55%, Wrong: 15%)
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The Story

• NoInfo performs just as well when easy, worst when hard
• Chats conclude they’re not successfully manipulating

• Maybe slightly more attempts in BSR?
• Implication: Mechanism details can be distracting or useful

• Easy problems: details get in the way, ↑ mistakes
• Harder problems: details maybe help focus, ↓ mistakes
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The Pittsburgh Paper
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Danz, Vesterlund, Wilson (AER 2022)

Easy Task misreport %:

• We had < 10% at 0.5 and 0.6
• Why do they see misreporting & pull-to-center??? 84



Danz Et Al. Choice Interface

• Clickable slider ⇒ inexact answers ⇒ pull to center??
• True probability too small??

• Changes on every screen
• More susceptible to distraction by payment info?
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Our Choice Interface: NoInfo
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Our Choice Interface: BQSR
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Our Choice Interface: MPL
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Instructions Only

“Instructions-Only” Treatment

How I would actually do elicitation:

• Mechanism details in Sinstructions
• No details on decision screens

89



Details

Prolific + Qualtrics
US adults 18+
3 comprehension Q’s

Total n % Pass Comp. Test
MPL 99 92%

BQSR 99 86%
MPL-InstrOnly 100 90%

BQSR-InstrOnly 101 95%
NoInfo 103 98%

χ2 test p-value: 0.015
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Robust Replication Results
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Differences?

“Robust replication” vs. “exact replication”

Differences:

1. Pitt Lab adults vs. Prolific US adults
2. Clickable slider vs. text input
3. Different illustrations of the question
4. We scaled BQSR to make expected payment = MPL
5. Instructions similar, not the same
6. Different calculator interfaces

...
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A Non-IC Mechanism

Recall Linear Scoring Rule (LSR):

Pay
if ¬E

Pay
if E

0 10%

100%

0%

100%
G(p)

S(q,0) = 1 − q S(q, 1) = q
q∗ = 0 if p < 50, q∗ = 100 if p > 50
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A Non-IC Mechanism

Why test this?

1. Validating the chat methodology
• They should deviate...
• so do we see them chat about it?

2. Does incentive compatibility even matter?
• Maybe they don’t pay attention!
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A Non-IC Mechanism

Preliminary results:

• Chat data:
• Out of 30+ subjects, only one mentions it
• And their partner dismisses it!

• Choice data:
• INDIV: a few more cases of 100 and 0!!
• TEAM: no differences

I can’t get people to lie!!!
Really don’t replicate Danz et al. (2022)
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Tangential Results
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Errors in Bayesian Updating

• One Blue Draw:
• Pr(R|b) = Pr(R) ∗ Pr(b|R). 17%
• Marble draw is uninformative. 50%

• Two Blue Draws:
• Pr(R|bb) = Pr(R) ∗ Pr(b|R) ∗ Pr(b|R). 6%
• Second draw gives no new info. Same as one.
• Marble draws are uninformative. 50%
• Second draw was with replacement. 0%
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Does The Truth Win?

“Truth-Wins” Norm:

2 Right: Both players were correct in INDIV
1 Right: One player was correct in INDIV

Team Right: Both players correct in TEAM (n = 73 teams)

Median

Team Right|2 Right: 80/83 64/69 46/51
Team Right|1 Right: 8/10 22/24 26/34
Team Right|0 Right: 0/1 1/1 1/9
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Does The Truth Win?

Mean Median 1 BLUE

Team Right|2 Right: 26/29 16/21 7/8
Team Right|1 Right: 29/42 24/41 26/47
Team Right|0 Right: 6/23 8/32 3/39
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Aggregating Beliefs

1. Prediction Markets
• Double-auction w/ Arrow securities

2. Market Scoring Rules
3. Parimutuel Betting Markets
4. The Delphi Method
5. Bayesian Truth Serum
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Prediction Markets

• Double auction w/ Arrow securities ($1 if E)
• Wave of popularity: Wolfers and Zitzewitz [2004]

• Iowa Electronic Markets [Berg et al., 1996]
• TradeSports & InTrade
• In-house markets

• Google [Cowgill et al., 2009]
• HP [Ho and Chen, 2007]

• DARPA Policy Analysis Market [Hanson, 2007]
• Theory problem: does Walrasian equilibrium really aggregate

info?
• Manski [2006]: No
• Other models: yes (cite needed!)
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Market Scoring Rules

Hanson [2003], Ledyard et al. [2009]

• Start with public distribution p0

• Player i moves it to some p1

• Paid S(p1, x)− S(p0, x)
• IC since S(p0, x) doesn’t depend on p1

• Except for dynamic incentives...

• Player i “buys out” previous player
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Pari-Mutuel Betting

• Bettor i bets bij on horse j
• If horse k wins, bettor i gets∑

ij

bij − T


︸ ︷︷ ︸

net proceeds after take T

bik∑
ι bιk︸ ︷︷ ︸

i’s bet share on k

• Koessler et al. [2002]: fully-revealing BNE if simultaneous, not
seq.

• Behavioral observations:
• Mirages: Camerer and Weigelt [1991]
• Favorite-Longshot Bias: Snowberg and Wolfers [2006]
• End-Of-Day Risk Seeking (Camerer?)
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Iterated Polls/Delphi Method

Simple procedure:

1. Privately ask everyone’s prior
2. Reveal all priors (or aggregate) to everyone
3. Players update
4. Repeat m times (or until convergence)
5. Pay everyone via scoring rule for final p

• Naive play gives info aggregation
• Dynamic incentives? McKelvey and Page [1990]

• “Last moves” are incentive compatible
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An Experimental Test

Healy et al. [2010]

• Compare DA, MktSR, Parimutuel, & Poll
• Thin markets: n = 3.
• |Ω| = 2 vs. |Ω| = 8, Traders see different # of signals

Signal structure (common info):
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An Experimental Test

Measures of Performance:

1. l2 distance from “full info posterior”
2. Bayes-Inconsistency 106



An Experimental Test

Distance to full-info posterior:
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An Experimental Test

Distance to Bayes-consistency (|Ω| = 8):
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An Experimental Test

Measures of Performance:

3. Mirages
4. No trade!
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An Experimental Test

Mirages and No Trade (|Ω| = 8):
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An Experimental Test

Summary:
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Bayesian Truth Serum

Prelec [2004]
Method to get truthful answers to a survey question.

• Agents: i ∈ {1, . . . ,n}.
• Options/answers: j ∈ {1, . . . ,m}
• Each i announces:

1. their answer ti ∈ {1, . . . ,m}
2. their distribution of other’s answers pi(·) ∈ ∆({1, . . . ,m})

• Define:
• Iij = 1 iff ti = j
• x̄j =

1
n
∑

i Iij

Actual average frequency of j
• ȳj = exp

( 1
n
∑

i log(pi(j))
)

Geometric average predicted frequency of j
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Bayesian Truth Serum

Incentives:

• “info score” for each option: ι(j) = log
(

x̄j
ȳj

)
• prediction penalty: ρ(pi) =

∑m
j=1 x̄j log

(
pi(j)

x̄j

)
Payoff:

π(ti,pi(·)) = ι(j) + αρ(pi)

Theorem: Assume opinions (ti) are exchangeable and n is large.
Then truth-telling is a Bayes-Nash equilibrium. Furthermore, among
equilibria, it is the equilibrium that maximizes the expected info
score
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