ExpEcon Methods: Empirical Tests of Incentive Compatibility

ECON 8877 P.J. Healy

Updated 2023-11-01 at 17:40:11

1

A test of IC? (Cox Sadiraj & Schmidt 2014)

	D ₁	D ₂	
Treatment 1:	$\{\$4, (\frac{1}{2}, \$10)\}$		
Treatment 2:	$\{\$4, (\frac{1}{2}, \$10)\}$	$\{\$3, (\frac{1}{2}, \$12)\}$	

If we observe differences on D₁, it could be

- the mechanism was not IC, or
- the presence of D_2 altered preferences (e.g., decoy effect).

Other papers that use this method:

- Cubitt Starmer Sugden (1998 Exp.1)
- Beattie & Loomes (1997)
- Cubitt Starmer Sugden (1998 Exp.2)
- Harrison & Swarthout (2014)
- Cox Sadiraj & Schmidt (2015)

Tests Without Framing Confound

Replace Treatment 1 with a "Framed Control" treatment:

	D ₁	D ₂	Mechanism
Treatment 1:	$\{\$4, (\frac{1}{2}, \$10)\}$	$\{\$3, (\frac{1}{2}, \$12)\}$	Pay only D_1
Treatment 2:	$\{\$4, (\frac{1}{2}, \$10)\}$	$\{\$3, (\frac{1}{2}, \$12)\}$	RPS

LESSON: Proper test of IC must show all subjects same choices.

Test various payment mechanisms in lottery choice setting

- 1. Pay All (PA)
 - PAS: Sequentially (learn outcome each period)
 - PAI: Independently at the end
- 2. Pay One Randomly (POR)
 - 2.1 PORpi: with prior info about all choices to be made
 - 2.2 PORnp: no info about upcoming choices
 - 2.3 PORpas: learn realized payoffs you go, then get 1 at the end
- 3. Pay All Correlated (PAC) (lotteries must have same state space)
 - PAC/N divides payoffs by # of decisions, to match POR
- 4. One Task (OT)
 - 4.1 ImpureOT: Make all choices, but only one is paid
 - Added by a referee (not me!) and reported separately

Design:

- Choice over 5 lottery pairs
- Testing various versions of Allais paradox
- OT: between-subjects. All others: within-subject
 - Therefore OT Allais paradoxes are between-subject via Probit
- Choices on 5 separate slips of paper in an envelope

Analyses:

- Probit on Pr(Allais paradox) including demographics, EV, etc.
- Choice frequencies
- Probit on choice frequencies

Cox, Sadiraj & Schmidt (2015)

Mechanism	CRE	CCE	DCRE	DCCE
ОТ	No	No	No	Yes ^e
PORnp	No	No	No	No
PORpi	No	Yes ^b	Yes ^c	No
PORpas	Yes ^a	No	No	No
PAS	No	Yes ^b	No	No
PAI	Yes ^a	No	No	No
PAC/N	No	Yes ^b	No	No
PAC	Yes ^a	No	Yes ^d	No

Table 3 Test results for Hypotheses 1-4

Notes: ^aFan Out; ^bFan In; ^cIRRA; ^dDRRA; ^eIARA

Can't really compare cleanly to OT But, definite differences across mechanisms And whether they see the questions in advance or not!

Mechanism	S_1	S_2	S_3	S_4	S_5	All Pairs [95 % CI]
OT (231 subjects)	39.47	15.52	27.59	28.95	38.46	28.60 [22.7, 34.4]
PORnp (40 subjects)	37.50	45.00	47.50	32.50	60.00	44.50 [37.6, 51.4]
PORpi (40 subjects)	27.50	50.00	42.50	22.50	50.00	38.50 [31.7, 45.3]
PORpas (40 subjects)	22.50	42.50	20.00	10.00	30.00	25.00 [18.9, 31.1]
PAS (39 subjects)	25.64	23.08	33.33	10.26	17.95	22.10 [16.2, 27.9]
PAC (38 subjects)	36.84	52.63	23.68	21.05	42.11	35.30 [28.4, 42.1]
PAC/N (40 subjects)	37.50	35.00	35.00	22.50	45.00	35.00 [28.3, 41.7]
PAI (38 subjects)	36.84	52.63	36.84	34.21	52.63	42.60 [35.5, 49.7]

All Pairs: % who chose safe in all 5 Most risk averse: PORnp and PAI Least risk averse: PORpas and PAS What about Impure OT?

- Paper only compares Impure OT to OT
 - More risky choices under Impure OT
 - Framing effect exists!
- But we want Impure OT vs. each mechanism!
- Probit Pr(Safe) results:
 - PORnp, PORpi, and PAI are different from ImpureOT
- But, looking at the actual choice data task-by-task, I don't find significant differences...

Starmer & Sugden (1991)

- 22 binary lottery choice questions. n = 40 per treatment
- First 20: hypothetical (piloting for another study)
- Questions 21 and 22: RPS vs. only one paid. Same page.
- Allais paradox questions.

Group	Question 21	Question 22	Incentive
A	P'	P "	P" is for real
В	P'	P"	Each problem has 0.5 chance of being for real
С	P"	P'	Each problem has 0.5 chance of being for real
D	P"	P'	P' is for real

A vs. B: p = 0.356 (my calculation) C vs. D: p = 0.043 (my calculation)

Cubitt Starmer & Sugden (1998)

- Five binary menus of lotteries
- Experiment 1 (n = 201)
 - Group 1.1: RPS: (1/3, D₃; 2/3, D₄)
 - Group 1.2: RPS: (1/3, D₃; 2/3, D₅)
 - (Two other groups to test IND and ROCL)
 - Use D₃ to test IC. No differences.
- Experiment 3 (n = 202)
 - 3.1: 20 decisions, 1st is paid
 - 3.2: 20 decisions, 2nd is paid
 - 3.3: 20 decisions, RPS on all 20
 - 3.4: Same as 3.3 but with lower stakes
 - 3.1 *D*₁ vs 3.3 *D*₁: *p* = 0.685
 - 3.2 D₂ vs 3.3 D₂: p = 0.120

Table 9

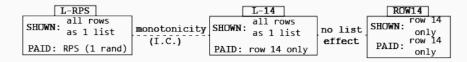
Existing tests of incentive compatibility of the RPS mechanism that have no framing confounds. We describe each of these comparisons in the text below.

	Names of treatments	p-Value	RPS is I.C.?
Starmer and Sugden (1991)	A vs. B	0.356	~
Starmer and Sugden (1991)	C vs. D	0.043	×
Cubitt et al. (1998)	3.1 vs. 3.3	0.685	\checkmark
Cubitt et al. (1998)	3.2 vs. 3.3	0.120	\checkmark
Cox et al. (2014b)	PORpi vs. ImpureOT2	0.122	\checkmark
Cox et al. (2014b)	PORpi vs. ImpureOT3	0.988	\checkmark
Cox et al. (2014b)	PORpi vs. ImpureOT4	0.397	\checkmark

Brown & Healy (2018)

÷

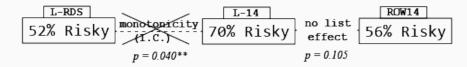
Row #	Option A			Op	otion B
1	Balls 1-10 pay \$10 (50% chance of \$10)	Balls 11-20 pay \$5 (50% chance of \$5)	or	Ball 1 pays \$15 (5% chance of \$15)	Balls 2-20 pay \$0 (95% chance of \$0)
2	Balls 1-10 pay \$10 (50% chance of \$10)	Balls 11-20 pay \$5 (50% chance of \$5)	or	Balls 1-2 pay \$15 (10% chance of \$15)	Balls 3-20 pay \$0 (90% chance of \$0)
3	Balls 1-10 pay \$10 (50% chance of \$10)	Balls 11-20 pay \$5 (50% chance of \$5)	or	Balls 1-3 pay \$15 (15% chance of \$15)	Balls 4-20 pay \$0 (85% chance of \$0)
4	Balls 1-10 pay \$10 (50% chance of \$10)	Balls 11-20 pay \$5 (50% chance of \$5)	or	Balls 1-4 pay \$15 (20% chance of \$15)	Balls 5-20 pay \$0 (80% chance of \$0)
	Ralle 1-10 pay \$10	Ralle 11_20 par \$5		Balle 1-5 nov \$15	Rolle 6-20 por \$0


10	(50% chance of \$10)	(50% chance of \$5)	01	(90% chance of \$15) (10% chance of \$0)	
19	Balls 1-10 pay \$10 (50% chance of \$10)	Balls 11-20 pay \$5 (50% chance of \$5)	or	Balls 1-19 pay \$15 Ball 20 pays \$0 (95% chance of \$15) (5% chance of \$0)	
20	Balls 1-10 pay \$10 (50% chance of \$10)	Balls 11-20 pay \$5 (50% chance of \$5)	or	All Balls pay \$15 (100% chance of \$15) (0% chance of \$0)	
					_

÷

÷

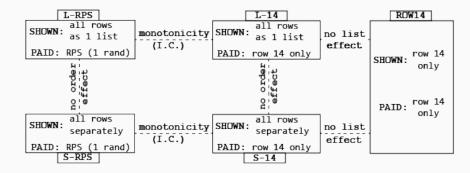
÷

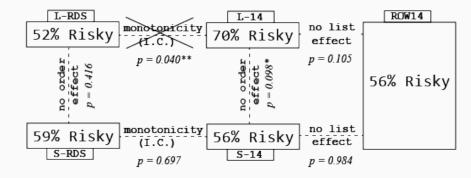

Click Here When Finished

- Andreoni-Sprenger formatting
- Standard Ohio State subject pool.
- · Between-subjects.
- Computerized.
 - · List format: rows must be answered sequentially.
- Physical randomizing devices (die, bingo cage)
- No other tasks in the experiment.
- 60-63 subjects per treatment.
- Question: Do Row 14 choices differ by treatment?

The Results

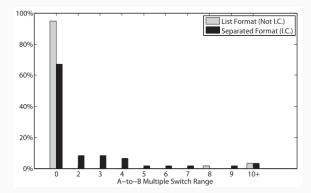
Row 14:

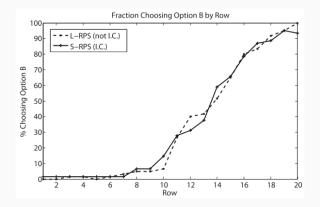

- Using RPS mechanism makes them switch later. (More thoughtful? Switching inertia?)
 - Statistically significant.
- Showing whole list makes them switcher earlier (Closer to the middle.)
 - Not quite significant.
- The two effects nearly offset


Hypothesis

- Subjects are combining the decisions in a reduction-like way. *E.g.:* 'When to switch?'.
- The 'combining' can be broken by separating the decisions.

'Separated' treatments.


- Same 20 rows.
- Each shown on separate screen.
- Order of rows randomized for each subject.
- Still comparing RPS to Pay-14-Only.
- Still must answer every row, in order given.
 - First attempt: on paper. They shirked.
 - · Second attempt: computerized, forced answers
- Still 60-63 observations per cell, between subjects.



The Cost of Separation

B-to-A (Risky-to-Safe) switches violate FOSD: Risky₁₅ dominates Risky₁₄, but Risky₁₄ \succ Safe \succ Risky₁₅

LESSON: Separating decisions hurts consistency? NO! The list format generates *false consistency*!

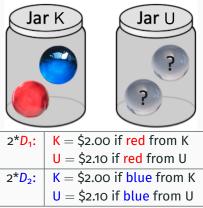
L-RPS was fine because "list effect" and "IC failure" canceled out! I wouldn't expect that to be true generally...

Table 9

Existing tests of incentive compatibility of the RPS mechanism that have no framing confounds. We describe each of these comparisons in the text below.

Paper	Names of treatments	Presentation format	p-Value	RPS is I.C.?
Starmer and Sugden (1991)	A vs. B	List	0.356	~
Starmer and Sugden (1991)	C vs. D	List	0.043	×
This paper	L-RPS vs. L-14	List	0.041	×
This paper	S-RPS vs. S-14	Separated	0.697	\checkmark
Cubitt et al. (1998)	3.1 vs. 3.3	Separated	0.685	\checkmark
Cubitt et al. (1998)	3.2 vs. 3.3	Separated	0.120	\checkmark
Cox et al. (2014b)	PORpi vs. ImpureOT2	Separated ^a	0.122	\checkmark
Cox et al. (2014b)	PORpi vs. ImpureOT3	Separated ^a	0.988	\checkmark
Cox et al. (2014b)	PORpi vs. ImpureOT4	Separated ^a	0.397	\checkmark

^a Cox et al. (2014b) give subjects the choices on separate slips of paper, but the subjects could have arranged them into a list-like format if they wanted.

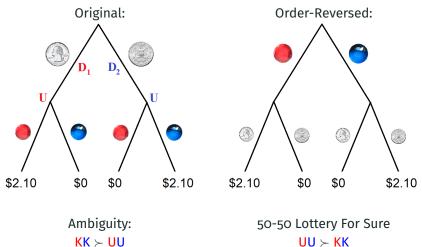

- 1. Kirby & Marakovic (1996) and Kirby et al. (1999)
 - Use scrambled lists in a field setting, including heroin addicts
- 2. Eckel et al. (2005)
 - Use scrambled with working poor
 - "we now believe that scrambling is a bad idea because it results in greater inconsistency and variance of responses."

RPS for Hedging Ambiguity?

Is RPS used to hedge ambiguity?

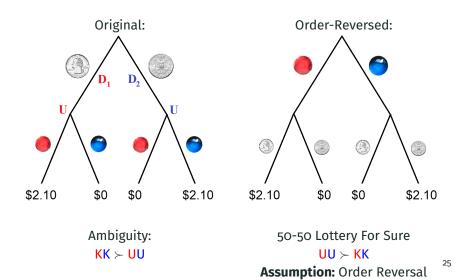
- Oechssler Rau & Roomets (2019): No
 - Issues with their design
- Baillon Halevy & Li (2022)...

2-Urn Ellsberg Paradox


One paid randomly via coin flip

Pr(Red in U) \approx **Pr(Blue in U) & Ambiguity Averse: K** > U and K > U.

Raiffa (1961): Picking UU "hedges away" the ambiguity! UU > KK


How Hedging Works (Raiffa 1961)

Picking UU:

How Hedging Works (Raiffa 1961)

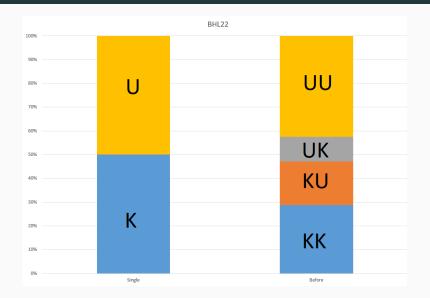
Picking UU:

Past Experiments

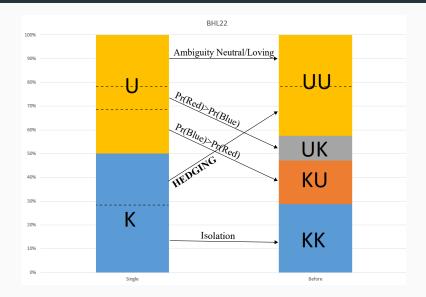
Order reversal has support...

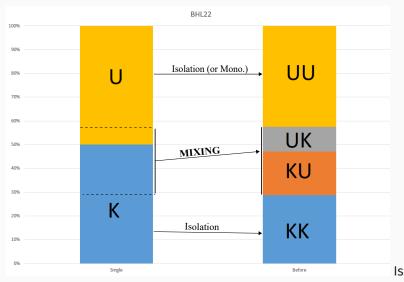
- Coin before \sim Coin after
 - Oechssler, Rau & Roomets (2019; ORR19)
 - Baillon, Halevy & Li (2022)

...yet people don't seem to appreciate hedging:


- Raiffa (1961), Dominiak & Schnedler (2011)
 - Ambiguity averse subjects don't value ${\sf U}{\sf U}$ more than ${\sf U}$ and ${\sf U}$
- ORR19 find mixed evidence for hedging
 - Amb. Averse & $Pr(blue) \approx Pr(red)$ Subjects:
 - 50% consistent with hedging (or randomization)
 - · Issues: Indifference & Cross-task contamination

Past Experiments


Baillon, Halevy & Li (2022) (BHL22):


- "Single" Treatment:
 - * $D_o = \{\textbf{K}, \textbf{K}, \textbf{U}, \textbf{U}\}$
 - U or U \Rightarrow Ambiguity neutral/loving *or* Pr(red) \gtrless Pr(blue)
 - K or $K \Rightarrow$ Strictly ambiguity averse and Pr(red) \approx Pr(blue)
 - 50% choose K or K
 - \Rightarrow 50% are Amb. Averse and Pr(red) \approx Pr(blue) this is a *lower bound* on Amb. Aversion
- "Before" Treatment:
 - * $D_1 = \{K,U\}, D_2 = \{K,U\}$, coin flip first
 - What will Amb. Averse subjects pick?
 - Order Reversal + Hedging $\Rightarrow \textbf{UU}$
 - "Isolation" \Rightarrow KK
 - Pr(red)≥Pr(blue) ⇒ UK or KU (uses Azrieli et al. 2018, ignoring stochastic choice)

BHL22: Results

BHL22: Story 1

it necessarily hedging?

Susan Laury's paper...

Summary

- Theory: RPS generally fine *unless* subjects "reduce" (treat the experiment as one large decision)
- List format seems to encourage reduction, IC violations
- · Separated format breaks reduction, restores IC
 - · Separated and random order. Haven't tested which.
- List format generates false consistency
- Ambiguity:
 - RPS is not IC!
 - But is it really hedging??