Learning Rational Expectations Under Computability Constraints

Stephen E. Spear

Econometrica, Vol. 57, No. 4. (Jul., 1989), pp. 889-910.

Stable URL:
http://links jstor.org/sici?sici=0012-9682%28198907%2957%3 A4%3C889%3 ALREUCC%3E2.0.CO%3B2-2

Econometrica is currently published by The Econometric Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/econosoc.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Mon Aug 21 14:43:48 2006



Econometrica, Vol. 57, No. 4 (July, 1989), 889-910

LEARNING RATIONAL EXPECTATIONS UNDER
COMPUTABILITY CONSTRAINTS

By STEPHEN E. SPEAR!

In this paper we consider how boundedly rational agents learn rational expectations.
The assumption that agents are boundedly rational is made operational by imposing
computability constraints on the economy: all equilibrium price functions or forecasts of
future equilibrium prices are required to be computable. Computable functions are defined,
as in the computer science literature, as functions whose values can be calculated using
some finite algorithm.

The paper examines two learning environments. In the first, agents have perfect
information about the state of nature. In this case, the theory of machine inference can be
applied to show that there is a broad class of computable economies whose rational
expectations equilibria can be learned by inductive inference.

In the second environment, agents do not have perfect information about the state of
nature. In this case, a version of Godel’s incompleteness theorem applicable to the theory
of computable functions yields the conclusion that rational expectations equilibria cannot
be learned.

KEYWORDS: Rational expectations, inductive inference, recursive function, bounded
rationality, effectively computable.

1. INTRODUCTION

IN A RATIONAL EXPECTATIONS EQUILIBRIUM (REE), agents correctly forecast
future payoff relevant variables conditional on current information. Out of
equilibrium, they make systematic errors in forecasting. If agents recognize error,
then learning should occur and agents will modify their behavior until the
economy attains a REE. This fundamental argument makes a compelling case in
favor of REE as the appropriate notion of equilibrium for dynamic economies.
Of course the ability of agents to learn by recognizing error is crucial to this
argument. In this paper we examine the possibilities for learning REE when the
environment facing agents is sufficiently complex that recognizing errors is not a
simple task.

In taking this view, we are concerned with the question of how boundedly
rational agents learn REE, and will focus, in particular, on the question of
whether learning can be procedural, in the sense that agents have algorithms—
procedures defined by finite sets of rules—for systematically comparing forecasts
with realizations.

Procedural approaches to defining rationality are not new, of course. Simon’s
(1976) work has been seminal in stressing procedures and algorithms in defining
rationality. This theme is echoed in Arrow’s (1987) discussion of the information
and data processing demands imposed on agents in models which deviate from
the static, perfectly competitive, complete markets world of textbook economics.

'1 am grateful to Larry Blume, Margaret Bray, David Kreps, Bart Lipman, Sanjay Srivastava,
Michael Woodford, and two anonymous referees for many useful comments and suggestions on this
work.
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Similar ideas can be found in Lucas’ (1987) characterization of economic agents
as collections of decision rules which are systematically reviewed and revised in
light of new information.

Our specific approach to modeling boundedly rational agents is one of impos-
ing computability constraints on the model. By computability constraints, we
mean that all functions or functionals involved—forecasts of future prices,
temporary equilibrium (T.E.) prices, or mappings from forecasts to T.E. price
functions—must be machine computable. Given that the REE of a dynamic
economy can be represented as the fixed point of a functional equation taking
forecast functions to current price functions, computability constraints provide a
natural and reasonably simple way of imposing bounded rationality. These
assumptions will be formalized and discussed more fully below.

The main analytic tools we apply are drawn from formal computer science. In
particular, we make use of the theory of inductive inference and of recursive
function theory (see references in the following section). The paper itself is less
concerned with examining learning mechanisms and convergence results than
with the basic issue of whether, in the presence of computability constraints,
learning rational expectations is even possible.

Our interest in algorithmic learning is motivated by two observations. First,
most of the approaches to boundedly rational learning in the literature are, in
fact, procedural. Agents in these models use well-known procedures from statisti-
cal decision theory (all of which can be implemented algorithmically) to learn
about the parameters of the world they inhabit, and to refine their guesses about
the future. A second, more fundamental observation, is based on the famous
undecidability theorems of Kurt Godel in formal logic. Loosely speaking, these
results state that there exist propositions which can be logically formulated whose
truth or falsity cannot be logically determined. In the context of learning rational
expectations, we are concerned, then, with the possibility that the problem of
determining the truth of the statement “my forecast is an REE forecast” may be
undecidable. In this light, the notion of procedural rationality simply means that
agents cannot decide the undecidable. In terms of the computability formalism,
the bounded rationality assumption requires that we examine the question of
whether the learning process ever requires that agents compute noncomputable
functions.

One can, of course, object to this characterization on the grounds that agents
only act “as if” they were solving decision problems beyond the reach of mere
mathematicians, in much the same way that a trained dog only acts as if it were
solving a differential equation while chasing down a fly ball. While this argument
has merit, it is not without its own ambiguities. The dog’s brain does, in fact,
solve a differential equation, at least to a close enough approximation to allow
the dog to catch the ball. Qualitatively, this is no different from having a
computer solve the relevant equation numerically and display the result pictori-
ally on its terminal screen. Of course, in the case of the computer, the program-
mer knows how the computer is solving the problem, since he wrote the
algorithm. The question of how the dog’s brain does it is not well understood yet.
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Ultimately, the “as if” question is one of whether human mental activity is
machine simulable or not.

Even if one believes that the human mind is not machine simulable (and that it
can do things computers never will), the consideration of algorithmic learning
procedures serves a useful purpose. In particular, it focuses attention on those
aspects of the problem of economic learning which may require metamathemati-
cal capabilities.

On the other side of this issue, if one views the various constructs of economic
theory as attempts to model realistically (rather than as if) the actual decision
processes of agents, then the requirement that agents not be capable of deciding
logically undecidable propositions is actually quite weak, since it leaves available
the vast array of results in logic and mathematics which are, in fact, decidable.
From this perspective, inquiry into the algorithmic foundations of economic
decision-making provides an outer measure of the extent to which current
economic theory makes unreasonable demands on the capabilities of real agents.

The importance of the issue of error recognition for learning leads us to focus
on inductive learning procedures. Inductive learning is characterized in psychol-
ogy as the process whereby new information from the environment is organized
into cognitive patterns which then serve to either reinforce an individual’s
cognitive models of the environment, or to alter these models to conform with
newly recognized patterns. In the context of economic learning, inductive proce-
dures seem to correspond quite closely to Lucas’ notion that agents continuously
review and revise their decision rules in response to signals from their environ-
ment. We will be particularly interested in whether there are algorithmic induc-
tion procedures which allow agents to recognize when their forecasts are wrong.

In the literature on learning rational expectations, two main approaches to the
issue of learning have been pursued. The first has been characterized by Blume,
Bray, and Easly (1982) in their survey as Bayesian or rational learning. In this
mode of learning, agents may hold different forecasts due to differing information
structures. The resulting equilibrium corresponding to these forecasts is then
required to be a REE, from which agents may attempt to infer other agents’
information. The process of rational learning is then one of moving to a REE (by
way of a sequence of REE) in which nothing further can be inferred about other
agents’ information (including possibly their expectations). Analysis of this type
of learning includes work by Arrow and Green (1973), Blume and Easly (1981),
Bray and Kreps (1987), Cyert and DeGroot (1974), Feldman (1986), and
Townsend (1982, 1983). ’

The second type of learning model has been characterized as “boundedly
rational” learning. In these models, agents update their forecasts systematically
based on observations of state variables determined by the economy. Agents
learn to be rational if the sequence of updated forecasts converges to a REE.
During the updating process, however, none of the forecasts need be rational.
Within this class of learning models, there is an additional dichotomy between
models in which agents hold a fixed forecast and collect sequences of observa-
tions of state variables, and models in which agents update their forecasts after
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every new observation. We will refer to the first type of model as a two-stage
learning model, and to the second type as an incremental learning model.
Analysis of boundedly rational learning includes work by Blume and Easly
(1982), Blanchard (1976), Bray (1982), Brock (1972), Cyert and DeGroot (1974),
DeCanio (1979), and Marcet and Sargent (1986, 1987), and Woodford (1987).
Viewed in the context of the existing literature on learning, this paper is clearly
about boundedly rational learning.

The main results developed are as follows. In two-stage learning models where
agents have full information about the state of the economy, the theory of
inductive inference can be applied to show that it is possible for agents to learn
the rational expectations equilibrium. When agents have incomplete information
(i.e. an incomplete signal about the current state), however, the result breaks
down since agents are required to infer not a function, but a correspondence.
This inference problem is undecidable since it involves the determination of a
nontrivial set of admissible (recursive) functions.

We then examine models of incremental learning in which agents use a specific
(but fixed) updating procedure to generate new forecasts given old forecasts and
current information. For this analysis, it is assumed that there is a model
consistent equilibrium (in the sense that agents’ forecasting procedures converge
to a forecast which is never controverted by the data). For these models, we show
that the problem of determining whether a given updating procedure in fact
yields a REE (for a fixed economy) is undecidable. Hence, while agents may hit
upon a procedure which does yield a REE, there is no computationally feasible
way of choosing a procedure which will yield rational expectations.

The paper is structured as follows. In Section 2, we present the basic economic
model and our fundamental computability assumptions. We also briefly discuss
aspects of the theory of recursive functions which will be useful in developing our
results. In Section 3, we consider inductive learning. This section contains a brief
discussion of the theory of inductive inference as well. In Section 4, we consider
incremental learning models. Section 5 contains concluding observations. The
main technical material used in the paper is presented in the Appendix, along
with appropriate citations to the technical literature.

2. THE MODEL

In modeling inductive learning of rational expectations, the key feature of the
process is the idea that when agents make forecasts of future prices, the
temporary equilibrium of the economy determines a mapping from price func-
tions to price functions whose fixed points are the rational expectations equilibria
of the economy. Agents attempt to learn this mapping and its fixed points by
observing the temporary equilibria which result and updating their forecasts of
future prices using the observed data. This formulation is standard in the
literature on economic dynamics and can be found in a variety of models.

For specificity, we will consider a stylized version of a simple overlapping
generations models in which agents live for two periods, though the results
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developed here apply more generally to any model in which the REE can be
determined as the fixed points of a mapping taking forecasts into temporary
equilibrium prices. Time is discrete, with periods denoted ¢=1,2,.... The
economy then consists of a collection of agents (indexed by # € H, where H may
be finite or infinite) who trade a finite number of commodities in each period on
a sequence of period-by-period spot markets. Agents are characterized by their
endowments, which are stochastic, and by their demand functions. Demand
functions depend on current and lagged prices, endowments, and on each agent’s
forecast of future prices when young. Since our interest is not in questions of
existence or uniqueness of the REE, we will forego detailed (and unneeded)
specifications of these characteristics.

To characterize the relationship between agents’ forecasts of future prices and
the resulting temporary equilibrium generated by these forecasts, let S denote a
set of state variables for the economy. Elements of S may include any finite
number of exogenous or lagged endogenous variables. Agents forecast prices as
functions ¢: S — P, where P denotes the set of spot market prices for the
economy. Let @ denote a set of admissible forecast functions. We then make the
following assumption.

ASSUMPTION 2.1: The economy maps admissible forecasts ¢,€ @ into T.E.
price functions ¢, € ®. This mapping, denoted §: ® — ®, has a fixed point.

Two points about this assumption are worth noting. First, while the as-
sumption is restrictive in precluding the specification of forecasts and T.E. as
conditional probability measures or correspondences, it follows closely the as-
sumptions typically made in models of learning. Secondly, the assumption on the
mapping g can be easily modified to admit the possibility that different agents
make different forecasts of the future. At a REE, agents necessarily forecast with
the same price function (although they may form expectations differently if there
are informational asymmetries present). To simplify the exposition, we assume
that all agents forecast using the same forecasting function.

We turn next to our rationality assumptions. Given our focus on procedural
rationality, we define admissible price functions as those which are computable.
While we will discuss this assumption in detail below, the essential reason for
imposing the restriction that admissible price functions be computable is the fact
that computable functions are precisely those which can be characterized by
finite algorithms. To formalize these restrictions as assumptions on the model,
however, we will need to digress briefly and discuss some of the central ideas of
the theory of computable functions.

As is standard in the literature on computability, we characterize computation
in terms of Turing machines. For a formal description of such machines, see, e.g.,
Hopcroft and Ullman (1979). Less formally, a Turing machine is a computer
which operates in discrete time. At any point in time, the computer is in one of a
finite number of internal states. A read-write head scans letters drawn from a
finite alphabet and recorded in a potentially infinite memory (the fape). A pair
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(g, a) consisting of an internal state and a letter read from the machine’s tape
determines a triple (¢q’, a’, m) consisting of a new state, a new letter recorded
over the existing letter (or possibly on a different tape), and a “move” of the
read-write head (left or right). The transition from state to state is determined by
the machine’s finite control, which gives the transition rule for changing the
machine’s internal state as a function of the existing state and the letter being
scanned. The finite control also determines what output is produced. A Turing
machine begins a computation by scanning the leftmost letter of a given input
string written on its tape while in a given initial internal state. Transitions then
take place according to the instructions in the finite control. The computation
halts if after a finite number of steps the machine enters a designated final state.
Otherwise, the computation loops.

The key feature of Turing machines is that they represent the general model of
computation: every finite algorithm can be realized as a Turing machine. Finite
algorithms, in turn, are important because they determine completely the set of
feasible computations that a human being can undertake. This is the content of
the so-called Church-Turing thesis in formal logic (see Cutland (1980) for
details). The Church-Turing thesis can be equivalently stated as the principle of
noncomputability: if a function cannot be calculated by a Turing machine, it
cannot be calculated by a human being.

Because Turing machines operate on strings of letters (words) with letters
drawn from a finite alphabet, the functions calculated by such machines have
countable domains and ranges. Hence, we may view all such functions as
mappings from N — N, where N denotes the set of natural numbers. Given a
specific Turing machine, we define the function calculated by the machine as that
f: N = N such that when the machine begins computation with input j € N, it
either produces output f(j) or fails to halt. If the machine produces an output,
we write f(j)|. Otherwise, we write f(j)7 and say that the function is
undefined at j € N. The set of functions computed by some Turing machine is
called the set of partial recursive functions, where the adjective “partial” refers to
the fact that the function may not be defined for certain values j € N. A function
which is defined for all j € N is said to be total recursive.

A key result in the theory of computation is that not every function f: N> N
can be computed by a Turing machine. In particular, this means that there are
functions defined on N for which there is no algorithm that will calculate the
values of the functions. To prove this, we need to introduce the concept of coding
or indexing the set of Turing machines. First, every Turing machine can be
completely described by listing the (finite) symbols of the alphabet on which it
operates, the (finite) internal states of the machine, and the (finite) set of
transition rules of its control. By coding each element of this finite set suitably
(i.e. assigning each element a unique integer), every Turing machine TM can be
described by a string w(TM) of finite length. Such strings can be further
collapsed using the fact that there exist mappings from U, N* (where N* is the
k-fold product of N) into N which are one-to-one. One such mapping, due to
Godel, can be realized by assigning to each string of integers i =[ij,..., i,] the
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integer
j(i)=pi...pr
where p; is the ith prime.

Since the set of recursive functions (partial and total) is countable, we can
identify each such function with the index number i € N of the Turing machine
that calculates the function. Given such an indexing, it follows immediately that
the set of Turing machines is at most denumerably infinite. The set of all
functions from N to N, however, is uncountable. Hence, not every function is
recursive. Equivalently, there exist functions for which there are no algorithms
that will systematically calculate the values of the function in question.

Having introduced the key elements of the theory of recursive functions, we

can now proceed to state and discuss the computability assumptions we impose
on the economic model.

ASSUMPTION 2.2: The set S is countable. The set @ consists of total recursive
functions on S.

The assumption that S is discrete departs significantly from the continuity
assumptions typically made in economic analysis (although see Mas-Colell (1975)
and Laitner (1985)). Continuity assumptions, while extremely useful for the
mathematical results they make possible, are nonetheless only idealizations of the
actual discrete computations performed in real economies peopled with real
agents who always round off real numbers. Hence, the assumption that states are
discrete hardly needs justification. What does require further exploration (though
we do not undertake it here) are the issues of existence and uniqueness of
equilibria associated with economies in which variables take on discrete values.
Some work on this issue is done in Laitner (1985) in the context of an
overlapping generations economy, though the REE he obtains take the form of
probability measures rather than functions. For our purposes, we will view the
discreteness assumption as one of approximating (on rational numbers, for
example) the real-valued results delivered by continuous economies.

The assumption that the set of admissible prices functions @ consists of total
recursive functions can be justified as follows. That @ should be a subset of the
recursive functions (total or partial) is based on the fact that forecasts must be
computable (by the Church-Turing thesis). At any REE, therefore, the equilib-
rium price function must also be recursive. That nonequilibrium temporary
equilibrium price functions should be computable can be defended by viewing
these prices as computable approximations of the T.E. price functions associated
with a given forecast. That such approximations exist (to any degree of precision)
can be shown formally (though we do not undertake a proof here) by working
with computable approximations to agents’ excess demand functions (given the
current state and each agent’s forecast) and applying the generalized Sturm
algorithm (see, e.g., Jacobson (1964)) to compute the zeros of the approximation
to the aggregate excess demand function. Note also that the need for considering
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such approximations is also raised by recent results of Lewis (1985), where it is
shown, in the context of the consumer’s optimization problem, that exact
optimization may be computationally impossible.

The assumption that @ consists of total functions can be justified by again
viewing elements of @ as computable approximations of T.E. equilibrium prices,
and then appealing to standard results on the existence of temporary equilibrium
prices (see, for example, Grandmont and Hildenbrand (1972)). It must, of course,
be noted that these results cannot be applied directly to the model because of the
discreteness assumption on S. Hence, we cannot derive these properties of @ as
theorems, but must impose them as assumptions. Clearly, it would be interesting
to know whether these properties can be formally derived.

Given Assumption 3.2, the fact that the set of recursive functions is countable
implies that we may unambiguously determine a function ¢ € ¢ by its index
under some acceptable indexing of the recursive functions. It then follows that
the set @ is isomorphic to N and we may define the mapping g of Assumption
3.1 as g: N — N, where the temporary equilibrium price function associated with
a forecast ¢, is ¢, We make the following assumptions on g.

ASSUMPTION 2.3: The mapping g: N — N is total recursive. The mapping g has
a fixed point in the sense that there exist functions ¢; and ¢,y such that ¢;= ¢y,

As with Assumption 3.2, the requirement that g be total reflects the general
results on the existence of temporary equilibria (again, see Grandmont and
Hildenbrand (1972)). The second part of the assumption states that there exists a
rational expectations equilibrium in the sense that g has a fixed point in the
space of total recursive price functions. Note that g[i] need not equal i at the
REE; it is possible that the algorithms used by agents to forecast prices may be
different from those used by the market to generate actual prices, even though
both procedures yield the same price functions.

Finally, note that if we relax Assumption 3.2 to require only that forecasts and
T.E. price functions be partial recursive (i.e. for some states, forecasts, or
temporary equilibrium prices may be undefined) then we can guarantee the
existence of REE under Assumption 3.3 by appealing to the so-called recursion
theorem (Theorem A.3 in the Appendix). This possibility has been examined in
some detail by McAfee (1984), who interprets the possibility that the computa-
tion of a T.E. price for some state of nature may not halt as a case of some
market(s) failing to open. Under this interpretation, the REE will specify indefi-
nite delay in committing to a forecast for those markets which fail to open.

While it is certainly not inconceivable that there are states of nature which
occur with positive probability for which markets fail to open (many risks are not
insurable), it is not clear that inclusion of such states is reasonable for models
designed to consider the pricing of systematic risk, and for which states involving
nonpriced risks are ignored. Since these models are more typical of the kind
considered in the literature on rational expectations, we impose Assumption 3.2.
McAfee’s results are, nevertheless, worth noting since they show that none of the
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restrictions imposed by consideration of recursive economies necessarily pre-
cludes the existence of REE. We turn next to the question of learning.

3. INDUCTIVE LEARNING

To begin our analysis of learning, we first introduce several ideas and results
from the theory of inductive inference.

The theory of inductive inference addresses the question of characterizing
when it is possible to construct algorithms that can infer which function among a
class of recursive functions has generated an observed sequence of ordered pairs
of numbers of the form (j, f[j]). To state the main results of this theory, the
following notation is useful. Let

2=LjJ[)i(N].

Then ¢ € X is a sequence of natural numbers. Let ¢, = 7,(o) denote the projec-
tion of the sequence o on its first n components. Let ( j, m) denote the number
obtained from the ordered pair by some coding of N X N into N. If a sequence o
consists of numbers of the form (j, f(j)) (i.e. coding for the ordered pairs in the
graph of the function f) and all such pairs for which the function f is defined
appear (possibly with repetitions) in the sequence o, then o is called a text for f.
A learning function is a mapping ¢: 2 — N which takes text for a function f
into a conjecture about the index of the TM which computes f. We then make
the following definition.

DEFINITION: Let ¢ be a learning function and o a text for the function f.

1. ¢ is said to be defined on o if ¢(a,)| for all nE N.

2. Let i € N. ¢ is said to converge on o to i if (a) ¢ is defined on o and (b) for
all but finitely many n € N, ¢(0,) = i.

3. ¢ is said to identify o if there is i € N such that (a) ¢ converges on o to i,
and (b) the TM of index i calculates f.

Intuitively, the learning function processes the information in the sequence o
and, for each new observation {j, f(j)), offers a conjecture about the index of
the recursive function which might have generated the observed data sequence. If
these conjectures converge to a fixed index i and the data were in fact generated
by the function f, then ¢ identifies f,.

The identification of any given recursive function is trivial; if j is the index of
the function in question, then define ¢ (o) = for all 6. The more interesting (and
less trivial) problem is that of identifying collections of recursive functions. For
our purposes, the following theorems, due to Gold (1967), are most important.

THEOREM 3.1: The set of total, primitive recursive functions is identifiable.
Furthermore, identification is effective; the learning function ¢ is recursive.
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(A proof of this theorem can be found in Gold (1967), and in Blum and Blum
(1975). Primitive recursive functions are defined in the Appendix.)

THEOREM 3.2: The set of total recursive functions is not identifiable by any
recursive learning function.

(Again, formal proof of this theorem can be found in Gold (1967), or in
Osherson et. al. (1986).)

A corollary to Theorem 3.2 (see Blum and Blum (1975)) states that the class of
total recursive functions can be effectively identified if the text from which the
identification is made is generated by primitive recursive enumeration (see
Appendix for definitions). This in turn requires that there exist a primitive total
recursive function p: N — N such that p(n) = {j,, f(Jj,)). Since every recursive
function has a primitive recursive enumeration (see Cutland (1980)), identifica-
tion by primitive recursive enumeration is always possible.

While Gold’s theorem is quite powerful in asserting our ability to infer
recursive functions from primitive recursive enumerations of their graphs (at least
in the limit), the fact that not all recursive functions can be identified if the graph
is enumerated in an arbitrary way poses problems for learning when there is no a
priori reason to expect that nature will oblige us with a primitive recursive
enumeration of the evidence. In the Appendix, we provide a brief sketch of the
proof of Theorem 3.2 since the constructions in this proof illustrate why the order
in which the graph of a function is enumerated is important for identification.

Having briefly outlined the theory of machine inference, we now consider the
problem of learning rational expectations. In examining inductive learning of
rational expectations, we consider three broad models of boundedly rational
learning. The first two correspond to models of learning in which agents hold
fixed expectations and collect samples of equilibrium prices. These models have
been examined by Blanchard (1976), Bray (1982), Brock (1972), and DeCanio
(1979). The third model deals with incremental learning in which new observa-
tions are immediately incorporated into forecasts. These models have been
considered by Blume and Easly (1982), Bray (1982), Cyert and DeGroot (1974),
and Marcet and Sargent (1986). In developing our results, we first consider the
possibility of inductive learning of rational expectations in two-stage models with
full and incomplete information. We then turn to models of incremental learning.

The first model we consider is one of two-stage learning under full information.
In two-stage learning, agents hold (common) fixed forecasts and observe pairs
(p,, 5,) of prices and states generated by the economy as temporary equilibria
corresponding to the fixed forecast. Agents then attempt to infer the temporary
equilibrium price function corresponding to the fixed forecast. Assuming this is
possible, agents can then learn the function g by varying their forecasts and
learning the corresponding T.E. price function. Once agents have learned the
economy, they can presumably find the REE. The assumption that agents have
full information simply means that agents observe all prices and state variables at
each point in time.
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The second model we consider is a variation on the first in which agents learn
by stages, but in this model, we assume that information is not complete. In
particular, each agent observes only a signal about the current state s,. This
signal is given by a mapping n,,(s) which is not one-to-one. We then ask whether
agents can infer the T.E. price functions and, as in the case of full information,
the mapping g.

We consider first the simplest case of two-stage inference with full information.
In this model, agents hold a fixed, common forecast ¢; and observe a sequence of
temporary equilibrium pairs (p,, s,). Hence, when the forecast is ¢;, agents
observe s, and

pt=¢g[i](st)'

Applying Gold’s theorems then yields the following results.

PROPOSITION 3.3: If the T.E. price function is primitive recursive, agents can
identify it. If ¢, is not primitive recursive, identification may not be possible.

Proor: Apply Theorems 3.1 and 3.2. Q.E.D.

Several comments about this result are in order. First, it should be kept in
mind that Gold’s theorem states that identification occurs in the limit. Specifi-
cally, this means that there is some finite time at which the learning function has
converged, but no a priori bound can be put on when convergence occurs.
Furthermore, it is not possible for the computer to announce that convergence
has occurred, since this depends on the enumeration of the data. Thus, the
identification result obtained here is similar in nature to results in statistical
inference which depend on the law of large numbers. In the problem of parame-
ter estimation, for example, the law of large numbers guarantees consistent
estimates and delivers confidence intervals for the estimates, but there is no way
to determine how close the estimates obtained from any given sample are to the
true parameter values, except in the limit. We will return to this point below.

The assumption that the temporary equilibrium price function be primitive
recursive is, of course, restrictive. The assumption can be avoided if we can
guarantee that the data from which agents learn is generated by primitive
recursive enumeration, but this would require that agents be able to arrange the
data they observe according to a primitive recursive enumeration of the T.E.
function’s graph. As is noted in the Appendix, this generally requires knowledge
about the program generating the values of the function being inferred. Of
course, if a program for the function ¢,; is known, learning is irrelevant. If such
a program is not known a priori, then learning an arbitrary T.E. function requires
that the stochastic process generating the states of nature s, do so in a way that
yields a primitive recursive enumeration of the graph of the function.

On the other hand, the assumption that the T.E. price function is primitive
recursive can be defended on the grounds that the primitive recursive functions
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include all functions which can be practically computed in the sense of computa-
tional complexity.

Given these observations and caveats, it is natural to ask whether agents who
can learn the T.E. price function of an economy can, by varying their forecasts,
learn the functional mapping g determined by the economy. We have the
following result.

PROPOSITION 3.4: If the function g is primitive recursive, it can be identified in
the limit.

PROOF: Assuming that agents know the index of the forecast ¢;, the assump-
tion that they can learn ¢,;; implies that (in the limit) agents observe pairs
(i, g[i]). Since g is primitive recursive, Gold’s theorem implies that the function
g can be identified. Q.E.D.

Note that the question of whether or not agents can learn g in finite time is not
addressed by this result, since Gold’s theorem provides only for identification in
the limit. If we take the two-stage learning paradigm literally, it seems highly
implausible that agents will ever be able to learn g and hence the REE since they
can never know when they have, in fact, identified ¢,1;; and hence, when to
change their conjectures. On the other hand, two-stage procedures which rely on
the law of large numbers can be criticized on the same grounds if one insists on
certain knowledge of the parameters being estimated. It seems at least intuitively
plausible that one could modify the inductive inference paradigm to avoid this
problem along the same lines as models which rely on “sampling time” assump-
tions. Such a modification would allow agents to terminate the production of
conjectures once they appeared to have converged, but at some risk of being
wrong. While a formal analysis of this is beyond the scope of this paper, it seems
natural to conjecture that one would obtain reasonable “approximate” learning
results from this procedure, with the risk of error going to zero as the arbitrary
termination time is pushed further and further into the future. Nevertheless, it is
clear that, like other two-stage learning models, the need for substantial sampling
is a serious drawback of the procedure.?

As with Proposition 3.3, the assumption that g is primitive recursive does
restrict the economy significantly. Once again, the assumption can be weakened
by assuming that agents are capable of varying their forecasts in a way that
generates a primitive recursive enumeration of the pairs [i, g(i)]. As was the case
before, though, if g is not primitive recursive, such an enumeration of the graph
of g may require knowledge of a program for g itself, in which case there is
nothing to be learned. The assumption that g is primitive recursive can be
defended (as with the T.E. price function) on the grounds that practical com-
putability requires primitive recursion.

%1 am indebted to an anonymous referee for pointing out this complication.
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We will call an economy primitive recursive if all the relevant functions ¢,,
®g1i» and g are primitive recursive. Taking Propositions 3.3 and 3.4 together,
then, we obtain the positive result that for primitive recursive economies in which
information is complete, agents may be able to inductively infer the mapping g
and hence (by calculating the fixed point of g) learn the rational expectations
equilibrium price function(s).

We turn next to the question of inductive learning in the two-stage model when
agents do not have complete information, but instead observe only a signal 71,(s)
correlated with the current state. In this case, when agents again hold a fixed,
common forecast ¢;, agent h observes a T.E. pair ( p,, n,[s,]), where

= ¢g[i](sz)-

When the mapping 7, is many-to-one, the best agent 4 can hope to infer from
observations of the temporary equilibrium is a correspondence of possible T.E.
price functions consistent with his signal. Let

N(m,) = {SM;.(S) =7—7h}-
Agent & must infer the set

W, (i) = { jirange ¢, v, = range ¢l ¢, for all 7, } .

If this set can be inferred, then A can hope to learn the correspondence induced
by g and given explicitly by ¥,(i). Since g has a fixed point, this correspondence
has a fixed point. Unfortunately, because the set ¥,(i) is a nonempty, nontrivial
set of recursive functions, we immediately obtain the following negative result.

PROPOSITION 3.5: There is no effective procedure for determining the set ¥,(i).
PROOF: Apply Rice’s theorem (see Appendix). Q.E.D.

CoMMENT 1: While it might seem that inductive inference with full informa-
tion is just a special case of inference with incomplete information, it should be
noted that the inference results with full information do not contradict Rice’s
theorem since those results do not require a characterization of the set of indices
consistent with the T.E. price function ¢,;;. The identification theorems only
imply the existence of a learning function which in the limit correctly conjectures
some index j such that ¢, =¢,,, given the observations of independent and
dependent variables. Identification fails in the case of incomplete information
because there are simply too many functions in the set ¥,(i) for any finite state
Turing machine to keep track of.

COMMENT 2: While Rice’s theorem implies that we cannot effectively deter-
mine membership of the set ¥,(i), if the set were recursively enumerable there
would be some hope that by systematically listing the elements of the set, the
REE could be inferred. Unfortunately, the requirement that the pricing functions
be total immediately implies (by the Rice-Shapiro Theorem) that if the set S is
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infinite, ¥,(i) is not recursively enumerable. If we relax Assumption 3.2 and
work with partial recursive price functions, then the set ¥,(i) may be recursively
enumerable. But in this case, we will lose the positive result on learning in
environments of complete information, since Gold’s theorem allows the identifi-
cation of at best a total recursive function which extends the given partial
recursive function. In the context of a stochastic economy, extending a forecast
function defined on some subset of states to all possible states amounts to
opening new markets for trades contingent on the added states (see the discus-
sion at the end of Section 2). In general, one would expect this to alter the fixed
points of the functional map taking forecasts into T.E. price functions. Hence,
for agents to find the fixed point ¢,,;= ¢, requires that they determine the fixed
point of the correspondence

Z(¢;) = {olo= ¢,(;; and j is an index for some restriction of the
total recursive function ¢, } .

Generating this correspondence, in turn, requires that agents know the set of
total recursive functions. By the Rice-Shapiro theorem, determining this set is
impossible. One alternative which avoids both of these problems is to assume
that there are only finitely many states of nature. We will return to this point
below.

CoMMENT 3: There are results in the inductive inference literature showing
that identification is possible under some circumstance when text (i.e. the
observed ( p, s) pairs) is incomplete in the sense that some finite number of pairs
is missing. There are no results to date, however, on learning when infinitely
many observations are missing.

Are there alternatives to characterizing the REE which avoid these problems?
Since agents are ultimately interested only in the question of whether they are at
an REE, one possibility is for them to try simply to determine whether ¢, = ¢,
without trying to determine the function g. But this amounts to asking whether
agents can compute the characteristic function of the set of fixed points of g, i.e.,

{i19;= by }-

Again, by Rice’s theorem, this function is not computable. For total recursive
price functions ¢, this set is not recursively enumerable, so that there is no
effective way for agents to determine that they are not at a fixed point of g,
either. Note also that the fact that this set is not recursive also implies that its
complement is not recursive, so that there is no effective procedure for determin-
ing when a forecast is wrong.

One approach which avoids all of the problems discussed so far is to assume
that there are only finitely many states of nature. We will return to this point
below.

The negative implications of Proposition 3.5 together with the observation that
in most realistic situations of economic inference, information will not be
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complete (or will be excessively costly to collect), suggests that we examine
alternative models of learning which may be robust to incompleteness of infor-
mation. This leads us to consider models of incremental learning. These models
are considered in the following section.

4. INCREMENTAL LEARNING

In this section, we consider models of incremental learning, in which agents use
a fixed (perhaps agent specific) procedure for updating forecasts in each period
based on the current (possibly incomplete) information about prices and states.
These models are intuitively appealing because they avoid the need for the
“sampling time” assumptions required of the two-stage inference models.

In looking at incremental learning, we will be less concerned with the question
of whether or not a given updating procedure converges, than with the question
of deciding whether or not the procedure can yield a REE given that convergence
occurs. This in turn leads naturally to a consideration of how agents actually
choose their updating procedures and whether this process can be rationalized in
any way.

For this analysis, we let

(D411 (5),m(5)) = £(s, do)

where, as before, n(s) denotes the signal agents receive about the current state,
and i, is the index of the common initial forecast. For this analysis, we will
assume that agents receive the same signal, and that agents share a common
means of updating forecasts based on observations of £ These commonality
assumptions simplify the exposition of the results to follow and, as was the case
in the previous models, the assumptions can be relaxed without altering any of
the results. (Indeed, by reinterpreting the indices as codings of vectors of indices,
the assumption that signals are common can be dropped.)

We assume that the updating scheme is defined by a (total) recursive function f
which takes forecasts and observations £ into new forecasts, so that

iy = f (g, £[51, io))

where the updating process maps the index i, into the index i, based on
observation ¢ at s, for given forecasts ¢,. We will say that a forecast ¢; is
consistent with the updating scheme if

&= Py, ¢1s,p foralls.

Given the updating scheme f, any forecast consistent with f will be called a
model consistent equilibrium. If, in addition, ¢, = ¢, ;, then ¢, is a REE forecast.

CoMMENT 1: The model developed so far can also be applied to the models
analyzed by Anderson and Sonnenschein (1982, 1985) by retaining the updating
framework but allowing agents to collect many observations of the state s, (so
that, in particular, n(s) =s). In the models they consider, agents update using
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statistical methods (OLS estimation and convolutional smoothing of empirical
distributions) to incorporate information about market outcomes in the revision
of forecasts. As the Anderson-Sonnenschein analysis shows, there may exist
consistent equilibria (in which no agent’s model is controverted) which are not
REE. We note that in general specifications of the updating procedure, market
information need not be used, as when the updating function is constant.?

COMMENT 2: By relaxing the requirement that the price functions ¢ be total,
applications of the s-m-n Theorem and Recursion Theorems (see Appendix) can
be used to show the existence of equilibrium forecasts which are not controverted
by the data generated by the economy when agents hold these forecasts. As was
the case with the two-stage model, however, the equilibrium price functions
delivered by these theorems can only be guaranteed to be partial recursive,
allowing the possibility that equilibrium prices may not be defined for some
states which occur with positive probability. Since we have argued before that
this does not seem reasonable, we will simply make the following assumption.

ASSUMPTION 4.1: There exist consistent equilibrium price functions. These func-
tions are total recursive.

Given an updating scheme which leads to an agent’s model not being contro-
verted, we now consider the consistency of the model relative to the actual
economy. In particular, we are interested in the question of characterizing when
the model consistent equilibrium is in fact a REE, and whether it is possible for
agents to choose an updating scheme which yields the REE as a model consistent
equilibrium.

As before, we fix the function g defining the economy and ask for a characteri-
zation of the set of updating schemes which yield REE. Since updating functions
are recursive, we let f=f, for some i, and identify updating functions by their
indices. Let j be an index such that ¢, = ¢,(; and suppose that ¢, = ¢, ¢ for
all £. We are then interested in the set of what might be called rational updating
schemes

Ry= {ild;1, )= b1 )

and in the question of whether there is any effective procedure (i.e. an algorithm)
which will allow agents to determine the indices in this set. We have the following
result.

PROPOSITION 4.2: There is no effective procedure for determining when a given,
model consistent updating scheme yields a REE, unless R, is empty.

3 The fact that the assumption of model consistency tells us as much about an agent’s updating
rule as it does about his forecasts was also pointed out by a referee.
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PrOOF: By Rice’s theorem, there is no effective procedure for determining
membership in the set R, (i.e., the characteristic function of the set R ¢ 1s not
computable). Q.E.D.

COMMENT: As in the case of Proposition 3.5, the requirement that the func-
tions involved be total immediately implies (by the Rice-Shapiro Theorem) that
R, is not recursively enumerable. If the totality assumption is relaxed, this set
may be recursively enumerable, in which case it would be possible to systemati-
cally list the rational updating schemes. The recursive enumerability of this set
remains an interesting open question. Note, however, that even in this case,
agents must know which economy they inhabit before they can hope to become
rational. Of course, to know the economy is to know the function g, so that, once
again, the problem of choosing a rational updating scheme becomes one of
learning how the economy transforms forecasts into temporary equilibrium
outcomes.

5. CONCLUSIONS

In this paper, we have considered in some detail the question of learning
rational expectations equilibria under computability constraints. The analysis
presented here suggests two major conclusions about learning and REE.

When agents have perfect information, inductive learning is feasible and limit
identification of the REE is possible. Furthermore, the identification paradigm
provides effective procedures for realizing the REE. In the process, agents learn
the economy in the sense that they learn how the economy maps forecasts into
market outcomes.

When information is incomplete, however, attempts to inductively infer the
T.E. correspondence become infeasible, since there are no effective procedures for
computing the set of T.E. price functions corresponding to a given forecast and
signal realization. When we attempt to circumvent this obstacle by considering
incremental adjustment processes which yield model consistent equilibria, we find
that attempts to characterize adjustment processes yielding REE are impossible.
The question of when a given updating procedure yields a REE (for a given
computable economy) is undecidable. Hence, if agents are required to choose an
updating scheme which yields model consistent equilibria which are also REE,
they are facing an undecidable problem.

While there are alternative specifications of the computability assumptions
which ameliorate the decidability problems posed by incomplete information,
none of these alternatives is unambiguously better than the maintained assump-
tions of the paper. We can, for example, relax the assumption that forecasts and
T.E. prices must be total recursive. In this case, the identification of some
nontrivial sets of functions may become feasible if these sets can be shown to be
recursively enumerable. On the other hand, relaxing the totality assumption
means that the positive result on learning with complete information may no
longer be true. In addition, allowing the price functions to be partially recursive
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opens up the possibility that the economy may have REE in which risks which
are routinely priced by observed economies cannot be priced by a model of such
an economy. Indeed, by considering only states of the world involving infinitely
many actuarial risks, this problem can easily arise. A third alternative is that
suggested by McAfee, of arbitrarily imposing time bounds on the length of
computations which agents are allowed to make. While this eliminates the
possibility of equilibria involving infinite delay, the resulting equilibrium alloca-
tions will typically fail to be optimal. A fourth alternative, which eliminates all
problems of computability, is to assume that there are only finitely many states of
nature. While this may be a reasonable approximation of the number of risks
actually priced by the economy, the assumption becomes problematic when we
include lagged values of endogenous variables in our description of the state since
it requires that there be only finitely many different prices at which exchange may
take place. Since this is precisely the context in which many of the most
interesting and important results on rational expectations equilibrium have been
obtained, the question of whether one can uniformly approximate an economy
with infinitely many state variables by one with finitely many is most interesting.
One possibility for dealing with this issue when it occurs because of the inclusion
of lagged endogenous variables would be to show a version of the so-called
Shadowing Lemma for compact, stochastic dynamic systems. This lemma states
that for a nonstochastic, hyperbolic dynamic system, any approximation of a
given trajectory is uniformly “shadowed” by an exact trajectory. This result can
be applied, for example, to maps having chaotic trajectories. For such maps, no
computer simulation of a trajectory can ever be precise because unavoidable
round-off errors in calculating iterations of the map get magnified by the overall
expansive action of the mapping. (This is the source of the sensitive dependence
on initial conditions exhibited by such maps.) Nevertheless, the Shadowing
Lemma asserts the existence of an exact trajectory which approximates the
computed trajectory uniformly closely (see Gukenheimer and Holmes (1983) for
details). If such a result could be shown for stochastic dynamic systems, it would
Jjustify approximating price processes on finitely many e-balls.

A second line of alternatives worth considering is the relaxation of the very
strong consistency requirements imposed by the rational expectations hypothesis.
One possible alternative is the model consistent equilibrium concept developed
and analyzed by Anderson and Sonnenschein (1982, 1985). These models are
attractive in imposing some consistency on agents’ forecasts relative to the actual
prices delivered by the economy, but the notion of rationality embodied in these
models is procedural rather than substantive. The fact that an agent’s forecast of
the future must be consistent with his available information (when viewed
through the lens of his own model of the world) avoids the criticism of temporary
equilibrium models in which no consistency is required, without forcing agents to
decide undecidable problems.

While these comments in no way exhaust the possible ways of dealing with
issues of computability in economic models, they (and the results developed in
this paper) are meant to suggest that the problems of decidability imposed by our
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fundamental equilibrium concepts are serious, and that attempts to deal with the
questions of how rational (but human) beings deal with economic calculations
should be taken seriously.

Graduate School of Industrial Administration, Carnegie-Mellon University, Pitts-
burgh, PA 15213, U.S.A.

Manuscript received July, 1987; final revision received September, 1988.

APPENDIX

In this Appendix, we cite and discuss several results from the theory of recursive functions which
are used in the text. We also present a sketch of the proof of Theorem 3.2.

1. The set of recursive functions was defined in the text as those function computed by some
Turing machine. We give here an alternative definition of the recursive functions.

Consider the set of functions on N containing the constant function equal to 1, the successor
function Succ(N)= N +1, and the characteristic function for the relationship of equality, i.e. the
function which is 1 on the graph [x, f(x)] of the function f(x)=x and O elsewhere. Next, let S
denote the operation of composition of functions, and define the operation of recursion, denoted R,
as follows. Given a function f(x) and a function g(x, y,z) defined on N X N X N, define a new
function h(x, y) by the conditions

h(x,0)=/(x)

and

h(x,y+1)=g(x,y h[x, y]).

Note that while the functions g and h are defined, respectively, on N X N X N and N X N, this is
mostly a matter of convenience since, by using the coding described in the text, we can convert these
into functions defined on N. With this in mind, the procedure above gives a way of mapping
functions defined on N into functions defined on N. In particular, we denote the function s as
R(f, g), and h is said to be defined from f and g by recursion.

The primitive recursive functions are then defined as the set of functions which is closed under the
operations S and R, i.e. the set of functions having the property that, given any two functions in
the set, any function obtained by composition and recursion based on the given functions is again in
the set. To obtain the full class of recursive functions, we define a third operation known as
minimalization. Given a function f(x, y), define py[f(x, y) = 0] as the least y such that: (i) f(x, z)
is defined for all z <y, and (i) f(x, y) =0 if such a y exists. Otherwise, the expression is undefined.
We can then define a new function h(x)=py[f(x, y) =0]. The set of recursive functions (partial
and total) is then obtained as the class of functions closed under composition, recursion, and
minimalization. Primitive recursive functions are a strictly proper subset of the recursive functions.
The Ackermann function (see, e.g., Cutland (1980, p. 46) for details) is an example of a recursive
function which is not primitive recursive.

2. The fact that not all functions can be effectively calculated is closely related to the famous
undecidability results of Gddel, which state that there are propositions in formal logic which cannot
be proved either true or false. The analogue of Gddel’s Theorem in the formal theory of computation
is the following result, known as Rice’s Theorem.

THEOREM A.l: Let F be a nonempty proper subset of the set of partial recursive functions of one
variable. The characteristic function of the set

Sp= {i| f,e F}
is not recursive.

A proof of this theorem can be found, for example, in Cutland (1980), Hopcroft and Ullman
(1979), or Salomaa (1985). Intuitively, the theorem states that every nontrivial property of partial
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recursive functions is undecidable in the sense that given a property shared by some, but not all,
partial recursive functions, there is no algorithm capable of deciding which functions share the
property and which do not.

While Rice’s theorem imposes constraints on our ability to determine whether a given function is
an element of some nontrivial set of recursive functions, it does not necessarily imply that we can
have no knowledge about the elements of such a set. Indeed, it is sometimes possible to find an
algorithm which will list the elements of such a set. A nontrivial set of recursive functions having the
property that its elements can be listed by a Turing machine is said to be recursively (or machine)
enumerable. While recursive enumerability of an infinite set allows us to determine that functions
appearing in the list of elements of the set are in fact in the set, it does not allow us to determine
which elements are not in the set since the listing of elements in the set necessarily takes forever. The
following proposition, known as the Rice-Shapiro Theorem, provides a characterization result for
recursively enumerable sets of recursive functions.

THEOREM A.2 (Rice-Shapiro): Suppose that A is a set of recursive functions such that the set
{ /19, € 4} is recursively enumerable. Then for any recursive function f, f € A if and only if there is a
finite function © C f with © € A.

Here, a function is finite if its domain is finite. The notation ® C f means that © is a restriction of
f. A proof of this result can be found in Cutland (1980). We will make extensive use of these two
theorems below in our discussion of the decidability problems associated with learning rational
expectations when information is incomplete.

In addition to Rice’s theorem, the following two results are also useful.

THEOREM A.3 (Recursion Theorem): For every total recursive function g: N — N, there is a natural
number n called a fixed point of g such that

fn =fg[n1‘

PROOF: Salomaa (1985), Theorem 4.6

The proof of the recursion theorem makes use of the following result.

THEOREM A.4 (Kleene’s s-m-n Theorem): For all positive integers m and n, there is a total recursive
function s (depending on m and n) such that

f;(yl’“-vymvzl""’zn) =fs[i,z|,...,z,,](yl?"'?ym)

where the functions f; and f, are recursive.
PRrROOF: Salomaa (1985), Theorem 4.1.

3. SKETCH OF PROOF OF THEOREM 3.2: The set of total recursive functions is not identifiable by
any recursive learning function.

Suppose the result of the theorem is not true, and let ¢ identify the total recursive functions. Then
¢ must identify the subset of functions which are eventually zero. Denote this subset R,. Given this
observation, one can construct a text for a total recursive function g on which ¢ “changes its mind”
infinitely often, and hence does not converge to any index for g. Let o, be given. Construct the
sequence

7=[0,, (n+1,0),...,{n+;,0)]

for some j> 1. Since ¢ identifies all total recursive functions, there exists a j such that ¢ will
conjecture an index for a function in R,. Similarly, given the text 7, construct the sequence

v=[r,(n+j+1),.. (n+j+k,1)]

for some k> 1. Then, since the set of functions in R, = {total recursive functions which are
eventually 1} is a subset of the total recursive functions, ¢ must eventually conjecture an index for
some function in R, given the text 7’. By choosing the function g to have values in {0,1} with g(j)
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generating sequences of 0’s and 1’s of ever increasing length (doing so in an algorithmically
predictable way), one can confront the learning function ¢ with text sequences of the form 7 and 7’.
Hence, ¢ changes its mind infinitely often and cannot, therefore, identify g. -

That ¢ can identify g from a primitive recursive enumeration of the graph of g (avoiding the
endless changes of conjectures) follows from the fact that such an enumeration of the graph uses the
program which calculates g to search out the boundaries of the increasing strings of 0’s and 1’s. In
effect, the evidence is stacked (literally) in favor of identification.
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