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INFORMATIONAL SIZE AND INCENTIVE COMPATIBILITY

By Richard McLean and Andrew Postlewaite1

We examine a general equilibrium model with asymmetrically informed agents. The
presence of asymmetric information generally presents a conflict between incentive com-
patibility and Pareto efficiency. We present a notion of informational size and show that
the conflict between incentive compatibility and efficiency can be made arbitrarily small if
agents are of sufficiently small informational size.

Keywords: Incentive compatibility, mechanism design, incomplete information.

1� introduction

The incompatibility of Pareto efficiency and incentive compatibility is
a central theme in economics and game theory. The issues associated with this
incompatibility are particularly important in the design of resource allocation
mechanisms in the presence of asymmetrically informed agents where the need to
acquire information from agents in order to compute efficient outcomes and the
incentives agents have to misrepresent that information for personal gain come
into conflict. Despite a large literature that focuses on these issues, there has
been little work aimed at understanding those situations in which informational
asymmetries are quantitatively important.
Virtually every transaction is characterized by some asymmetry of information:

any investor who buys or sells a share of stock generally knows something rel-
evant to the value of the share that is not known to the person on the other
side of the transaction. In order to focus on more salient aspects of the problem,
many models (rightly) ignore the incentive problems associated with informa-
tional asymmetries in the belief that, for the problem at hand, agents are “infor-
mationally small.” However, few researchers have investigated the circumstances
under which an analysis that ignores these incentive problems will yield results
similar to those obtained when these problems are fully accounted for.
In this paper, we study a class of mechanism design problems. Our goal is to

formalize informational size in a way that, when agents are informationally small,

1 Early versions of this paper circulated under the titles “Informational Smallness and Pareto Effi-
ciency” and “Informational Smallness and Incentive Compatibility.” We thank Jacques Cremer, Dean
Foster, Andreu Mas-Colell, Stephen Morris, David Schmeidler, and particularly, Faruk Gul for help-
ful conversations and Rajiv Vohra for a very careful reading. We also thank the numerous partici-
pants in seminars at which this paper was presented for helpful comments. We also thank an editor
and the referees for very helpful comments, and thank Ichiro Obara for pointing out an error in an
earlier version. Postlewaite gratefully acknowledges support from the National Science Foundation.
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one can ignore the incentive issues associated with the presence of asymmetric
information without substantially affecting the analysis of these problems.
We analyze a pure exchange economy with incomplete information in which

there is uncertainty regarding the characteristics of the goods that are traded
and hence, uncertainty regarding the utility agents will derive from the goods.
In our model, the set of states of nature is finite, with each state corresponding
to a given profile of characteristics for the goods. Hence, each state of nature
corresponds to a complete information Arrow-Debreu pure exchange economy.
Agents do not know the state of nature, but each agent privately observes a signal
that is correlated with the state of nature.
Our objective is to determine when an arbitrary allocation, conditional on the

unobservable state, can be approximated in utility by an incentive compatible
allocation. We focus on the case of negligible aggregate uncertainty: the state of
nature can be inferred with high precision from all agents’ signals. We show that
approximations are possible when (i) each agent is informationally small in the
sense that the conditional distribution on the state of nature does not vary much
in that agent’s signal if other agents’ signals are known, and (ii) for each agent,
the distributions on the state space, conditional on different signals the agent
might receive, are not “too close.” More specifically, we show that any given
precision of approximation is possible if each agent is sufficiently informationally
small relative to the variability of the conditional distributions on the state space
conditioned on his possible signals.
In mechanism design problems, truthful reporting can be ensured with a

scheme of the kind suggested by Cremer-McLean (1985): each agent is rewarded
when he announces a signal that is likely given other agents’ signals, and pun-
ished otherwise. Very large rewards and punishments may be necessary to ensure
truthful reporting and may limit the applicability of such mechanisms for two
reasons. First, large payments may be inefficient when agents are risk averse,
and second, limited liability may preclude large punishments. In this paper, we
identify conditions under which truthful reporting can be assured with small pay-
ments and small informational size plays an important role.
Agents will be informationally small in our sense in two natural economic set-

tings. When all agents receive noisy signals of the state that are independent con-
ditioned on the state and if each agent’s signal is very accurate, then agents will
be informationally small regardless of the number of agents. Alternatively, agents
will become informationally small as the number of agents increases, regardless
of the (fixed) accuracy of the agents’ signals. This is a consequence of the law of
large numbers and plays a crucial role in the replica theorem of Section 5.
We present our basic model in the next section, and in Section 3 we present

an example illustrating the model and our results. Section 4 contains our result
for economies of fixed size, and Section 5 contains our theorem for replica
economies. We discuss possible extensions of our work in Section 6, related liter-
ature in Section 7, and close with a discussion section. All proofs are contained
in the Appendix.
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2� private information economies

Let N = �1�2� � � � � n� denote the set of economic agents. Let �= �	1� � � � � 	m�
denote the (finite) state space, and let T1�T2� � � � � Tn be finite sets where Ti repre-
sents the set of possible signals that agent i might receive. Let Jm = �1� � � � �m�.
Let T ≡ T1×· · ·×Tn and T−i≡×j �=iTi. If t ∈ T , then we will often write t= �t−i� ti�.
If X is a finite set, we will denote by �X the set of probability distributions on
X. If x ∈�k for some positive integer k, then �x� will denote the �1-norm of x
and �x�2 will denote the �2-norm of x.
In our model, nature chooses a state 	 ∈�. All uncertainty is embedded in 	:

if 	 were known, then information would be complete and symmetric. Examples
of uncertainty of this kind include problems in which different 	’s correspond to
different quantities (or qualities) of oil in a field, different outcomes of a research
and development program, or different underlying qualities of objects that have
been manufactured in a particular way. The state of nature is unobservable but
each agent i receives a “signal” ti that is correlated with nature’s choice of 	.
More formally, let �	̃� t̃1� t̃2� � � � � t̃n� be an �n+ 1�-dimensional random vector
taking values in �×T with associated distribution P ∈ ��×T where

P�	� t1� � � � � tn�= Prob
{
	̃ = 	� t̃1 = t1� � � � � t̃n = tn

}
�

We assume that for each 	, Prob�	̃= 	�> 0 and for each t ∈ T , Prob�t̃= t�> 0.
For t ∈ T , let P��·�t� ∈ �� denote the induced conditional probability measure
on �, and let I	 ∈ �� denote the degenerate measure that puts probability one
on state 	.
The consumption set of each agent is ��

+ and wi ∈ ��
+, wi �= 0, denotes the

initial endowment of agent i (an agent’s initial endowment is independent of the
state 	). For each 	 ∈ �, let ui�·� 	�� ��

+ → � be the utility function of agent
i in state 	. In this specification, the utility that an agent derives from a given
bundle of goods is determined by the state. The utility from owning an oil field
(or a share of the field) will be determined by the quantity and quality of the
oil in the field, the utility of a share of a company engaging in a research and
development project will be determined by the product that emerges from the
project, and the utility from a used car depends on the quality of the engineering
design of the car. The assumption that u depends only on the bundle of goods
and on the state 	, but not on the profile of agents’ types t, is clearly without
loss of generality, since one can always include t as part of 	. We will, however,
make assumptions below regarding how much different agents know about the
state 	. Given these assumptions, our model captures better the case in which 	
embodies uncertainty about the characteristics of goods that might be of direct
interest to many agents rather than the case in which 	 embodies uncertainty
about a single agent’s utility function.
We will assume that each ui�·� 	� is continuous, ui�0� 	� = 0 and satisfies the

following monotonicity assumption: if x�y ∈��
+, x ≥ y and x �= y, then ui�x� 	� >

ui�y� 	�.
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Each 	 ∈ � gives rise to a pure exchange economy and these economies
will play an important role in the analysis that follows. Formally, let e�	� =
�wi�ui�·� 	��i∈N denote the complete information economy (CIE) correspond-
ing to state 	. For each 	 ∈ �, a complete information economy (CIE) allo-
cation for e�	� is a collection �xi�	��i∈N satisfying xi�	� ∈ ��

+ for each i and∑
i∈N �xi�	�−wi� ≤ 0. For each 	 ∈ �, a CIE allocation �xi�	��i∈N for the com-

plete information economy e�	� is efficient if there is no other CIE allocation
�yi�	��i∈N for e�	� such that

ui�yi�	�� 	� > ui�xi�	�� 	�

for each i ∈N .
The collection ��e�	��	∈�� 	̃� t̃�P� will be called a private information economy

(PIE for short). An allocation x= �x1� x2� � � � � xn� for the PIE ��e�	��	∈�� 	̃� t̃�P�
is a collection of functions xi� T → ��

+ satisfying
∑
i∈N �xi�t�−wi� ≤ 0 for all

t ∈ T . We will not distinguish between wi and the constant allocation that assigns
the bundle wi to agent i for all t ∈ T .
We next introduce standard notation in order to define the properties of allo-

cations. For a given PIE allocation x = �x1� x2� � � � � xn� define
Ui�xi� t

′
i�ti�=

∑
	∈�

∑
t−i∈T−i

ui�xi�t−i� t
′
i�� 	�P�	� t−i � ti�

= E!ui�xi�t̃−i� t′i�� 	̃��t̃i = ti"
for each t′i� ti ∈ Ti and

Ui�xi � t�=
∑
	∈�
ui�xi�t�� 	�P��	 � t�

= E!ui�xi�t̃�� 	̃� � t̃ = t"
for each t ∈ T .
A PIE allocation x = �x1� x2� � � � � xn� is said to be:
• incentive compatible (IC) if

Ui�xi� ti�ti�≥ Ui�xi� t′i�ti�
for all i ∈N , and all ti� t′i ∈ Ti;

• ex post individually rational (XIR) if

Ui�xi � t�≥ Ui�wi � t�
for all i ∈N and for all t ∈ T ;

• ex post #-efficient (X#E) if there exists E ⊆ T such that Prob�t̃ ∈E�≥ 1−#
and for no other PIE allocation y�·� is it true that, for some t ∈ E,

Ui�yi�t� � t� > Ui�zi�t� � t�+#
for all i ∈N .
Note that allocations can depend on agents’ types (their information) but not

on 	, which is assumed to be unobservable. Hence, our use of the term “ex post”
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refers to events that occur after the realization of the signal profile t but before
the realization of the state 	.

3� example

There are six agents, three of whom are potential buyers of cars (B) and three
of whom are potential sellers (S). The engineering design of the car is either
flawed or not flawed with equal probability. Let F denote the state in which the
design is flawed and let N denote the state in which the design is not flawed.
Agents cannot observe whether the design is flawed or not, but sellers have
private information that we represent as signals (G or B) correlated with the state
of nature. Buyers receive no signal and, therefore, have no private information.
The sellers’ signals are independent conditional on the state and the matrix of
conditional probabilities of the signals given the state is:

State

N F

Signal
G ) 1−)
B 1−) )

All agents have linear, separable utility functions. Buyers and sellers of the
cars have respective utilities of uB�m�x*	� and uS�m�x*	� for m units of money
and x cars in the two states, 	 = F and 	 = N . These utilities are given in the
following table:

State

N F

Agent
Buyer m+24x m+8x
Seller m+20x m+4x

Each buyer has an initial endowment of money and no car. Each seller ini-
tially has no money and one car. Given the utility functions, ex post efficiency
dictates that all cars be transferred from sellers to buyers. If the goal is to effect
a transaction that is ex post individually rational and ex post Pareto efficient, we
must induce the sellers to truthfully reveal their signals in order to determine
whether the payment should be relatively high (when the design is not flawed)
or relatively low (when it is flawed). An obvious incentive compatibility problem
arises since the sellers have a clear interest in making it appear that the design
is not flawed.
Consider the following revelation mechanism. Sellers announce their signals

and the state of nature is “estimated” to be N if a majority of the sellers
announce G, and F if a majority of the sellers announce B. Each seller will then
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transfer his car to a buyer in return for a payment that depends on both the
estimated state and his announcement according to the following table:

Seller’s Own Estimated
Announcement �ti� State �	� Payment

G N 22
B N 21
G F 5
B F 6

For example, if the sellers other than i both announce G, then N is the esti-
mated state independent of i’s announcement. In this case, i receives a payment
of 22 if he announces G and 21 if he announces B. One can interpret the mech-
anism as specifying a payment that depends on the majority announcement and
“punishes” a seller (by lowering the transfer price by 1) whose announcement
differs from the majority.
We note several things about the mechanism. First, if ) is close to 1, then

the information of the three sellers is sufficient to predict the state nearly per-
fectly. In particular, when ) is close to 1, P��N �t1� t2� t3� ≈ 1 if a majority
of sellers receive the signal G, while P��F �t1� t2� t3� ≈ 1 if a majority of sell-
ers receive B. Hence, the mechanism yields an ex post efficient allocation for
every vector of agents’ types when ) ≈ 1. Furthermore, the allocation is ex
post individually rational if ) is close to 1. If the profile of announced sig-
nals is t = �t1� t2� t3�, then ex post individual rationality requires that the pay-
ment lie between 24P��N �t�+8P��F �t� and 20P��N �t�+4P��F �t�. When )≈ 1
and a majority of sellers announce G, the estimated state is N , in which case,
24P��N �t�+8P��F �t�≈ 24 and 20P��N �t�+4P��F �t�≈ 20. A seller will receive
21 or 22, depending on his own announcement but the transfer will be ex post
individually rational in either case. A similar argument applies when a majority
of sellers announce B.
The mechanism is incentive compatible for ) sufficiently close to 1. To see

this, suppose that a seller receives signal B. A false report of G may change
the estimated state or may leave it unchanged. The estimated state will change
only when the other two sellers receive different signals. The conditional prob-
ability that the other two sellers receive different signals approaches zero as )
approaches 1. In our example, the gain in revenue from lying when the other two
sellers receive different signals is 16 and, therefore, a misreport that changes the
estimated state is profitable. However, these gains contribute very little to the
total expected gain in revenue from misreporting since they will be weighted by
probabilities that are close to zero when ) is close to one.
What happens when a misreport does not change the estimated state? There

are two possibilities. If the other two agents receive signal B, then a false report
of G results in a loss of 1. If the other two agents receive signal G, then a false
report of G results in a gain of 1. When ) is close to one, a seller who observes
B will believe it very likely that the other sellers’ signals are both B and he will
believe it very unlikely that the other sellers’ signals are both G. Hence, the
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contribution to the total expected gain in revenue from a misreport that does
not change the estimated state is close to −1. Therefore, the total expected gain
from false reporting is close to −1 and we see that for ) sufficiently close to
one, a misreport leads to an expected decrease in utility. The same argument
holds for the case in which a seller observes G but falsely reports B; hence the
mechanism is incentive compatible.
We are able to induce truthful revelation of information (and, consequently,

ensure a Pareto efficient and individually rational outcome) in the case when )
is close to 1 as a consequence of three features of this example. First, agents
are informationally small: with high probability, sellers are not able to change the
estimated state by misreporting their signals. Second, sellers’ types are correlated.
Despite the fact that a seller who receives the signal B can increase the expected
price he will receive by falsely announcing the signal G, an offsetting benefit
for truthful announcement is possible because the most likely signal received by
either of the other two sellers is also B. If agents’ types had been independent, it
would be impossible to construct such an offsetting benefit. Finally, the combined
information of all but one agent will, with very high probability, resolve nearly
all the uncertainty about the state of nature.
The linear utilities of the example make it possible to construct a mechanism

that is incentive compatible, ex post individually rational, and ex post Pareto effi-
cient for ) close to 1. In the case of general (nonlinear) utilities, exact Pareto effi-
ciency will not be obtained. However, we will demonstrate that, when appropriate
versions of the three conditions above hold, there will exist incentive compatible,
individually rational allocations that are nearly Pareto efficient. The proof of this
result will roughly parallel the construction of the mechanism of the example.
The agents’ announcements will be used to estimate the state of nature and, for
each estimated state of nature, the outcome will be an allocation that is efficient
and individually rational for that state, modified slightly so as to induce truthful
revelation.
It is important to mention several features of the example that do not play

any role in our results. To illustrate the basic idea in a straightforward way, we
constructed an example in which (i) the agents’ information had the form of a
noisy signal of the state of nature, (ii) agents’ information was independent, con-
ditional on the state of nature, and (iii) each agent’s information alone provided
a very accurate estimate of the state of nature. Our analysis includes information
structures with features such as these, but is not restricted to such structures.

4� economies of fixed size

Before stating the main result, we will discuss the three features mentioned
above that are key to ensuring that an incentive compatible, individually rational
and approximately Pareto efficient PIE allocation exists.
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4�1� Informational Size

In the mechanism of the example, sellers reveal their signals and the
announced signals are used to estimate the state of nature. The mechanism is
incentive compatible because each seller is informationally small in the following
sense: with high probability, he does not have a “large” influence on the condi-
tional probability distribution over states when other sellers announce truthfully.
We will formalize this notion of informational size for general problems. If

t ∈ T , recall that P��·�t� ∈ �� denotes the induced conditional probability mea-
sure on �. Our example suggests that a natural notion of an agent’s informational
size is the degree to which he can alter the posterior distribution on � when
other agents are announcing truthfully. Any vector of agents’ types t= �t−i� ti�∈ T
induces a conditional distribution on � and, if agent i unilaterally changes his
announced type from ti to t′i, this conditional distribution will (in general) change.
If i’s type is ti but he announces t′i �= ti, the set

�t−i ∈ T−i��P��·�t−i� ti�−P��·�t−i� t′i��> #�
consists of those t−i for which agent i’s misrepresentation will have (at least) an
“#-effect” on the conditional distribution. Let +Pi �ti� t

′
i� be defined as the smallest

nonnegative # (formally, the infimum over all #≥ 0) such that
Prob��P��·�t̃−i� ti�−P��·�t̃−i� t′i��> #�t̃i = ti�≤ #

and define the informational size of agent i as

+Pi =max
ti� t

′
i

+Pi �ti� t
′
i��

2

Loosely speaking, we will say that agent i is informationally small with respect
to P if his informational size +Pi is “small.” An agent is informationally small if
for each of his possible types ti, he assigns small probability to the event that he
can have a “large” influence on the distribution P��·�t−i� ti�, given his observed
type.
There are several important aspects of this definition of informational size.

First, note that +Pi = 0 for every i if and only if for every t ∈ T , the probability
distribution on � given t is the same as the probability distribution on � given t−i.
More formally, +Pi = 0 for every i if and only if P��·�t�= P��·�t−i� for each t ∈ T
and each i. Second, informational smallness is not determined by the “quality” of
an agent’s information in isolation. In the example of Section 3, P��·�ti� is nearly
degenerate for each ti when ) is close to 1. In this case, agents have very good
estimates of the true state conditional only on their own signals, yet each agent is
informationally small. However, it is true that, holding other agents’ information
fixed, an increase in the accuracy of a given agent’s signal will increase that
agent’s informational size.

2 That # occurs twice in the definition is not important. There are many functions f such that an
alternative definition of informational size using Prob��P��·�t̃−i� ti�−P��·�t̃−i� t′i��> #�t̃i = ti�≤ f �#�
would not qualitatively change our results.
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4�2� Negligible Aggregate Uncertainty

In the example, the information of any pair of sellers will “almost” resolve the
uncertainty regarding the state 	. We will introduce a measure that quantifies
this aggregate uncertainty that we will use in our theorem. Recall that I	 is the
degenerate probability distribution on � that puts probability 1 on the state 	.
For any t ∈ T , �P��·�t�− I	� is a measure of the degree to which the posterior
on � resolves completely the uncertainty regarding the state. A measure of an
agent’s estimate of the aggregate uncertainty when agent i is of type ti is then
the probability that, conditional on ti, the posterior on � is not close to I	 for
any 	. Formally, we have the following definition.

Definition: Let

-Pi =max
ti∈Ti

inf�#≥ 0�Prob��P��·�t̃�− I	�> # for all 	 ∈��t̃i = ti�≤ #��

We define the aggregate uncertainty as -P ≡maxi -Pi and we will say that P exhibits
negligible aggregate uncertainty if -P is small. In this case, each agent knows that,
conditional on his own signal, the aggregate information of all agents will, with
high probability, provide a good prediction of the true state.3

4�3� Distributional Variability

In the example in Section 3, a car seller is induced to truthfully reveal his
signal by conditioning the price at which his car will be sold on whether or not
his reported signal is equal to the estimated state. Denote the set of states in that
example by � = �N�F �. When the accuracy of the signals that sellers receive
is close to 1, the probability distributions on � given the private signals G and
B will be approximately the degenerate distributions that put probability close
to 1 on the states N and F respectively. That is, P��N �G�≈ 1 and P��F �B�≈ 1.
Hence, the difference between P��·�G� and P��·�B� increases as the accuracies
of the sellers’ signals converge to 1. This is a feature of this specific example in
which agents receive noisy signals that are independent conditional on the state.
In more general problems, our ability to construct a mechanism that will give

agent i an incentive to reveal his information will depend on the magnitude of
the difference between P��·�ti� and P��·�t′i�, the conditional distributions on the
states of nature given different types ti and t′i for agent i. We will refer to this
magnitude informally as the variability of agents’ beliefs.
To formally define the measure of variability that is convenient for our pur-

poses, we first define a metric d on �� as follows: for each /�0 ∈ ��, let

d�/�0�=
∥∥∥∥ /

�/�2
− 0

�0�2

∥∥∥∥
2

3 There are alternative notions of aggregate uncertainty that one might consider, some of which
are somewhat weaker than the concept presented here.
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where �·�2 denotes the 2-norm. Hence, d�/�0� measures the Euclidean distance
between the Euclidean normalizations of / and 0.
If P ∈��×T , recall that P��·�ti� ∈�� is the conditional distribution on � given

that i receives signal ti and define

1Pi =min
ti∈Ti

min
t′i∈Ti\ti

d�P��·�ti��P��·�t′i��2�

This is the measure of the “variability” of the conditional distribution P��·�ti� as
a function of ti. Let

�∗
�×T = �P ∈ ��×T � for each i�P��·�ti� �= P��·�t′i� whenever ti �= t′i��

The set �∗
�×T is the collection of distributions on �×T for which the induced

conditionals are different for different types. Hence, 1Pi > 0 for all i whenever
P ∈ �∗

�×T .

4�4� Results

In this section, we present our main result on the existence of incentive
compatible, individually rational, and nearly Pareto efficient allocations when
aggregate uncertainty and the agents’ informational sizes are both small rela-
tive to the variability of agents’ beliefs. This will follow from the stronger result
(Theorem 1 below) that any collection of complete information economy alloca-
tions, �= �x�	��	∈�, can be approximated in utility under these conditions.

Theorem 1: Let � = �	1� � � � � 	m�. Let �e�	��	∈� be a collection of CIE’s
and suppose that � = �x�	��	∈� is a collection of associated CIE allocations with
xi�	� �= 0 for each i and 	. For every # > 0, there exists a 2 > 0 such that, whenever
P ∈ ��×T and satisfies

max
i
-Pi ≤ 2min

i
1Pi �

max
i
+Pi ≤ 2min

i
1Pi �

there exists an incentive compatible PIE allocation z�·� for the PIE ��e�	��	∈�,
	̃� t̃� P� and a collection A1� � � � �Am of disjoint subsets of T satisfying:

(i) Prob�t̃ ∈ ∪mk=1Ak�≥ 1−#;
(ii) Prob�	̃ = 	k�t̃ = t�≥ 1−# for each k ∈ Jm and t ∈Ak;
(iii) for all i ∈N ,

ui�xi�	k�* 	k�≥ ui�zi�t�* 	k�≥ ui�xi�	k�* 	k�−#
for each k ∈ Jm and t ∈Ak.

To understand Theorem 1, first note that 2 depends on #, the collection
�e�	��	∈�, and the collection �, but is independent of the distribution P . The
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theorem requires that the measures of aggregate uncertainty �-Pi � and informa-
tional size �+Pi � be sufficiently small relative to the variability of beliefs �1

P
i �. For

any distribution P for which these conditions hold, we can find an incentive com-
patible PIE allocation z�·� and sets A1� � � � �Am such that Prob�t̃ ∈

⋃m
k=1Ak�≈ 1.

Furthermore, P��	k�t�≈ 1 and ui�zi�t�* 	k�≈ ui�xi�	k�* 	k� for each i whenever
t ∈Ak.
If the collection �= �x�	��	∈� in the statement of Theorem 1 has the property

that each x�	� is a strictly individually rational, Pareto efficient allocation for
e�	�, then z�·� will satisfy XIR and X#E. More formally, we have the following
result.

Corollary 1: Let �e�	��	∈� be a collection of CIE’s and suppose that there
exists a strictly individually rational, efficient allocation for each PIE e�	�. Then for
every # > 0, there exists a 2 > 0 such that, whenever P ∈ ��×T and satisfies

max
i
-Pi ≤ 2min

i
1Pi �

max
i
+Pi ≤ 2min

i
1Pi �

there exists an allocation z�·� for the PIE��e�	��	∈�� 	̃� t̃�P� satisfying XIR, XIC,
and X#E.

A second consequence that immediately follows from Theorem 1 is the fol-
lowing corollary.

Corollary 2: Let � = �	1� � � � � 	m�. Let �e�	��	∈� be a collection of CIE’s
and suppose that � = �x�	��	∈� is a collection of associated CIE allocations such
that xi�	� �= 0 for each i and 	. For every # > 0, there exists a 2 > 0 such that,
whenever P ∈ ��×T and satisfies

max
i
-Pi ≤ 2min

i
1Pi �

max
i
+Pi ≤ 2min

i
1Pi �

there exists an incentive compatible allocation z�·� for the PIE ��e�	��	∈�� 	̃� t̃�P�
such that for all i ∈N and all 	 ∈�,∑

t∈T
ui�zi�t�* 	�P�t�	�≥ ui�xi�	�* 	�−#�

The left-hand side of the inequality,
∑
t∈T ui�zi�t�* 	�P�t�	�, is agent i’s condi-

tional expected utility from the allocation z when the state of nature is 	. Thus,
Corollary 2 states that, if aggregate uncertainty and agents’ informational size
are sufficiently small relative to the variability of beliefs, we can find an incentive
compatible allocation that assures every agent in every state 	 an expected utility
that is nearly as large as his utility from the CIE allocation x�	�.
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The details of the proof of Theorem 1 and Corollary 1 are left to the Appendix,
but we will sketch the proof of Theorem 1 informally. Suppose that �= �x�	��	∈�
is a collection of CIE allocations and suppose that # > 0. We partition T into
m+1 disjoint sets with Ak = �t ∈ T ��P�·�t�− I	k� ≤maxi -Pi � for k = 1� � � � �m,
and A0 = T \!

⋃
k≥1Ak". In words, Ak is the set of t ∈ T for which the posterior

distribution on � is close to the degenerate distribution that puts probability 1
on 	k. Therefore, A0 is the set of t ∈ T for which the posterior is not close to I	
for any 	.
We begin with a PIE allocation y with y�t� = x�	k� for t ∈Ak, k = 1� � � � �m,

and y�t� = 0 for t ∈ A0. When aggregate uncertainty is small, the profile of
agents’ information t ∈ T will, with high probability, resolve most of the uncer-
tainty regarding the state of nature 	. There are two consequences of small
aggregate uncertainty: the probability that t̃ ∈ A0 is small and, for each t ∈ Ak,
P��	k�t� is close to 1. Since P��	k�t� is close to 1 whenever t ∈Ak, it follows that∑
k ui�yi�t�* 	k�P��	k�t� is close to ui�xi�	k�* 	k� whenever t ∈Ak. However, y�·�

is not incentive compatible in general.
Suppose that i receives signal ti and the other agents truthfully report t−i. It

may be the case that �t−i� ti� ∈ Aj while �t−i� t′i� ∈ Ak� j �= k. Hence, i receives
xi�	j� if he reports ti, while he receives xi�	k� if he reports t′i. If xi�	k� results
in higher utility than xi�	j�, agent i may have an incentive to misreport. To say
that agent i is informationally small means that there is a low probability that
the posteriors on � given �t−i� ti� and �t−i� t′i� put probability close to 1 on 	j
and 	k respectively. If an agent’s informational size is small, then the expected
gain to that agent from a misreported type is also small. In order to offset this
(small) potential gain that i might enjoy by misreporting, we modify the bundle
xi�	k� that i receives when t ∈Ak. If agent i’s posteriors on � for different types
ti and t′i are different for any ti �= t′i, we can construct bundles zi�t� with the
properties that (i) zi�t� is close to xi�	k� for every i and for every t ∈ Ak, and
(ii) the mechanism z�·� thus defined is incentive compatible. The fact that zi�t�
is close to xi�	k� for t ∈Ak implies that i’s utility from zi�t� is close to his utility
from xi�	k� and the conclusion of the theorem follows.

5� large economies

In the presence of a large number of agents, we might expect agents to be
informationally small. However, the presence of many agents by itself is clearly
not enough for agents to be informationally small. An economy with a large
number of agents who have no information, and one agent who is perfectly
informed would provide a trivial counterexample to any such conjecture.
The fact that one of the agents in the example above is informationally large

even though the economy is also large is not at all surprising given the asymmetry
of the agents. Even in the presence of a large number of symmetric agents, all
agents may be informationally large as the next example illustrates.
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Example: Let the number of agents, n, be odd. Let � = �/�0� and let Ti =
�a�b�. For each t ∈ T , let â�t�=#�i�ti = a�. We now define P ∈��×T as follows:

P�/� t� =
(
1
2

)n
if â�t� is odd�

P�/� t� = 0 if â�t� is even�

P�0� t� =
(
1
2

)n
if â�t� is even�

P�0� t� = 0 if â�t� is odd�

It is straightforward to verify that P�/�= P�0�= 1/2 and P�t�= �1/2�n for each
t ∈ T . Hence, the random variable t has full support. Since P�/�t� = 1 if â�t�
is odd and P�0�t� = 1 if â�t� is even, the measure P exhibits zero aggregate
uncertainty, so that the agents’ signals completely determine the state of nature.
For our purposes, this example exhibits another interesting feature: while the

profile of signals of the n agents completely resolves all uncertainty, the signals of
any n−1 agents resolve nothing. Indeed, the random variable 	̃ and the random
vector t̃−i are stochastically independent for each i since

P�/�t−i�=
P�/�t−i� a�P�t−i� a�+P�/�t−i� b�P�t−i� b�

P�t−i�
= 1
2
= P�/��

and

P�0�t−i�=
P�0�t−i� a�P�t−i� a�+P�0�t−i� b�P�t−i� b�

P�t−i�
= 1
2
= P�0��

Thus, with probability 1, every agent will be able to “maximally” affect the
posterior on �: the posterior probability distribution will put probability 1 on
one state when he announces truthfully (the correct state if others also announce
truthfully), and will put probability 1 on the other state if he misreports his signal.
Hence, even in arbitrarily large, symmetric economies, informational smallness
is not assured.
There are circumstance, however, under which a large number of agents will

ensure small informational size. Roughly speaking, if any single agent’s informa-
tion adds little to the aggregate information, agents will become informationally
small when the number of agents increases. We investigate next a replica frame-
work in which this sort of substitutability of agents’ information naturally occurs.

5�1� Replica Economies

Let �e�	��	∈� be a collection of complete information economies and recall
that Jr = �1�2� � � � � r�. For each positive integer r and each 	, let er�	� =
�wis�uis�·� 	���i�s�∈N×Jr denote the r replicated complete information economy
(r-CIE) corresponding to state 	 satisfying:
(i) wis =wi for all s ∈ Jr ;
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(ii) uis�·� 	�= ui�·� 	� for all s ∈ Jr .
For any positive integer r , let T r = T × · · · × T denote the r-fold Cartesian

product and let tr = �tr·1� � � � � t
r
·r � denote a generic element of T

r where tr·s =
�tr1s� � � � � t

r
ns�. If P

r ∈ ��×T r , then er = ��er�	��	∈�� 	̃� t̃r �P r� is a PIE with nr
agents. If � = �x�	��	∈� is a collection of CIE allocations for �e�	��	∈�, let
�r = �xr�	��	∈� be the associated “replicated” collection where xr�	� is the CIE
allocation for er�	� satisfying

xris�	�= xi�	� for each �i� s� ∈N × Jr �
Definition: A sequence of replica economies ���er�	��	∈�� 	̃� t̃r �P r���r=1 is a

conditionally independent sequence if there exists a P ∈ �∗
�×T such that:

(a) for each r , each s ∈ Jr , and each �	� t1� � � � � tn� ∈�×T ,
Prob�	̃ = 	� t̃r1s = t1� t̃r2s = t2� � � � � t̃rns = tn�= P�	� t1� t2� � � � � tn�*

(b) for each r and each 	, the random vectors

�t̃r11� t̃
r
21� � � � � t̃

r
n1�� � � � � �t̃

r
1r � t̃

r
2r � � � � � t̃

r
nr �

are independent conditional on the event 	̃ = 	;
(c) for every 	� 	̃ with 	 �= 	̂, there exists a t ∈ T such that P�t�	� �= P�t�	̂�.
Thus a conditionally independent sequence is a sequence of PIE’s with nr

agents containing r “copies” of each agent i ∈ N . Each copy of an agent i is
identical, i.e., has the same endowment and the same utility function. Further-
more, the realizations of type profiles across cohorts are independent given the
true value of 	̃. As r increases each agent is becoming “small” in the economy
in terms of endowment, and we show that each agent is also becoming informa-
tionally small. Note that, for large r , an agent may have a small amount of pri-
vate information regarding the preferences of everyone through his information
about 	̃. We now state our main result for replica economies.

Theorem 2: Let �e�	��	∈� be a collection of CIE’s such that each ui�·* 	�
is concave, and suppose that � = �x�	��	∈� is a collection of associated CIE
allocations with x�	� strictly individually rational and efficient for e�	�. Let
���er�	��	∈�� 	̃� t̃r �pr���r=1 be a conditionally independent sequence. Then for every
# > 0, there exists an integer r̂ > 0 such that for all r > r̂, there exists an incentive
compatible allocation zr for the PIE ��er�	��	∈�� 	̃� t̃r �P r� satisfying XIR, XIC, and
X#E.

It is important to point out that Theorem 2 is not an immediate application of
Theorem 1. As the economy is replicated, agents become informationally small
and aggregate uncertainty converges to zero. In addition, the measure of variabil-
ity is independent of r , the size of the replication. When Corollary 2 is applied
to the r-replicated PIE ��er�	��	∈�� 	̃� t̃r � P r�, the number 2 can depend on r .
To prove Theorem 2, we must show that 2 can be chosen to depend only on the
collection � and not on r .
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6� extensions

1. In the presence of negligible aggregate uncertainty and informationally
small agents, we prove the existence of nearly efficient, incentive compatible allo-
cations. The assumption of negligible aggregate uncertainty is not a necessary
condition for the existence of approximately efficient incentive compatible allo-
cations, however. Consider, for example, the case in which the profile of agents’
types t̃ is independent of the state 	̃. In this case, the agents’ information can be
ignored with no loss in efficiency and a simple incentive compatible mechanism
satisfying individual rationality and (exact) ex post efficiency is available. Simply
choose an allocation x̄ that is individually rational and efficient for the economy
in which agent i has initial endowment wi and utility ūi�·� =

∑
	 ui�·* 	�P��	�

where P� is the marginal measure on �. Now define the mechanism z�t�= x̄ for
all t ∈ T .
In this example, aggregate uncertainty is nonnegligible if P� is not degenerate.

Furthermore, the variability 1Pi = 0 for each i. Therefore, examples of this kind
are not covered by Corollary 1 even though an incentive compatible mechanism
yielding exact ex post efficiency exists. However, the construction of the mech-
anism in the presence of negligible aggregate uncertainty provides a clue to an
approach that can be used in certain problems exhibiting non-negligible aggre-
gate uncertainty. This approach appeared in an earlier version of this paper.
Suppose for a given information structure, we can find a set of distributions

� = �:1�:2� � � � �:m� on �, with the property that (i) with high probability
P��·�t� is close to some : ∈� and (ii) with high probability, the conditional distri-
bution on � does not change much when an individual agent’s type changes. We
are treating the probability distributions in � as something like quasi-states and
this property may be interpreted as negligible aggregate uncertainty with respect
to quasi-states. This paper treats the problem of negligible aggregate uncertainty
with respect to actual states and corresponds to the particular set of probability
distributions �I	�	∈� on �. Learning which of the quasi-states is the “true” con-
ditional distribution over � is all that one can hope for given the information
structure. For each k, let e�:k� denote the PIE in which agent i has endowment
wi and utility function vi�·�:k� defined by

vi�xi�:k�=
∑
	∈�
ui�xi� 	�:k�	��

Let <�:k� be strictly individually rational and efficient in e�:k�. Now define
zi�t� = <i�:k� if P��·�t� = :k for some :k ∈ � and zi�t� = wi otherwise. If we
define variability in terms of quasi-states, then we can modify the z�·� so that
the resulting mechanism is incentive compatible, ex post individually rational
and approximately efficient if (i) informational size is small relative to variability
and (ii) aggregate uncertainty with respect to quasi-states is small relative to
variability. The proof is essentially the same as that of Corollary 1 but at a
substantial cost in notational complexity.
In McLean and Postlewaite (2001), we present a different approach to the case

of non-negligible aggregate uncertainty. In that paper, we begin with a definition
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of informational size that allows for P�t�= 0 for some t ∈ T . Using this extended
definition, we can prove that all agents have zero informational size if and only
if the information structure exhibits a property that Postlewaite and Schmeidler
(1986) called nonexclusive information (NEI). We then define variability in terms
of the distributions PT−i �·�ti� rather than the distributions P��·�ti�. We can then
prove versions of Theorem 1 and Corollary 1 without any reference to aggregate
uncertainty under one more crucial assumption. We require that the correspon-
dence mapping : ∈�� to efficient allocations of the economy e�:� admit certain
Lipschitz continuous selections, where e�:� denotes the PIE in which agent i has
endowment wi and utility function vi�·�:� defined by

vi�xi�:�=
∑
	∈�
ui�xi� 	�:�	��

Lipschitz selections play no role in the current work and, while the results are
related, they are not nested.

2. When P��·�ti� �= P��·�t′i�, we can find punishments depending on i’s
announcement and the estimated state that gave i a strict incentive to truthfully
announce his type. When P��·�ti� = P��·�t′i�, we may still be able to construct
more elaborate punishments that might provide agents with a strict incentive to
truthfully reveal their types. These punishments are based on other conditional
distributions associated with a measure P ∈ ��×T . For example, we could use
PT−i �·�ti�, the conditional distribution on T−i given ti. If PT−i �·�ti� �= PT−i �·�t′i� for
each i and ti� t′i ∈ Ti, then we can find punishments zi�t−1� ti� with the property
that ∑

t−1

zi�t−i� ti�PT−i �t−i�ti� >
∑
t−i

zi�t−i� t
′
i�PT−i �t−i�ti� if ti �= t′i�

These punishments peg the payoff of agent i on the complete vector of
announced types, rather than simply on his announced ti and some “estimate”
of the state 	. We should note, however, that when the number of agents is large
relative to the number of states, the vectors of punishments that depend on t−i
are commensurately larger than the vectors of punishments depending on 	. In
other words, the mechanisms constructed in this way are somewhat more com-
plicated than those constructed in this paper.
We could even use the conditionals P�×T−i �·�ti� on �×T−i to construct punish-

ments. Indeed, these are the best in the sense that it is possible for P�×T−i �·�ti� �=
P�×T−i �·�t′i� each i and ti� t′i ∈ Ti even if P��·�ti�= P��·�t′i� for each i and ti� t′i ∈ Ti
and PT−i �·�ti�= PT−i �·�t′i� for each i and ti� t′i ∈ Ti. These issues are discussed more
thoroughly in McLean and Postlewaite (2001).

7� related literature

1. As mentioned in the introduction, our work is closely related to that
of Cremer and McLean (1985, 1988). Those papers, and subsequent work by
McAfee and Reny (1992), demonstrated how one can use correlation to obtain
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full extraction of surplus in certain mechanism design problems. The key ingre-
dient there is the assumption that the collection of conditional distributions
�PT−i �·�ti��ti∈Ti is a linearly independent set for each i (where PT−i �·�ti� is the
conditional distribution on T−i given ti). Linear independence implies that the
elements of the collection �PT−i �·�ti��ti∈Ti must be different, but they can be arbi-
trarily “close” and full extraction will be possible. In their quasilinear framework,
Cremer and McLean use the full rank condition (or a weaker cone condition) to
construct rewards and punishments zi�t−i� ti� with the following features:∑

t−i

zi�t−i� ti�PT−i �t−i�ti�= 0

and ∑
t−i

zi�t−i� t
′
i�PT−i �t−i�ti� < 0 if ti �= t′i�

These rewards/punishments can then be used to ensure incentive compatibility.
In the present work, the collection �P��·�ti��ti∈Ti need not be linearly indepen-

dent and we can always find rewards and punishments zi�t−i� ti� satisfying the
weaker property that∑

	

zi�	� ti�P��	�ti�≥
∑
	

zi�	� t
′
i�P��	�ti� if ti �= t′i�

However, the “closeness” of the members of �P��·�ti��ti∈Ti is an important issue.
If the posteriors �P��·�ti��ti∈Ti are all distinct, then the incentive compatibility
inequalities are strict but the inequalities become weaker as the posteriors get
closer. The difference in the expected reward from a truthful report and false
report will be very small if the conditional posteriors are very close to each other.
Our results require that informational size and aggregate uncertainty be small
relative to the variation in these posteriors.
Weak incentives for truthful reporting are not a serious problem in the surplus

extraction problem studied by Cremer and McLean since the rewards and pun-
ishments can be rescaled so that a false report results in a large negative expected
payment. Of course, the punishments themselves may then become very large.
However, such rescaling is not possible in our framework for two reasons.

First, we deal with pure exchange economies where the feasibility requirement
limits the size of punishments. Second, we do not restrict attention to quasilinear
preferences. Since agents may be risk averse, punishments and rewards that have
small (or zero) expected value can have large negative welfare effects.

2. Gul and Postlewaite (1992) considered a model similar to that in this paper
in which an economy with asymmetric information is replicated. They show that,
when an economy is replicated sufficiently often in their framework, an alloca-
tion that is approximately Walrasian for the replica economy will be incentive
compatible.
Our work differs from Gul-Postlewaite in several important ways. First, unlike

this paper, Gul-Postlewaite dealt with replica economies. They did not formalize
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the notion of informational size (although they did discuss the idea informally
in the context of the replication process considered there). An important part
of our paper is the formalization of informational size, independent of agents’
endowments and utility functions. This notion of informational size allows us to
determine the circumstances in which asymmetry of information is important in
general frameworks. While the informational size of agents decreases when an
economy is replicated, the applicability of the concept is not limited to that case.
Our theorem can be interpreted as providing limits on the informational rents
due to private information when agents are informationally small. This implies
that in situations in which there is a small number of agents with similar, but
not identical information, informational size captures the degree to which the
asymmetry of information leads to inefficiency.
In addition to the formalization of informational size, the model in the present

paper treats an important class of economies excluded by Gul and Postlewaite.
In the economies analyzed there, agents’ utilities may depend on the state 	,
but an individual agent’s utility cannot be independent of his own type (i.e., his
signal). This eliminates from consideration problems in which the uncertainty
stems from characteristics of the object(s) being traded. If, for example, the only
uncertainty pertains to the quantity of oil in a given tract to be traded, agents’
utility naturally depends only on the state 	.4

Finally, Gul and Postlewaite demonstrate the existence of an incentive com-
patible, nearly Walrasian allocation for sufficiently large replica economies. In
this paper, we show that a large class of allocations (including Walrasian alloca-
tions) can be approximated by incentive compatible allocations when agents are
of sufficiently small informational size.

3. Our measure of informational size is motivated in part by the concept of
nonexclusive information introduced in Postlewaite and Schmeidler (1986), which
was shown to be a sufficient condition for the implementation of social choice
correspondences satisfying Bayesian monotonicity. An economy with asymmet-
ric information exhibits nonexclusive information if we can exclude any single
agent’s information and use only the information of the remaining agents to pre-
dict the economically relevant state of nature. Loosely speaking, our measure of
informational size will be the “degree” to which an agent’s information affects
the prediction of the economically relevant state of nature, given other agents’
information. The case of nonexclusive information is precisely the case in which
each agent has zero informational size.

4. In a mechanism design framework, Al-Najjar and Smorodinsky (2000) study
the circumstances under which an agent is pivotal in a mechanism in the sense
that an agent can nontrivially affect the outcome of the mechanism through his
reports. They provide conditions under which the proportion of agents who are
pivotal must go to zero as the number of agents goes to infinity.5 Our measure
4 It should be noted that our model does not just allow for the case that agents’ utility functions

depend only on the state 	, but requires that they depend only on 	, and not also on their own signal.
5 See Fudenderg, Levine, and Pesendorfer (1998) for an analysis of a similar problem in a game-

theoretic rather than a mechanism design framework.
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of an agent’s informational size is related somewhat to the notion of pivoting
presented in Al-Najjar and Smorodinski, but differs in several ways. Our notion
of informational size measures (loosely speaking) the degree to which an agent
is “pivotal” with respect to the conditional distribution on states. In the setup
of Al-Najjar and Smorodinski, an agent is pivotal with respect to a particular
mechanism. For example, in a voting model, we can compute the probability
that an agent will affect the outcome under some voting rule, say majority rule.
However, the probability of affecting the outcome might be quite different if the
voting rule were unanimity rather than majority rule. Our definition of informa-
tional size depends only on the information structure, and is independent of any
particular mechanism.

8� discussion

1. We were motivated in this paper by the question of how an agent’s infor-
mational size would affect the degree to which efficient reallocation was possible.
Our analysis depends on the construction of incentive compatible mechanisms
that generate nearly ex post efficient allocations. We should emphasize that, while
this provides a relatively clear understanding of the degree to which inefficiency
will stem from informational asymmetries alone, it does not shed much light on
how much inefficiency will result from asymmetric information within a specific
institutional setting. The fact that an optimally designed mechanism will result in
a nearly efficient outcome for a particular informational structure tells us little
about how a specific institution, for example an anonymous market, will perform.
We believe that it is important to identify those institutions that will do well,
relative to the theoretical bounds we establish, in the face of uncertainty.6

2. Suppose that ��e�	��	∈�� 	̃� t̃�P� is a PIE. If some agent is “informationally
large,” then our Corollary 1 will generally not be useful in determining whether
or not an allocation satisfying the desired efficiency, individual rationality, and
incentive properties will exist for this PIE. However, the following example sug-
gests a way to improve the theorem to encompass certain problems with infor-
mationally large agents. Consider the following simple replica example. There
are two equally likely states of nature, 	1 and 	2. In the nth economy, there are n
agents, each of whom receives a noisy signal of the state. That is, each agent will
receive a signal s1 or s2, with P�si�	i� = q where �5 ≤ q ≤ 1. Agents’ signals are
i.i.d. conditional on the state. When n is large, the economy will exhibit negligi-
ble aggregate uncertainty and agents will be informationally small, both conse-
quences of the law of large numbers. We could then use the vector of announced
types t to estimate the probability distribution over �, and choose an allocation
that is approximately optimal for the most likely state; this is exactly what we did
in Theorem 2.

6 Along these lines, Krasa and Shafer (1998) analyze a related notion of informational smallness
in a Walrasian market.
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Suppose now that we alter this example by letting agent 1 receive a perfect
signal of the correct state, while all other agents continue to receive the noisy
signal. In this case, P��·�t� will be either �1�0� or �0�1�, depending only on
agents 1’s signal, since his is the only non-noisy signal. It is clear that with this
modification, our Theorem 2 no longer applies. Aggregate uncertainty will still
be negligible but the assumption that agents are informationally small no longer
holds since agent 1’s announcement alone determines whether the conditional
distribution on � is �1�0� or �0�1�. However, it is important to note that this does
not preclude our finding an incentive compatible allocation that is individually
rational and ex post nearly efficient. A mediator could simply ignore agent 1’s
announcement and estimate the distribution on � using only the other agent’s
announcements. When this distribution puts probability close to 1 on some state
	, the allocation for that state would be assigned. In this way, we can construct
an incentive compatible allocation that is individually rational and nearly ex post
efficient despite the fact that agent one is not informationally small.
This example suggests a way to extend our results. Our proof uses the Bayesian

posterior given the agents’ announcements as an estimate of the state of nature.
The above example illustrates how one could find a mechanism with the desired
properties using a subset of the agents’ announcements. More generally, one
could estimate the state of nature using a general function of the agents’
announcements. This is a topic for further research.

3. We assumed that both � and T were finite. In general, it should be possible
to extend the results to the case in which � is a compact subset of Rl. If the
utility functions are uniformly continuous on ��

+ ×�, one could take a finite
partition of � and use agents’ announcements to estimate the most likely cell
in the partition. For each estimated cell, one could prescribe a given allocation
for that cell, with appropriate punishments to induce truthful announcements.
There would be an additional efficiency loss in that the allocation so constructed
would be constant across any cell in the partition, but this utility loss can be
made arbitrarily small by constructing increasingly finer partitions.
The situation with respect to T is much more delicate, however. In our con-

struction, the ability to give any agent an incentive to announce his type truth-
fully depends on the variation in the distributions P��·�ti� and P��·�t′i� on �,
conditional on different types ti and t′i. If the Ti are intervals and the condition-
als P��·�ti� are continuous in ti, then P��·�ti� and �P��·�t′i� will be close when
ti and t′i are close. Hence, the required “balance” between informational small-
ness, aggregate uncertainty and variability in the conditional distributions is more
complicated. This is also a problem for further research.

4. There is a possible generalization of our results related to the previous
point. Consider a PIE allocation that satisfies the assumptions of Theorem 1.
Now alter the PIE in the following way. Choose an agent i and some type t̂i
for that agent and suppose that his signal t̂i is replaced by two signals, t′i, or t

′′
i .
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Furthermore, suppose that the new information structure P̂ is defined as

P̂ �	� t−i� t
′
i�= P̂ �	� t−i� t′′i �=

P�	� t−i� t̂i�
2

for all 	 and t−i�

P̂ �	� t−i� ti�= P�	� t−i� ti� for all 	 and t−i and all ti �= t̂i�
That is, we have taken the original information structure and altered it by sep-
arating one signal for agent i into two different signals in a way that has no
effect on the information conveyed by those signals. In particular, P̂��·�t−i� t′i�=
P̂��·�t−i� t′′i �= P��·�t−i� t̂i� for all t−i and P̂��·�t′i�= P̂��·�t′′i �= P��·�t̂i�.
One can think of this as agent i flipping a coin after he receives signal t̂i and

labeling the outcomes t′i = (ti and heads) and t′′i = (ti and tails). For this altered
PIE, the assumptions of Theorem 1 will generally not hold since mini 1P̂i = 0.
Clearly, however, this alteration should not affect what outcomes can be approx-
imated. We can, in fact, still approximate an allocation by treating the two signals
t′i and t

′′
i as a single signal, t̂i. The crucial feature of this simple splitting exam-

ple is the fact that P̂��·�t−i� t′i� = P̂��·�t−i� t′′i � for all t−i. Whenever this is true,
we can collapse types into equivalence classes and treat each class as a single
type. With appropriate modifications of the definitions of informational size and
aggregate uncertainty, we would expect to be able to prove a result analogous
to our Theorem 1 when each agent’s type set can be partitioned so that, within
each element of the partition, the types are sufficiently similar.7

5. We used the revelation principle to analyze the constraints imposed by
incentive compatibility on the set of incentive compatible utility vectors. As is
often the case with revelation games, there are additional equilibria in our mech-
anism different from the truthful reporting equilibrium. We do not view this
as problematic since we do not propose the mechanism as one to be used in
practice; we use the revelation mechanism simply to determine the degree to
which incentive constraints limit the utilities that can be obtained. The issue of
multiplicity of equilibria in settings such as ours has been addressed, however.
Postlewaite and Schmeidler (1986) and Jackson (1991) demonstrate how revela-
tion mechanisms can be augmented so as to eliminate nontruthful equilibria in
a large set of problems. While we do not do so here, there is reason to expect
that those techniques could be similarly applied to our setting.
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7 We thank Ichiro Obara for making this point.
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APPENDIX

A�1� Preliminary Definitions and Lemmas

Throughout this appendix, we will assume that ��� =m. Suppose that �= �x�	��	∈� is a collection
of CIE allocations such that, for each 	 ∈ �, the allocation �xi�	��i∈N is a CIE allocation for e�	�
with xi�	� �= 0 for all 	 ∈� and for all i. For each A ≥ 0, let

c�A���=min
i
min
	
�ui�xi�	�* 	�−ui�0i�	�A���xi�	�* 	��

where

0i�	�A���=min�0�1/2 ≤ 0≤ 1�ui�xi�	�* 	�−ui�0xi�	�* 	�≤ A��

Since xi�	� �= 0 for each i and each 	, it follows from the monotonicity assumption that c�0���= 0
and that c�A��� > 0 whenever A > 0.
Finally, recall that

1P
i =min

ti∈Ti
min
t′
i
∈Ti\ti

d�P��·�ti��P��·�t′i��2

where

d�/�0�=
∥∥∥∥∥ /

�/�2
− 0

�0�2

∥∥∥∥∥
2

for each /�0 ∈ �� and �·�2 denotes the 2-norm.

Lemma A.1: Let �e�	��	∈� be a collection of CIE’s and suppose that P ∈ ��×T with conditionals
P��·�ti� ∈ �� for all i and ti ∈ Ti. Furthermore, suppose that � = �x�	��	∈� is a collection of CIE
allocations such that, for each 	 ∈�, the allocation �xi�	��i∈N is a CIE allocation for e�	� with xi�	� �= 0
for all 	 and for all i. For each A ≥ 0, there exists a collection ��zi�	� ti���ti �	�∈Ti×��i∈N satisfying:

(i) zi�	� ti� ∈��
+ and

∑
i∈N �zi�	� ti�−wi�≤ 0 for all ti ∈ Ti and all 	 ∈�;

(ii) ui�xi�	�* 	�≥ ui�zi�	� ti�* 	�≥ ui�xi�	�* 	�−A for all ti ∈ Ti and all 	 ∈�;
(iii) for each ti� t′i ∈ Ti with ti �= t′i,

∑
	

!ui�zi�	� ti�* 	�−ui�zi�	� t′i�* 	�"P��	�ti�≥
c�A���

2
√
m

min
i
1P
i �

Proof: Suppose that P ∈ ��×T with conditionals P��·�ti� ∈ �� for all i and ti ∈ Ti. Next, define

/i�	� ti�=
P��	�ti�

�P��·�ti��2
for each 	 ∈�. Hence,

1P
i =min

ti∈Ti
min
t′
i
∈Ti\ti

�/i�·� ti�−/i�·� t′i��22�

Let �= �x�	��	∈� be a collection of CIE allocations with xi�	� �= 0 for all 	 and for all i. If A= 0,
then c�A���= 0 and the result is trivial (let zi�	� ti�= xi�	��. So suppose that A > 0. For each i, ti,
and 	, there exists a number Ci�	� ti�≥ 0 such that

ui��1+Ci�	� ti��0i�	�A���xi�	�* 	�−ui�0i�	�A���xi�	�* 	�= c�A���/i�	� ti��
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(This is possible because 0 ≤ c�A���/i�	� ti�≤ c�A��� and 0i�	�A���xi�	� �= 0.) Furthermore, �1+
Ci�	� ti��0i�	�A���≤ 1� (If (1+Ci�	� ti��0i�	�A��� > 1, then monotonicity implies that

ui��1+Ci�	� ti��0i�	�A���xi�	�* 	�−ui�0i�	�A���xi�	�* 	�
> ui�xi�	�* 	�−ui�0i�	�A���xi�	�* 	�
≥ c�A���
≥ c�A���/i�	� ti��

a contradiction.) Defining

zi�	� ti�= �1+Ci�	� ti��0i�	�A���xi�	��

it follows that the collections �zi�	� ti��ti � 	 satisfy

zi�	� ti� ∈��
+ and

∑
i∈N
�zi�	� ti�−wi�≤ 0

and part (i) is satisfied. From the definitions of 0i�	�A��� and zi�	� ti� and the fact that

1≥ �1+Ci�	� ti��0i�	�A���≥ 0i�	�A����

we conclude that

ui�xi�	�* 	�≥ ui�zi�	� ti�* 	�≥ ui�0i�	�A���xi�	�* 	�≥ ui�xi�	�* 	�−A

and part (ii) is satisfied. Finally, part (iii) follows from the observation that∑
	

!ui�zi�	� ti�* 	�−ui�zi�	� t′i�* 	�"P��	�ti�

=∑
	

!c�A���/i�	� ti�−c�A���/i�	� t′i�"P��	�ti�

= c�A���∑
	

!/i�	� ti�−/i�	� t′i�"P��	�ti�

= c�A����P��·�ti��2
∑
	

!/i�	� ti�−/i�	� t′i�"/i�	� ti�

= c�A����P��·�ti��2
2

�/i�·� ti�−/i�·� t′i��2

≥ c�A���

2
√
m

1P
i �

A�2� Proof of Theorem 1

Let �e�	��	∈� be a collection of CIE’s and suppose that P ∈ ��×T with conditionals P��·�ti� ∈ ��
for all i and ti ∈ Ti . Furthermore, suppose that �= �x�	��	∈� is a collection of CIE allocations such
that, for each 	 ∈�, the allocation �xi�	��i∈N is a CIE allocation for e�	� with xi�	� �= 0 for all 	 and
for all i. Choose # > 0. Let

K1 =max
	
max
i

{
ui

(∑
j∈N
wj* 	

)}

and choose 2 so that

0< 2 <min
{
c�#���

20
√
mK1

�
#

2
�
1
3

}
�
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(The monotonicity assumption implies that Ki > 0 since
∑

j∈N wj �= 0.) Finally, define -̂P =maxi -Pi ,
+̂P =maxi +Pi , and 1P =mini 1P

i , and suppose that

+̂P ≤ 21P �

-̂P ≤ 21P �

If 1P = 0, then +̂P = 0 and -̂P = 0. Since +̂P = 0 and Prob�t̃ = t� > 0 for all t ∈ T , it follows that
	̃ and t̃ are independent. Hence, -̂P = 0 implies that there exists 	̂ ∈ � such that P��·�t� = I	̂ for
all t ∈ T . Now choose an efficient, individually rational CIE allocation �xi�	��i∈N for e�	̂� and define
zi�t� = xi�	̂� for all i and all t ∈ T . The PIE allocation z�·� is ex post efficient, ex post individually
rational, and incentive compatible.
Now suppose that 1P > 0. For each k, let

Ak = �t ∈ T � �P��·�t�− I	k� ≤ -̂P �

and let

A0 = T
∖[⋃

k

Ak

]
�

Since 1P ≤ 2, it follows that

-̂P ≤ 21P <
1
3
1P ≤ 2

3

and the collection E = �A0�A1� � � � �Am� is a partition of T .
Applying Lemma A.1, there exists a collection ��zi�	� ti���	�ti �∈�×Ti �i∈N satisfying:
(i) zi�	� ti� ∈��

+ and
∑

i∈N �zi�	� ti�−wi�≤ 0 for all ti ∈ Ti and all 	 ∈�;
(ii) ui�xi�	�* 	�≥ ui�zi�	� ti�* 	�≥ ui�xi�	�* 	�−# for all ti ∈ Ti and all 	 ∈�;
(iii) for each ti� t′i ∈ Ti,

∑
	

!ui�zi�	� ti�* 	�−ui�zi�	� t′i�* 	�"P��	�ti�≥
c�#���

2
√
m
1P �

Next, let z�·� be the PIE allocation for ��e�	��	∈�� 	̃� t̃�P� defined as8

zi�t�= zi�	k� ti� if t ∈Ak�

= 0 if t ∈A0�

Before proving that the PIE allocation z�·� is incentive compatible, we first prove two claims.

Claim 1: For each i and each ti ∈ Ti,∑
k

�P��	k�ti�−Prob�t̃ ∈Ak�t̃i = ti�� ≤ 2-̂P �

Proof of Claim 1: First, note that

P��	k�ti�=
m∑
�=1

∑
t−i

��t−i �ti �∈A�

P��	k�t−i� ti�P�t−i�ti�+
∑
t−i

��t−i �ti �∈A0

P�	k� t−i�ti�

8 If for each 	 the CIE allocation �xi�	��i∈N is strictly individually rational for e�	�, then a simple
modification of the proof would allow us to define zi�t�=wi when t ∈A0.
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and

Prob�t̃ ∈Ak�t̃i = ti�=
∑
t−i

��t−i �ti �∈Ak

P�t−i�ti��

Therefore,

P��	k�ti�−Prob�t̃∈Ak�t̃i= ti�

=


 m∑
�=1

∑
t−i

��t−i �ti �∈A�

P��	k�t−i�ti�P�t−i�ti�


−


 ∑

t−i
��t−i �ti �∈Ak

P�t−i�ti�


+


 ∑

t−i
��t−i �ti �∈A0

P�	k�t−i�ti�




=


 m∑
�=1

∑
t−i

��t−i �ti �∈A�

P��	k�t−i�ti�P�t−i�ti�


−


 m∑
�=1
I	� �	k�

∑
t−i

��t−i �ti �∈A�

P�t−i�ti�




+


 ∑

t−i
��t−i �ti �∈A0

P�	k�t−i�ti�




=


 m∑
�=1

∑
t−i

��t−i �ti �∈A�

!P��	k�t−i�ti�−I	� �	k�"P�t−i�ti�


+


 ∑

t−i
��t−i �ti �∈A0

P�	k�t−i�ti�


�

Hence,

m∑
k=1

�P��	k�ti�−Prob�t̃ ∈Ak�t̃i = ti��

≤
m∑
�=1

∑
t−i

��t−i �ti �∈A�

m∑
k=1

�P�	k�t−i� ti�− I	� �	k��P�t−i�ti�+
∑
t−i

��t−i �ti �∈A0

P�t−i�ti�

≤ -̂P
m∑
�=1

∑
t−i

��t−i �ti �∈A�

P�t−i�ti�+
∑
t−i

��t−i �ti �∈A0

P�t−i�ti�

≤ -̂P +-Pi
≤ 2-̂P

and the proof of Claim 1 is complete.

Claim 2: For each i, ti, and t′i ,

m∑
k=1

∑
t−i

�t−i � ti �∈Ak
�t−i �t′i ��∈Ak∪A0

P�t−i�ti�≤ +̂P �

Proof of Claim 2: Choose ti� t′i ∈ Ti and define

F = ⋃
�∈Jm

�t−i ∈ T−i��t−i� ti� ∈A� and �t−i� t
′
i� �∈A� ∪A0�
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and

G = �t−i ∈ T−i � �P��·�t−i� ti�−P��·�t−i� t′i��> +̂P��
Since

Prob�t̃ ∈F �t̃i = ti�=
m∑
k=1

∑
t−i

�t−i � ti �∈Ak
�t−i �t′i ��∈Ak∪A0

P�t−i�ti�

and

Prob�t̃ ∈G�t̃i = ti�≤ +̂P �
it suffices to prove that F ⊆ G. Suppose that t−i ∈ F but t−i �∈ G. Then there exist ��k ∈ Jm with
k �= � such that �t−i� ti� ∈A� and �t−i� t′i� ∈Ak and �P��·�t−i� ti�−P��·�t−it′i�� ≤ +̂P . Since 1P ≤ 2, it
follows that

-̂P ≤ 21P <
1
3
1P ≤ 2

3

and that

+̂P ≤ 21P <
1
3
1P ≤ 2

3
�

Therefore,

�I	� − I	k� ≤ �P��·�t−i� ti�− I	��+�P��·�t−i� ti�−P��·�t−i� t′i��
+�P��·�t−i� t′i�− I	k�

≤ -̂P + +̂P + -̂P

< 3
2
3

= 2�
an impossibility. This completes the proof of Claim 2.

Next, we observe that

ui�zi�t�* 	�≤K1

for all t ∈ T and all 	 ∈� since

ui�zi�t�* 	k�= ui�zi�	k� ti�* 	k�≤ ui�xi�	�* 	�≤K1

if t ∈Ak and

ui�zi�t�* 	k�= ui�0* 	k�≤K1�

t ∈A0.
To prove incentive compatibility, note that∑

	

∑
t−i
!ui�zi�t−i� ti�* 	�−ui�zi�t−i� t′i�* 	�"P�	� t−i�ti�

= ∑
t−i

��t−i �ti �∈A0

∑
	

!ui�zi�t−i� ti�* 	�−ui�zi�t−i� t′i�* 	�"P�	� t−i�ti�
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+
m∑
k=1

∑
t−i

��t−i �ti �∈Ak

∑
	

!ui�zi�	k� ti�* 	�−ui�zi�t−i� t′i�* 	�"P�	�t−i� ti�P�t−i�ti�

≥−2K1-
P
i +

m∑
k=1

∑
t−i

��t−i �ti �∈Ak

∑
	

!ui�zi�	k* ti�* 	�−ui�zi�t−i� t′i�* 	�"P�	�t−i� ti�P�t−i�ti�

≥−2K1!-
P
i + -̂P "+

m∑
k=1

∑
t−i

��t−i �ti �∈Ak

!ui�zi�	k* ti�* 	k�−ui�zi�t−i� t′i�* 	k�"P�t−i�ti�

=−2K1!-
P
i + -̂P "+

m∑
k=1
!ui�zi�	k* ti�* 	k�−ui�zi�	k* t′i�* 	k�"


 ∑

t−i
��t−i �ti �∈Ak

P�t−i�ti�




+
m∑
k=1

∑
t−i

��t−i �ti �∈Ak

!ui�zi�	k* t
′
i�* 	k�−ui�zi�t−i� t′i�* 	k�"P�t−i�ti�

≥−2K1!-
P
i + -̂P +2-̂P "+

m∑
k=1
!ui�zi�	k* ti�* 	k�−ui�zi�	k* t′i�* 	k�"P��	k�ti�

+
m∑
k=1

∑
t−i

��t−i �ti �∈Ak
�t−i �t′i ��∈Ak∪A0

!ui�zi�	k* t
′
i�* 	k�−ui�zi�t−i� t′i�* 	k�"P�t−i�ti�

(applying Claim 1)

≥ c�#���

2
√
m
1P −2K1!4-̂

P + +̂P " (applying Claim 2)

≥ c�#���

2
√
m
1P −2K1

[
5
c�#���

20
√
mK1

1P

]
= 0�

To complete the proof of Theorem 1, we must show that z�·� satisfies conditions (i), (ii), and (iii)
in the statement of the theorem. To prove (i), note that Prob�t̃ ∈A0�t̃i = ti� ≤ -̂P for each i and ti.
Hence,

Prob�t̃ ∈A0�=
∑
ti∈Ti

Prob�t̃ ∈A0�t̃i = ti�P�ti�≤ -̂P ≤ 21P ≤ #

2
1P ≤ #

from which we conclude that

Prob
{
t̃ ∈

m⋃
k=1
Ak

}
= 1−Prob�t̃ ∈A0�≥ 1−#�

To prove (ii), suppose that t ∈Ak. Since

!1−P��	k�t�"+
∑
��=k
P��	��t�= �P��·�t�− I	k� ≤ -̂P ≤ 21P ≤ #

2
1P ≤ #�

it follows that

1−#≤ P��	k�t��
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Finally, (iii) is satisfied since the construction of z�·� implies that for all i ∈N ,

ui�xi�	k�* 	k�≥ ui�zi�t�* 	k�≥ ui�xi�	k�* 	k�−#

whenever t ∈Ak.

A�3� Proof of Corollary 1

Let �e�	��	∈� be a collection of CIE’s and suppose that � = �x�	��	∈� is a collection where, for
each 	, x�	� is a Pareto efficient, strictly individually rational CIE allocation for the CIE e�	�. Let

K1 =max
	
max
i

{
ui

(∑
j∈N
wj* 	

)}

and let

K2���=min
i
min
	
!ui�xi�	�* 	�−ui�wi* 	�"�

Since each x�	� is strictly individually rational for the CIE e�	�, it follows that K2��� > 0. Choose
# > 0 and choose #̂ so that

0< #̂ <min
{
K2���

4K1+1
�

#

4K1+1
}
�

Applying Theorem 1, there exists a 2̂ > 0 such that, whenever P ∈ ��×T and

max
i
-̂Pi ≤ 2̂min

i
1P
i �

max
i
+̂Pi ≤ 2̂min

i
1P
i �

there exists an incentive compatible PIE allocation z�·� for the PIE ��e�	��	∈�� 	̃� t̃�P� and a collec-
tion A1� � � � �Am of disjoint subsets of T such that Prob�t̃ ∈

⋃m
k=1Ak�≥ 1− #̂ and for all k= 1� � � � �m

and all t ∈Ak:
(i) Prob�	̃ = 	k�t̃ = t�≥ 1− #̂;
(ii) for all i ∈N ,

ui�xi�	k�* 	k�≥ ui�zi�t�* 	k�≥ ui�xi�	k�* 	k�− #̂�

If t ∈Ak for some k ≥ 1, then P��	k�t�≥ 1− #̂ implies that

�P��·�t�− I	k� = !1−P��	k�t�"+
∑
��=k
P��	��t�≤ 2#̂�

To prove XIR, suppose that t ∈Ak and note that∑
	

!ui�zi�t�* 	�−ui�wi* 	�"P��	�t�=
∑
�

!ui�zi�t�* 	��−ui�wi* 	��"P��	��t�

≥ ui�zi�t�* 	k�−ui�wi* 	k�− �2K1��2#̂�

≥ ui�xi�	k�* 	k�−ui�wi* 	k�− #̂−4K1#̂

≥K2���− �4K1+1�#̂
> 0�

Hence, z�·� satisfies XIR.
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To show that z�·� satisfies X#E, let E =⋃m
k=1Ak and note that

Prob�t̃ ∈ E�= Prob
{
t̃ ∈

m⋃
k=1
Ak

}
≥ 1− #̂≥ 1− #

4K1+1
≥ 1−#�

Now suppose that y�·� is a feasible PIE allocation and that
∑
	

!ui�yi�t�* 	�−ui�zi�t�* 	�"P�	�t� > #

for each i ∈N . Since y�·� is a feasible PIE allocation, it follows that

ui�yi�t�* 	�≤K1

for all i� t, and 	. If t ∈Ak for some k ∈ Jm, then for each i ∈N , it follows that

# <
∑
	

!ui�yi�t�* 	�−ui�zi�t�* 	�"P�	�t�

≤ �2K1��2#̂�+ui�yi�t�* 	k�−ui�zi�t�* 	k�
= 4K1#̂+ !ui�yi�t�* 	k�−ui�xi�	k�* 	k�"

+ !ui�xi�	k�* 	k�−ui�zi�t�* 	k�"
≤ 4K1#̂+ !ui�yi�t�* 	k�−ui�xi�	k�* 	k�"+ #̂�

Therefore,

0< #−4K1#̂− #̂ < !ui�yi�t�* 	k�−ui�xi�	k�* 	k�"

for each i, contradicting the assumption that �xi�	k��i∈N is Pareto optimal in e�	k�. Therefore, t �∈E
=⋃m

k=1Ak and z�·� satisfies X#E.

A�4� Proof of Theorem 2

Let ���er �	��	∈�� 	̃� t̃r � P r ���r=1 be a conditionally independent sequence and suppose that each
ui�·* 	� is concave.

Step 1: For each tr ∈ T r , let H�tr � denote the “empirical frequency distribution” that tr induces
on T . More formally, H�tr � is a probability measure on T defined for each C ∈ T as follows:

H�tr ��C�= ��s ∈ Jr ��tr1� s� � � � � trn� s�= C��
r

�

(We suppress the dependence of H on r for notational convenience.)

Claim: For every ) > 0, there exists an integer r̂ such that for all r > r̂ ,

+P
r

i� s ≤ ) and -P
r

i� s ≤ )�

Proof of Claim: Choose ) > 0. Applying the argument in the Appendix to Gul-Postlewaite
(1992) (see the analysis of their equation (9)), together with the definition of H and the law of large
numbers, it follows that there exists I > 0 and an integer r̂ such that for all r > r̂ ,

�H�tr �−PT �·�	k��< I⇒�Pr��·�tr �− I	k�< )/2 for all tr and k ≥ 1�
�H�tr−is � ti�−H�tr−is � t′i��< I/2 for all ti� t

′
i ∈ Ti and all tr and all i�
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and

Prob��H�t̃r �−PT �·�	k��< I/2�t̃ris = ti� 	̃ = 	k� > 1−) for all ti� t
′
i ∈ Ti and k ≥ 1�

Choose ti� t′i ∈ Ti, k ≥ 1, and r > r̂ . Then
Prob��Pr��·�t̃r−is �ti�−Pr��·�t̃r−is �t′i��<)�t̃ris= ti�	̃=	k�

≥Prob��H�t̃r−is �ti�−PT �·�	k��<I/2 and �H�t̃r−is �t′i�−PT �·�	k��<I�t̃ris= ti�	̃=	k�
≥Prob��H�t̃r−is �ti�−PT �·�	k��<I/2 and �H�t̃r−is �ti�−H�t̃r−is �t′i��<I/2�t̃ris= ti�	̃=	k�
=Prob��H�t̃r−is �ti�−PT �·�	k��<I/2�t̃ris= ti�	̃=	k�
≥1−)�

Hence,

Prob��Pr��·�t̃r−is � ti�−Pr��·�t̃r−is � t′i��< )�t̃ris = ti�≥ 1−)
and we conclude that +Pri� s ≤ ). Since

�H�tr �−PT �·�	k��< I/2⇒�H�tr �−PT �·�	k��< I
⇒�Pr��·�tr �− I	k�< )/2 < ) for all tr �

whenever r > r̂ and k ≥ 1, it follows that
Prob��Pr��·�t̃r �− I	k�< )�t̃ris = ti� 	̃ = 	k�

≥ Prob��H�t̃r �−PT �·�	k��< I/2�t̃ris = ti� 	̃ = 	k�
> 1−)�

Hence,
m∑
k=1
Prob��Pr��·�t̃r �− I	k�< )�t̃ris = ti�≥ 1−)

and we conclude that -Pri� s ≤ ).
Step 2: For a conditionally independent sequence,

Pr��·�ti� s�= P��·�ti� s�
for all r and all ti� s ∈ Ti. In particular, Pr��·�ti� s� is independent of r and it follows that

1Pr

i� s =1P
i

for all r and s ∈ Jr . Furthermore, 1P
i > 0 since P ∈ �∗

�×T .

Step 3:

Claim: Suppose that � = �x�	��	∈� is a collection of CIE allocations such that, for each 	 ∈ �,
the allocation �xi�	��i∈N is a CIE allocation for e�	� with xi�	� �= 0 for all 	 and for all i. For every
# > 0, there exists an r̂ > 0 such that, for all r > r̂ , there exists an incentive compatible PIE allocation
zr �·� for the PIE ��er �	��	∈�� 	̃� t̃r � P

r � and a collection Br1� � � � �B
r
m of disjoint subsets of T r such that

Prob�t̃r ∈⋃m
k=1B

r
k�≥ 1−# and, for all k ∈ Jm and all tr ∈ Brk:

(i) Prob�	̃ = 	k�t̃r = tr �≥ 1−#;
(ii) for all i ∈N ,

ui�xi�	k�* 	k�≥ ui�zris�tr �* 	k�≥ ui�xi�	k�* 	k�−#�
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Proof of Claim: We will sketch the proof since the details, while notationally cumbersome,
are identical to those in the proof of Theorem 1. Suppose that � = �x�	��	∈� is a collection of
CIE allocations such that, for each 	 ∈�, the allocation �xi�	��i∈N is a CIE allocation for e�	� with
xi�	� �= 0 for all 	 and for all i. Choose # > 0. As in the proof of Theorem 1, let

K1 =max
	
max
i

{
ui

(∑
j∈N
wj* 	

)}

and choose 2 so that

0< 2 <min
{
c�#���

20
√
mK1

�
#

2
�
1
3

}
�

Finally, define -̂Pr = maxi� s -P
r

i� s , +̂
Pr = maxi� s +P

r

i� s , 1
Pr = mini� s 1Pr

i� s , and 1
P = mini 1P

i . Applying
Steps 1 and 2, there exists an r such that for all r > r̂ ,

+̂P
r ≤ 21P = 21Pr �

-̂P
r ≤ 21P = 21Pr �

For each k, let

Brk = �tr ∈ T r � �Pr��·�tr �− I	k� ≤ -̂P
r
�

and let

Br0 = T r
∖[⋃

k

Brk

]
�

Since 1P ≤ 2, it follows that

-̂P
r ≤ 21P <

1
3
1P ≤ 2

3

and the collection E = �Br0�Br1� � � � �Brm� is a partition of T r .
Since 1P = 1Pr , we can apply Lemma A.1 and conclude that there exists a collection

��zi�	� ti���	�ti �∈�×Ti �i∈N satisfying:
(i) zi�	� ti� ∈�l

+ and
∑

i∈N �zi�	� ti�−wi�≤ 0 for all ti ∈ Ti and all 	 ∈�;
(ii) ui�xi�	�* 	�≥ ui�zi�	� ti�* 	�≥ ui�xi�	�* 	�−# for all ti ∈ Ti and all 	 ∈�;
(iii) for each ti� t′i ∈ Ti,

∑
	

!ui�zi�	� ti�* 	�−ui�zi�	� t′i�* 	�"P��	�ti�≥
c�#���

2
√
m
1Pr �

Next, let zr �·� be the PIE allocation for ��er �	��	∈�� 	̃� t̃r � P r � defined as

zris�t
r �= zi�	k� ti� if tr ∈ Brk and tris = ti�
= 0 if tr ∈ Br0�

Note that

ui�z
r
is�t

r �* 	�≤K1�

The proof of the claim is now completed using exactly the same arguments as those used in the proof
of Theorem 1.
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Step 4: We now complete the proof of Theorem 2. Let #> 0 be given. Suppose that �= �x�	��	∈�
is a collection where, for each 	�x�	� is a Pareto efficient, strictly individually rational CIE allocation
for the CIE e�	�. Let

K1 =max
	
max
i

{
ui

(∑
j∈N
wj* 	

)}

and let

K2���=max
i
max
	
!ui�xi�	�* 	�−ui�wi* 	�"�

Since each x�	� is strictly individually rational for the CIE e�	�, it follows that K2��� > 0. Choose #̂
so that

0< #̂ <min
{
K2���

4K1+1
�

#

4K1+1
}
�

Applying Step 3, there exists an r̂ > 0 such that, for all r > r̂ , there exists an incentive compatible
PIE allocation zr �·� for the PIE ��er �	��	∈�� 	̃� t̃r � P r � and a collection Br1� � � � �Brm of disjoint subsets
of T r such that Prob�t̃r ∈⋃m

k=1B
r
k�≥ 1− #̂ and, for all k ∈ Jm and all tr ∈ Brk:

(i) Prob�	̃ = 	k�t̃r = tr �≥ 1− #̂;
(ii) for all i ∈N ,

ui�xi�	k�* 	k�≥ uis�zris�tr �* 	k�≥ ui�xi�	k�* 	k�− #̂�

Suppose that r > r̂ . If tr ∈ Brk for some k ≥ 1, then Pr��	k�t�≥ 1− #̂ implies that

�Pr��·�tt�− I	k� = !1−Pr��	k�tr �"+
∑
��=k
P��	��tr �≤ 2#̂�

To prove that zr �·� satisfies XIR, suppose that t ∈ Brk and note that∑
	

!uis�zis�t
r �* 	�−uis�wi* 	�"P�	�tr �=

∑
�

!ui�zis�t
r �* 	��−ui�wi* 	��"P��	��tr �

≥ ui�zis�t�* 	k�−ui�wi* 	k�− �2K1��2#̂�

≥ ui�xi�	k�* 	k�−ui�wi* 	k�− #̂−4K1#̂

≥K2���− �4K1+1�#̂
> 0�

Hence, zr �·� satisfies XIR.
To show that zr �·� satisfies X#E, let Er =⋃m

k=1B
r
k and note that

Prob�t̃r ∈ Er�= Prob
{
t̃r ∈

m⋃
k=1
Brk

}
≥ 1− #̂≥ 1− #

4K1+1
≥ 1−#�

Now suppose that yr �·� is a feasible PIE allocation for er satisfying
∑
	

!uis�y
r
is�t

r �* 	�−uis�zris�tr �* 	�"P�	�tr � > #

for each �i� s�. For each i, let

ȳi =
1
r

r∑
s=1
yris�t

r �
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and therefore,

n∑
i=1
ȳi =

1
r

n∑
i=1

r∑
s=1
yris�t

r �≤
n∑
i=1
wi�

Note that ui�ȳi* 	�≤K1 since
∑n

i=1 ȳi ≤
∑n

i=1wi.
Suppose that tr ∈ Brk for some k ≥ 1. Then for each i ∈N ,∑

	

ui�z
r
is�t

r �* 	�P�	�tr �≥ ui�zris�tr �* 	k�−2K1#̂≥ ui�xi�	k�* 	k�−2K1#̂− #̂

and ∑
	

ui�ȳi* 	�P�	�tr �≤ ui�ȳi* 	k�+2K1#̂�

Combining these inequalities and using the concavity of each ui�·* 	�, we conclude that

ui�ȳi* 	k�+2K1#̂ ≥
∑
	

ui�ȳi* 	�P�	�tr �

≥∑
	

(
1
r

n∑
s=1
ui�y

r
is�t

r �* 	�

)
P�	�tr �

>
1
r

r∑
s=1

[∑
	

ui�z
r
is�t

r �* 	�P�	�tr �
]
+#

≥ ui�xi�	k�* 	k�−2K1#̂− #̂+#�

Therefore,

0< #− �4K1+1�#̂ < !ui�ȳi* 	k�−ui�xi�	k�* 	k�"

for each i. Since �ȳi�i∈N is feasible for the CIE e�	k�, we conclude that �xi�	k��i∈N is not Pareto
optimal in e�	k�, a contradiction. Hence, tr �∈

⋃m
k=1B

r
k = Er and the proof is complete.
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