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Motivation
Behavioral Mechanism Design

1. Starting point: Groves & Ledyard 1977
la. Nash implementation

1b. ‘Economic’ Environments:
Continuity, complexity (message space size), etc.
Differentiability

2. Lesson from experiments: Stability matters

e Chen & Plott 1996: ‘stability’ matters

e Chen & Tang 1998: supermodularity

e Arifovic & Ledyard 2003: something weaker

e Healy 2006: dominant diagonal? specific dynamic?

o Arifovic & Ledyard 2008: even weaker...

o Current state of knowledge: supermodularity is sufficient.



This Paper

@ Understand how to develop G-L-like mechs.
® Add ‘stability’ to the design constraints.

e Economic Environment: Two commodities
Xx; = numéraire, y; = private or public good
e SCC: Walrasian or Lindahl equilibria (Hurwicz '79)

e Continuously diff'bl mechanisms with ‘small’ strategy spaces

Theorem 1: Green-Laffont-type necessary cond’n:
tax;(m) = price;(m_;)yi(m)

Theorem 2: Impossibility results for 1-dimensional m:
WE: No mechanism. LE: No ‘stable’ mechanism.

Theorem 3: Design stable mechanisms by adding
a dimension to M



The Economic Environment

Agents: i € {1,2,...,n}.

Work with net trades; no consumption set boundaries
Agent i's endowment: w; = (0,0).

Net trade vector z; = (x;, yi)

e x; € R: numeraire good
e y; € IR: non-numeraire good (pub. or pvt)

Agent i's type: 6; € ©; (complete information.)
Later: QSL Preferences: v;(y;|0;) + x;.
e v; is differentiable, strictly concave.



Walrasian & Lindahl Equilibrium

A Walrasian equilibrium is (z*, p*) such that
(1) each z* maximizes u; s.t. x; + p*y; <0, and

(2) Y zF =0.

Public good: Set c(y) = ky.

A Lindahl equilibrium is (z*, p}, ..., pj;) such that
(1) each z' maximizes u; s.t. x; + piy; <0,

(2) (X;pf)y — xy is maximized at y*, and

(3) yi =y"Viand L;x/ +xy* = ¥ w;.

Walrasian and Lindahl correspondences: f: © — Z



Mechanisms

e Real-message mechanisms:
e Strategy space: M; = RKi Vi
e Outcome functions: (y;(m), x;(m));
e Given a mechanism (M, h), the Nash correspondence
v : ©® — M identifies the set of Nash equilibria for each 6.

e A mechanism (M, h) implements a social choice
correspondence if h(v(0)) = £(0) for all 6.



Supermodularity & Stability

Previous literature: supermodularity = stability.
Supermodularity:

® 24 >0forall i, k # .

am;kam,-,

® - 24 >0foralli#j kl.

8m,—k8mj,

© Strategy space is a closed interval.

Milgrom & Roberts: ‘adaptive dynamics’' converge to [NE, NE]
First 2 conditions: increasing BR curves.
Last condition: ignored in mechanism design!! Problem??



The Power of Supermodularity

m
1

m
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BRi(m;) = 5m;

Both games are “supermodular”.
Left game is stable, right is not.
Slope of BR curves matters!

BR (m )
m, BR (m,)
777,2
BR,-(mj) = 2mj



The Power of Supermodularity

BR (m,) BR [m)
m BRz(m)) . ’ ﬁRI(TYLQ)
m " ml“
m, i m,
1 . . ) — .
BRi(mj) = 5m; BRi(mj) = 2m;

Unstable game: boundaries create ‘bad’ (stable) corner equilibria.
‘Stability’ property of supermodularity vacuous here.



“Counter-Example” Mechanism
Assume v/'(-|6;) € [—M,0) for all 6 € ®. Choose
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(my = B YTty i< n/2
qi\m) = Y g ieymy if P> n/2.

Supermodular if ¥ > M. But best response dynamic:
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Contractive Mechanisms

Van Essen’s suggestion:
e Can we make mechanisms with BR curves that are
contraction mappings?
* [IBR(x) = BR(y)| < al[x —y|| for a € (0,1).
e For now, assume BR is single-valued.

Definition

A mechanism is contractive on © if BR is single-valued and for
every 0 € O there exists some a € (0, 1) such that for every
m,m € M,

|BR(m") = BR(m)|| < af|m" — ml].



Does Contractive Imply Stable?

Adaptive Best-Response (ABR) Dynamics:

Theorem: If {m(t)} is an ABR Dynamic and BR(+) is contractive
then m(t) converges to m*.



Back to Mechanisms

OK... how can we make a mechanism contractive?
Step 1: Understand how mechanisms look & feel.

Trivial Observation:

Every mechanism's numeraire outcome functions can be written as

x,-(m) = — q,-(m,,-) Yi(m) - g,-(m) .
‘Price’”  ‘Qty’ ‘Penalty’

Note: ‘Price-taking’ assumption



Some Existing P.G. Mechanisms

: Price: g;(m—;)
Mechanism y(m) Penalty: gj(m)
Groves- S m x/n
Ledyard 77 | =170 | F [2gh(mi = m-i)* — o(m_)
Walker '81 Y m g/” —mj_1+ mjy1
Hurwicz '79 r—T S—i
P =i _ 2
(si—5-)° + H( )
K
Chen '03 Y ri n YLzl +3 Zﬁé,sj

In all of these...

5 (s —y(m)* + 5 Lyils

(1) agents are ‘price-taking’, and
(2) if it implements Lindahl, g; = 0 in equilibrium.

—y(m))?



Eerie Similarities

Why are these mechanisms so similar?

How do they work?

How much freedom is there to play with them?



The Graphical View

2= Ay (mylme,)

What you can achieve by changing m; (given m_;)



The Local Price
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Slope of yx; is the ‘local price’.



Nash Equilibrium Points

Z.

7

Possible Nash equilibrium points given u; or u.



Walrasian Allocations

Z.

(3

Possible Walrasian allocations given u; or u.



Nash Implementation

Z.

7

Triple tangency is necessary for NE outcome to be WE.



‘Bad’ Nash Equilibria

X.

1

Rich-enough type space = ANY mis a NE.



‘Bad’ Nash Equilibria

X.

1

But now the mechanism doesn't implement Walrasian allocations!



The Necessary Condition

Z.

2

Only way to avoid ‘bad’ equilibria: t;(m) = q;(m_;)y;(m).



Assumptions

Ready to formalize this theorem...

o Al: (Differentiability) y;(m), x;(m) are all twice continuously
differentiable.

e A2: (Responsive y;) dy;(m)/dmj is bounded away from zero.
(Keeps xix from going vertical.)

e A3: (Rich Domain & Regularity) All m are NE for some 6.



The Necessary Condition

Theorem

Take any type space © and 1-dimensional mechanism satisfying
A1-A3. If the mechanism Nash implements the Walrasian or
Lindahl allocations, it must be that

xi(m) = —qi(m_;)y(m).

(Thus, gi(m) =0.)

Intuition: g; is a ‘fixed’ price for i. Since y; is bijective in m;, i can
pick any y;. Thus, he picks

myax ui(—qi(m=;)yi, yi)



One-Dimensional Walrasian Mechanisms

Theorem

Under A1-A3 there do not exist any one-dimensional mechanisms
that implement the Walrasian correspondence.

Proof.

e Need g1(m_1) = g2(m_2) = ... = gs(m_p)
e Only possible if all g; are constant.

e p(@®) is not a singleton; a contradiction.

cf. Reichelstein & Reiter & dimensionality results.



One-Dimensional Lindahl Mechanisms

Assumption (A4)

For all 0 € ©, u;(x;, yi|0;) = vi(yi|0;) + xi

with v! > 0 and v/' € (—B,1/B) for some B > 0.
Proposition

Under A1-A4 there are no one-dimensional contractive mechanisms
that implement the Lindahl correspondence.



Necessary Conditions: More Dimensions

Let M; =R; x S;sothat y: R — RR.

What (r, s) can never be a Nash equilibrium?

Ui(r,s) = vi(y(r)[6:) — ai(r. s)y(r) — &i(r, s)
Thus, s7(r,s_;) solves min, qi(s, r) * y(r) + gi(s, r).

e Designer can calculate NE of the ‘tax-minimizing game' Vr.
Note: (r,s) is NOT a NE if:

@ s is not a NE of the tax-minimizing game, or

® Pi(r,s) # Py(r,s) for some i, k, I.
Assumption (A3')

If m does not satisfy either of the above then m is a NE for some 0.



More Dimensions

Theorem
Under A1, A2, and A3’, for any ‘regular’ NE (r,s),

xi(r,s) = —qi(r,s)yi(r) — gi(r,s),

where
dqi(r,si(r,s), s—i)
=0
dr,~
and
gi(r,s)=0

along the equilibrium manifold.



Stable Mechanism Recipe

Recipe for designing a contractive mechanism:
® Need bounded concavity (v € (=B, —1/B)),
@® Start with U;(r,s) := vi(y(r)) — qi(r,s)y(r) — gi(r,s)
©® Define best response functions (p;(r—i,s—;), 0i(r—i, s—i)).
©® Write down two FOCs:

aUi(pi, 0i, r—i,s—i) _ 9Ui(pi,0i, r—i, s—;)

ar; 0s;

0

@ Differentiate both sides (I.F.T.) and solve system for

(ap, ap, a(T,' 80','>

ar;' 9s;" ar; ' 9s;



Stable Mechanism Recipe

For example:

qi 2%g; ) 2%g; g

9%g; 119y 9 dy 9
% . ? <_Vi ar; or; + ar; orj oridr; )~ 9r;0s; 0s;9r;
r; 2g \? () 2y _ Pg o
al‘,'as,' ! ri E)sf E)r? 85,2

® Find parameterized functions such that when some parameter
gets big,
a .
® v (|3 +|5|) < 1and g ) <1,
gi = 0 in equilibrium, and
® Y., g; = «x in equilibrium.
@ Give up and hire an RA to do it.

9p;

aS,'

9p; 99;

+ aS,'




A Contractive Lindahl Mechanism

y(r) = Yir
qir-ivs—i) = %*’%(ri*l_riﬂ)*"snn;?l (sic1 — 2rit1)
1 1 2,5 1.3\2
gi(r,s) = 3(si—gri1) +5(sic1—5n)

Theorem
This implements Lindah! equilibria. If § is sufficiently large it
becomes contractive.

(In fact, this is a ‘stabilized” Walker mechanism.)



A Contractive Walrasian Mechanism

To be announced.



A Contractive e-Walrasian Mechanism

yi(r) = (ric1—riv1) — & (siy1 — 22L1)
gi(s-i) = ALz
gi(rs) = (si—d025 ;1)

Theorem
For large 6 this mechanism is contractive and implements
allocations arbitrarily close to the Walrasian allocations.



Notes on this Procedure

Stability demands large parameter values. Is this useful?

Can we make an anonymous contractive mechanism?
Contractive = unique equilibrium.
e What if SCC isn't single-valued?
e Note: contractiveness depends on ©.
Van Essen et al. experiments on “supermodularity”
Fact remains: supermodularity = stability in the lab
° Why??
o Were those mechs. contractive for the chosen prefs?
e |s there something else about supermodularity?



Final Thoughts

Further reading:

e Reichelstein & Reiter 1988: Some of the same ideas.
Brock 1980 & G-L 1987: Sufficiency
Mathevet 2008: Supermodular Mechanism Design
Van Essen 2009 & Van Essen, Lazzati & Walker 2009

Ultimate goal: practical mechanism design

e Conversation between experiments & theory.



The End
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