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Motivation
Behavioral Mechanism Design

1. Starting point: Groves & Ledyard 1977

1a. Nash implementation

1b. ‘Economic’ Environments:
Continuity, complexity (message space size), etc.
Differentiability

2. Lesson from experiments: Stability matters
• Chen & Plott 1996: ‘stability’ matters

• Chen & Tang 1998: supermodularity
• Arifovic & Ledyard 2003: something weaker

• Healy 2006: dominant diagonal? specific dynamic?

• Arifovic & Ledyard 2008: even weaker...
• Current state of knowledge: supermodularity is sufficient.



This Paper

1 Understand how to develop G-L-like mechs.

2 Add ‘stability’ to the design constraints.

• Economic Environment: Two commodities
xi = numéraire, yi = private or public good

• SCC: Walrasian or Lindahl equilibria (Hurwicz ’79)

• Continuously diff’bl mechanisms with ‘small’ strategy spaces

Theorem 1: Green-Laffont-type necessary cond’n:
taxi (m) = pricei (m−i )yi (m)

Theorem 2: Impossibility results for 1-dimensional m:
WE: No mechanism. LE: No ‘stable’ mechanism.

Theorem 3: Design stable mechanisms by adding
a dimension to M



The Economic Environment

• Agents: i ∈ {1, 2, . . . , n}.

• Work with net trades; no consumption set boundaries

• Agent i ’s endowment: ωi = (0, 0).

• Net trade vector zi = (xi , yi )
• xi ∈ R: numeraire good
• yi ∈ R: non-numeraire good (pub. or pvt)

• Agent i ’s type: θi ∈ Θi (complete information.)

• Later: QSL Preferences: vi (yi |θi ) + xi .
• vi is differentiable, strictly concave.



Walrasian & Lindahl Equilibrium

A Walrasian equilibrium is (z∗, p∗) such that
(1) each z∗i maximizes ui s.t. xi + p∗yi ≤ 0, and
(2) ∑i z

∗
i = 0.

Public good: Set c(y ) = κy .
A Lindahl equilibrium is (z∗, p∗

1 , . . . , p∗
n) such that

(1) each z∗i maximizes ui s.t. xi + p∗
i yi ≤ 0,

(2) (∑i p
∗
i )y − κy is maximized at y ∗, and

(3) y ∗
i = y ∗ ∀i and ∑i x

∗
i + κy ∗ = ∑i ωi .

Walrasian and Lindahl correspondences: f : Θ ։ Z



Mechanisms

• Real-message mechanisms:
• Strategy space: Mi = R

Ki ∀i
• Outcome functions: (yi (m), xi (m))i

• Given a mechanism (M, h), the Nash correspondence
ν : Θ ։ M identifies the set of Nash equilibria for each θ.

• A mechanism (M, h) implements a social choice
correspondence if h(ν(θ)) = f (θ) for all θ.



Supermodularity & Stability

Previous literature: supermodularity ⇒ stability.
Supermodularity:

1
∂2ui

∂mik ∂mil
≥ 0 for all i , k 6= l .

2
∂2ui

∂mik ∂mjl
≥ 0 for all i 6= j , k, l .

3 Strategy space is a closed interval.

Milgrom & Roberts: ‘adaptive dynamics’ converge to [NE,NE ]
First 2 conditions: increasing BR curves.
Last condition: ignored in mechanism design!! Problem??



The Power of Supermodularity
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BRi(mj ) = 1
2
mj BRi (mj ) = 2mj

Both games are “supermodular”.
Left game is stable, right is not.
Slope of BR curves matters!



The Power of Supermodularity
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Unstable game: boundaries create ‘bad’ (stable) corner equilibria.
‘Stability’ property of supermodularity vacuous here.



“Counter-Example” Mechanism

Assume v ′′
i (·|θi ) ∈ [−M, 0) for all θ ∈ Θ. Choose

y (m) =
n/2

∑
i=1

mi −
n

∑
n/2+1

mi

qi (m) =

{
κ
n
− γ ∑j 6={i , i+ n

2
} mj if i ≤ n/2

κ
n

+ γ ∑j 6={i , i+ n
2
} mj if i > n/2.

Supermodular if γ > M. But best response dynamic:
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Contractive Mechanisms

Van Essen’s suggestion:

• Can we make mechanisms with BR curves that are
contraction mappings?

• ||BR(x) − BR(y )|| ≤ α||x − y || for α ∈ (0, 1).

• For now, assume BR is single-valued.

Definition
A mechanism is contractive on Θ if BR is single-valued and for
every θ ∈ Θ there exists some α ∈ (0, 1) such that for every
m,m′ ∈ M,

||BR(m′)− BR(m)|| ≤ α||m′ −m||.



Does Contractive Imply Stable?

Adaptive Best-Response (ABR) Dynamics:
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Theorem: If {m(t)} is an ABR Dynamic and BR(·) is contractive
then m(t) converges to m∗.



Back to Mechanisms

OK... how can we make a mechanism contractive?
Step 1: Understand how mechanisms look & feel.

Trivial Observation:

Every mechanism’s numeraire outcome functions can be written as

xi (m) = − qi (m−i )
︸ ︷︷ ︸

‘Price’

yi (m)
︸ ︷︷ ︸

‘Qty’

− gi (m)
︸ ︷︷ ︸

‘Penalty’

.

Note: ‘Price-taking’ assumption



Some Existing P.G. Mechanisms

Mechanism y (m)
Price: qi (m−i )
Penalty: gi (m)

Groves-
Ledyard ’77

∑i mi
κ/n
γ
2

[
n−1
n

(mi −m−i )2 − σ(m−i )
]

Walker ’81 ∑i mi
κ/n −mi−1 + mi+1

0

Hurwicz ’79 ri − r−i

s−i

(si − s−i )
2 + Hi (m−i )

Chen ’03 ∑i ri
κ
n
− γ ∑j 6=i rj + γ

n ∑j 6=i sj
− 1

2
(si − y (m))2 + δ

2 ∑j 6=i(sj − y (m))2

In all of these...
(1) agents are ‘price-taking’, and
(2) if it implements Lindahl, gi = 0 in equilibrium.



Eerie Similarities

Why are these mechanisms so similar?

How do they work?

How much freedom is there to play with them?



The Graphical View
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What you can achieve by changing mi (given m−i)



The Local Price
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Slope of χi is the ‘local price’.



Nash Equilibrium Points
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Possible Nash equilibrium points given ui or u′
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Walrasian Allocations


i

z'

z

y
i

x
i

u
i

u
i
'

p'

p

Possible Walrasian allocations given ui or u′
i .



Nash Implementation
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Triple tangency is necessary for NE outcome to be WE.



‘Bad’ Nash Equilibria
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Rich-enough type space ⇒ ANY m is a NE.



‘Bad’ Nash Equilibria
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But now the mechanism doesn’t implement Walrasian allocations!



The Necessary Condition
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Only way to avoid ‘bad’ equilibria: ti (m) = qi (m−i )yi (m).



Assumptions

Ready to formalize this theorem...

• A1: (Differentiability) yi (m), xi (m) are all twice continuously
differentiable.

• A2: (Responsive yi ) ∂yi (m)/∂mik is bounded away from zero.
(Keeps χik from going vertical.)

• A3: (Rich Domain & Regularity) All m are NE for some θ.



The Necessary Condition

Theorem
Take any type space Θ and 1-dimensional mechanism satisfying
A1-A3. If the mechanism Nash implements the Walrasian or
Lindahl allocations, it must be that

xi (m) ≡ −qi (m−i )y (m).

(Thus, gi (m) ≡ 0.)

Intuition: qi is a ‘fixed’ price for i . Since yi is bijective in mi , i can
pick any yi . Thus, he picks

max
yi

ui (−qi (m−i )yi , yi )



One-Dimensional Walrasian Mechanisms

Theorem
Under A1-A3 there do not exist any one-dimensional mechanisms
that implement the Walrasian correspondence.

Proof.

• Need q1(m−1) ≡ q2(m−2) ≡ . . . ≡ qn(m−n)

• Only possible if all qi are constant.

• p(Θ) is not a singleton; a contradiction.

cf. Reichelstein & Reiter & dimensionality results.



One-Dimensional Lindahl Mechanisms

Assumption (A4)

For all θ ∈ Θ, ui (xi , yi |θi ) = vi (yi |θi ) + xi

with v ′
i > 0 and v ′′

i ∈ (−B , 1/B) for some B > 0.

Proposition

Under A1-A4 there are no one-dimensional contractive mechanisms
that implement the Lindahl correspondence.



Necessary Conditions: More Dimensions

• Let Mi = Ri × Si so that y : R → R.

• What (r , s) can never be a Nash equilibrium?

• Ui (r , s) = vi (y (r)|θi )− qi (r , s)y (r) − gi (r , s)

• Thus, s∗i (r , s−i ) solves minsi qi (s, r) ∗ y (r) + gi (s, r).

• Designer can calculate NE of the ‘tax-minimizing game’ ∀r .

Note: (r , s) is NOT a NE if:

1 s is not a NE of the tax-minimizing game, or

2 Pik(r , s) 6= Pil (r , s) for some i , k, l .

Assumption (A3’)

If m does not satisfy either of the above then m is a NE for some θ.



More Dimensions

Theorem
Under A1, A2, and A3’, for any ‘regular’ NE (r , s),

xi (r , s) = −qi (r , s)yi (r) − gi (r , s),

where
dqi (r , s∗i (r , s), s−i )

dri
= 0

and
gi (r , s) ≡ 0

along the equilibrium manifold.



Stable Mechanism Recipe

Recipe for designing a contractive mechanism:

1 Need bounded concavity (v ′′
i ∈ (−B ,−1/B)),

2 Start with Ui (r , s) := vi (y (r))− qi (r , s)y (r) − gi (r , s)

3 Define best response functions (ρi (r−i , s−i ), σi (r−i , s−i )).

4 Write down two FOCs:

∂Ui (ρi , σi , r−i , s−i )

∂ri
≡

∂Ui (ρi , σi , r−i , s−i )

∂si
≡ 0

5 Differentiate both sides (I.F.T.) and solve system for

(
∂ρi

∂rj
,

∂ρi

∂sj
,

∂σi

∂rj
,

∂σi

∂sj

)



Stable Mechanism Recipe

For example:

∂ρi

∂rj
=

∂2gi

∂s2
i

(

−v ′′
i

∂y
∂ri

∂y
∂rj

+ ∂y
∂ri

∂qi

∂rj
+ ∂2gi

∂ri ∂rj

)

− ∂2gi

∂ri ∂si
∂2gi

∂si ∂rj
(

∂2gi

∂ri ∂si

)2

+ v ′′
i

(
∂y
∂ri

)2
∂2gi

∂s2
i

− ∂2gi

∂r2
i

∂2gi

∂s2
i

6 Find parameterized functions such that when some parameter
gets big,

a ∑j 6=i

(∣
∣
∣

∂ρj

∂ri

∣
∣
∣ +

∣
∣
∣

∂σj

∂ri

∣
∣
∣

)

< 1 and ∑j 6=i

(∣
∣
∣

∂ρj

∂si

∣
∣
∣ +

∣
∣
∣

∂σj

∂si

∣
∣
∣

)

< 1,

b gi = 0 in equilibrium, and
c ∑i qi = κ in equilibrium.

7 Give up and hire an RA to do it.



A Contractive Lindahl Mechanism

y (r) = ∑i ri

qi (r−i , s−i ) = κ
n

+ 1
δ (ri−1 − ri+1) + δ n−1

n2

(
si−1 −

1
n
ri+1

)

gi (r , s) = 1
2

(
si −

1
n
ri+1

)2
+ δ

2

(
si−1 −

1
n
ri
)2

Theorem
This implements Lindahl equilibria. If δ is sufficiently large it
becomes contractive.

(In fact, this is a ‘stabilized’ Walker mechanism.)



A Contractive Walrasian Mechanism

To be announced.



A Contractive ε-Walrasian Mechanism

yi (r) = (ri−1 − ri+1) −
δ
n

(
si+1 −

n+1
n

ri
)

qi (s−i ) = 1
n−1 ∑j 6=i sj

gi (r , s) = (si − δ n+1

n2 ∑j rj )2

Theorem
For large δ this mechanism is contractive and implements
allocations arbitrarily close to the Walrasian allocations.



Notes on this Procedure

• Stability demands large parameter values. Is this useful?

• Can we make an anonymous contractive mechanism?

• Contractive ⇒ unique equilibrium.
• What if SCC isn’t single-valued?
• Note: contractiveness depends on Θ.

• Van Essen et al. experiments on “supermodularity”

• Fact remains: supermodularity ⇒ stability in the lab
• Why??
• Were those mechs. contractive for the chosen prefs?
• Is there something else about supermodularity?



Final Thoughts

Further reading:

• Reichelstein & Reiter 1988: Some of the same ideas.

• Brock 1980 & G-L 1987: Sufficiency

• Mathevet 2008: Supermodular Mechanism Design

• Van Essen 2009 & Van Essen, Lazzati & Walker 2009

• Ultimate goal: practical mechanism design

• Conversation between experiments & theory.



The End
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