Designing Stable Mechanisms for Economic Environments

P.J. Healy (OSU) L. Mathevet (UT Austin)

July 2nd, 2009 SAET Ischia

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

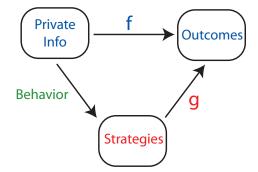
Motivation

Behavioral Mechanism Design

Motivation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Behavioral Mechanism Design



Objective: Design a game so that agents reach some desired objective in equilibrium

Motivation

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Behavioral Mechanism Design

- 1. Starting point: Groves & Ledyard 1977
- 1a. Nash implementation
- 'Economic' Environments: Continuity, complexity (message space size), etc. Differentiability
 - 2. Lesson from experiments: Stability matters
 - Chen & Plott 1996: 'stability' matters
 - Chen & Tang 1998: supermodularity
 - Arifovic & Ledyard 2003: something weaker
 - Healy 2006: dominant diagonal? specific dynamic?
 - Arifovic & Ledyard 2008: even weaker...
 - Current state of knowledge: supermodularity is sufficient.

This Paper

- 1 Understand how to develop G-L-like mechs.
- 2 Add 'stability' to the design constraints.
- Economic Environment: Two commodities
 x_i = numéraire, y_i = private <u>or</u> public good
- SCC: Walrasian or Lindahl equilibria (Hurwicz '79)
- Continuously diff'bl mechanisms with 'small' strategy spaces

Theorem 1: Green-Laffont-type necessary cond'n: $tax_i(m) = price_i(m_{-i})y_i(m)$

Theorem 2: Impossibility results for 1-dimensional *m*: WE: No mechanism. LE: No 'stable' mechanism.

Theorem 3: Design stable mechanisms by adding a dimension to $\ensuremath{\mathcal{M}}$

The Economic Environment

(日)

- Agents: $i \in \{1, 2, ..., n\}$.
- Work with net trades; no consumption set boundaries
- Agent *i*'s endowment: $\omega_i = (0, 0)$.
- Net trade vector $z_i = (x_i, y_i)$
 - $x_i \in \mathbb{R}$: numeraire good
 - $y_i \in \mathbb{R}$: non-numeraire good (pub. or pvt)
- Agent *i*'s type: $\theta_i \in \Theta_i$ (complete information.)
- Later: QSL Preferences: $v_i(y_i|\theta_i) + x_i$.
 - v_i is differentiable, strictly concave.

Walrasian & Lindahl Equilibrium

A Walrasian equilibrium is (z^*, p^*) such that (1) each z_i^* maximizes u_i s.t. $x_i + p^* y_i \le 0$, and (2) $\sum_i z_i^* = 0$.

Public good: Set
$$c(y) = \kappa y$$
.
A Lindahl equilibrium is $(z^*, p_1^*, \dots, p_n^*)$ such that
(1) each z_i^* maximizes u_i s.t. $x_i + p_i^* y_i \le 0$,
(2) $(\sum_i p_i^*)y - \kappa y$ is maximized at y^* , and
(3) $y_i^* = y^* \quad \forall i$ and $\sum_i x_i^* + \kappa y^* = \sum_i \omega_i$.

Walrasian and Lindahl correspondences: $f: \Theta \twoheadrightarrow \mathcal{Z}$

Mechanisms

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Real-message mechanisms:
 - Strategy space: $\mathcal{M}_i = \mathbb{R}^{K_i} \ \forall i$
 - Outcome functions: $(y_i(m), x_i(m))_i$
- Given a mechanism (\mathcal{M}, h) , the Nash correspondence $\nu : \Theta \twoheadrightarrow \mathcal{M}$ identifies the set of Nash equilibria for each θ .
- A mechanism (*M*, *h*) implements a social choice correspondence if *h*(ν(θ)) = *f*(θ) for all θ.

Supermodularity & Stability

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\begin{array}{c} \bullet \quad \frac{\partial^2 u_i}{\partial m_{ik} \partial m_{il}} \geq 0 \text{ for all } i, \ k \neq l. \end{array}$$

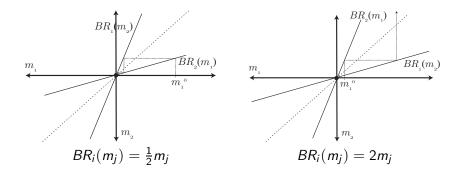
2
$$\frac{\partial^2 u_i}{\partial m_{ik} \partial m_{jl}} \ge 0$$
 for all $i \neq j, k, l$.

3 Strategy space is a **closed interval**.

Milgrom & Roberts: 'adaptive dynamics' converge to $[\underline{NE}, \overline{NE}]$ First 2 conditions: increasing BR curves.

Last condition: ignored in mechanism design!! Problem??

The Power of Supermodularity



Both games are "supermodular". Left game is stable, right is not. Slope of BR curves matters!

The Power of Supermodularity



Unstable game: boundaries create 'bad' (stable) corner equilibria. 'Stability' property of supermodularity vacuous here.

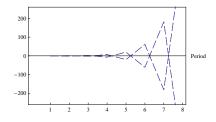
"Counter-Example" Mechanism

Assume $v_i''(\cdot|\theta_i) \in [-M, 0)$ for all $\theta \in \Theta$. Choose

$$y(m) = \sum_{i=1}^{n/2} m_i - \sum_{n/2+1}^n m_i$$

$$q_i(m) = \begin{cases} \frac{\kappa}{n} - \gamma \sum_{j \neq \{i, i+\frac{n}{2}\}} m_j & \text{if } i \le n/2\\ \frac{\kappa}{n} + \gamma \sum_{j \neq \{i, i+\frac{n}{2}\}} m_j & \text{if } i > n/2. \end{cases}$$

Supermodular if $\gamma > M$. But best response dynamic:



ヘロト 人間ト ヘヨト ヘヨト

э

Contractive Mechanisms

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Van Essen's suggestion:

- Can we make mechanisms with BR curves that are contraction mappings?
- $||BR(x) BR(y)|| \le \alpha ||x y||$ for $\alpha \in (0, 1)$.
- For now, assume BR is single-valued.

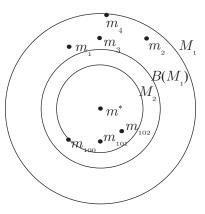
Definition

A mechanism is contractive on Θ if *BR* is single-valued and for every $\theta \in \Theta$ there exists some $\alpha \in (0, 1)$ such that for every *m*, *m*' $\in M$,

$$||BR(m') - BR(m)|| \le \alpha ||m' - m||.$$

Does Contractive Imply Stable?

Adaptive Best-Response (ABR) Dynamics:



Theorem: If $\{m(t)\}$ is an ABR Dynamic and $BR(\cdot)$ is contractive then m(t) converges to m^* .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Back to Mechanisms

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

OK... how can we make a mechanism contractive? Step 1: Understand how mechanisms look & feel.

Trivial Observation:

Every mechanism's numeraire outcome functions can be written as

$$x_i(m) = - \underbrace{q_i(m_{-i})}_{\text{'Price'}} \underbrace{y_i(m)}_{\text{'Qty'}} - \underbrace{g_i(m)}_{\text{'Penalty'}}.$$

Note: 'Price-taking' assumption

Some Existing P.G. Mechanisms

Mechanism	<i>y</i> (<i>m</i>)	Price: $q_i(m_{-i})$ Penalty: $g_i(m)$
Groves- Ledyard '77	$\sum_i m_i$	$\frac{\kappa/n}{\frac{\gamma}{2}\left[\frac{n-1}{n}(m_i-\overline{m}_{-i})^2-\sigma(m_{-i})\right]}$
Walker '81	$\sum_i m_i$	$\frac{\kappa}{n-m_{i-1}+m_{i+1}}$
Hurwicz '79	$r_i - \overline{r}_{-i}$	$\frac{\overline{s}_{-i}}{(s_i - \overline{s}_{-i})^2} + H_i(m_{-i})$
Chen '03	$\sum_i r_i$	$\frac{\frac{\kappa}{n} - \gamma \sum_{j \neq i} r_j + \frac{\gamma}{n} \sum_{j \neq i} s_j}{-\frac{1}{2} (s_i - y(m))^2 + \frac{\delta}{2} \sum_{j \neq i} (s_j - y(m))^2}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

In all of these...

- (1) agents are 'price-taking', and
- (2) if it implements Lindahl, $g_i = 0$ in equilibrium.

Eerie Similarities

(ロ)、(型)、(E)、(E)、 E、 の(の)

Why are these mechanisms so similar?

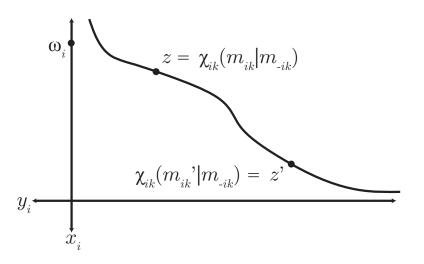
How do they work?

How much freedom is there to play with them?

The Graphical View

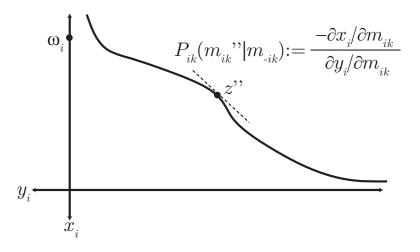
◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶

- 2



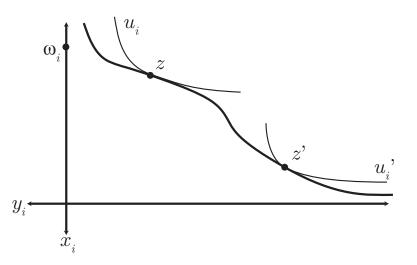
What you can achieve by changing m_i (given m_{-i})

The Local Price



Slope of χ_i is the 'local price'.

Nash Equilibrium Points

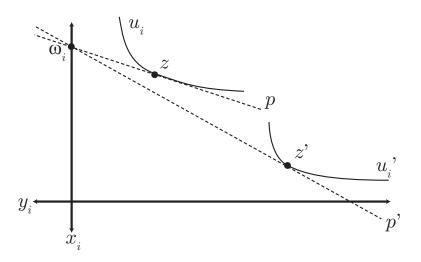


Possible Nash equilibrium points given u_i or u'_i .

Walrasian Allocations

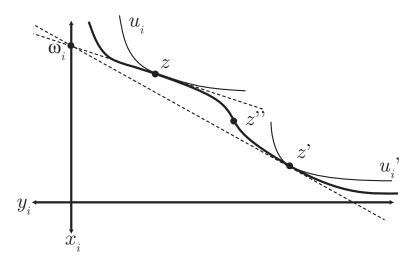
₹ *•* **१** ९ ९ ९

ヘロン ヘロン ヘビン ヘビン



Possible Walrasian allocations given u_i or u'_i .

Nash Implementation

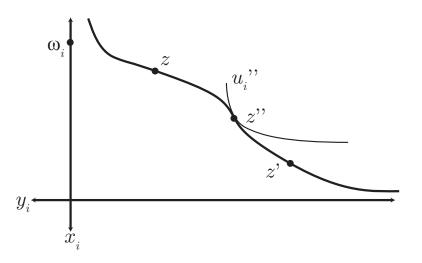


Triple tangency is necessary for NE outcome to be WE.

'Bad' Nash Equilibria

・ロト ・聞ト ・ヨト ・ヨト

æ

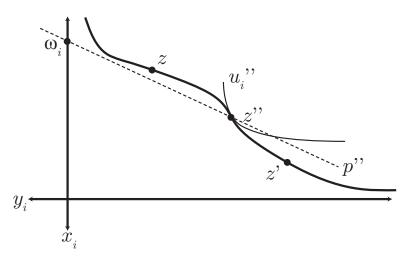


Rich-enough type space \Rightarrow ANY *m* is a NE.

'Bad' Nash Equilibria

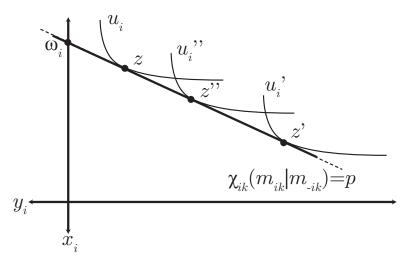
・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- 2



But now the mechanism doesn't implement Walrasian allocations!

The Necessary Condition



Only way to avoid 'bad' equilibria: $t_i(m) = q_i(m_{-i})y_i(m)$.

Assumptions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Ready to formalize this theorem...

- A1: (Differentiability) $y_i(m)$, $x_i(m)$ are all twice continuously differentiable.
- A2: (Responsive y_i) ∂y_i(m)/∂m_{ik} is bounded away from zero. (Keeps χ_{ik} from going vertical.)
- A3: (Rich Domain & Regularity) All m are NE for some θ .

The Necessary Condition

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem

Take any type space Θ and 1-dimensional mechanism satisfying A1-A3. If the mechanism Nash implements the Walrasian or Lindahl allocations, it must be that

$$x_i(m) \equiv -q_i(m_{-i})y(m).$$

(Thus, $g_i(m) \equiv 0$.)

Intuition: q_i is a 'fixed' price for *i*. Since y_i is bijective in m_i , *i* can pick any y_i . Thus, he picks

$$\max_{y_i} u_i(-q_i(m_{-i})y_i, y_i)$$

One-Dimensional Walrasian Mechanisms

Theorem

Under A1-A3 there do not exist any one-dimensional mechanisms that implement the Walrasian correspondence.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof.

- Need $q_1(m_{-1}) \equiv q_2(m_{-2}) \equiv \ldots \equiv q_n(m_{-n})$
- Only possible if all q_i are constant.
- $p(\Theta)$ is not a singleton; a contradiction.
- cf. Reichelstein & Reiter & dimensionality results.

One-Dimensional Lindahl Mechanisms

Assumption (A4)

For all
$$\theta \in \Theta$$
, $u_i(x_i, y_i | \theta_i) = v_i(y_i | \theta_i) + x_i$
with $v'_i > 0$ and $v''_i \in (-B, 1/B)$ for some $B > 0$.

Proposition

Under A1-A4 there are no one-dimensional contractive mechanisms that implement the Lindahl correspondence.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Necessary Conditions: More Dimensions

- Let $\mathcal{M}_i = \mathcal{R}_i \times \mathcal{S}_i$ so that $y : \mathcal{R} \to \mathbb{R}$.
- What (r, s) can never be a Nash equilibrium?
- $U_i(r,s) = v_i(y(r)|\theta_i) q_i(r,s)y(r) g_i(r,s)$
- Thus, $s_i^*(r, s_{-i})$ solves $\min_{s_i} q_i(s, r) * y(r) + g_i(s, r)$.
- Designer can calculate NE of the 'tax-minimizing game' $\forall r$.

Note: (r, s) is NOT a NE if:

- 1 s is not a NE of the tax-minimizing game, or
- 2 $P_{ik}(r, s) \neq P_{il}(r, s)$ for some i, k, l.

Assumption (A3')

If m does not satisfy either of the above then m is a NE for some θ .

More Dimensions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem Under A1, A2, and A3', for any 'regular' NE(r, s),

$$x_i(r,s) = -q_i(r,s)y_i(r) - g_i(r,s),$$

where

$$\frac{dq_i(r, s_i^*(r, s), s_{-i})}{dr_i} = 0$$

and

$$g_i(r,s)\equiv 0$$

along the equilibrium manifold.

Stable Mechanism Recipe

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recipe for designing a contractive mechanism:

- 1 Need bounded concavity $(v_i'' \in (-B, -1/B))$,
- **2** Start with $U_i(r,s) := v_i(y(r)) q_i(r,s)y(r) g_i(r,s)$
- **3** Define best response functions $(\rho_i(r_{-i}, s_{-i}), \sigma_i(r_{-i}, s_{-i}))$.
- 4 Write down two FOCs:

$$\frac{\partial U_i(\rho_i, \sigma_i, r_{-i}, s_{-i})}{\partial r_i} \equiv \frac{\partial U_i(\rho_i, \sigma_i, r_{-i}, s_{-i})}{\partial s_i} \equiv 0$$

5 Differentiate both sides (I.F.T.) and solve system for

$$\left(\frac{\partial \rho_i}{\partial r_j}, \frac{\partial \rho_i}{\partial s_j}, \frac{\partial \sigma_i}{\partial r_j}, \frac{\partial \sigma_i}{\partial s_j}\right)$$

Stable Mechanism Recipe

(日)

For example:

$$\frac{\partial \rho_i}{\partial r_j} = \frac{\frac{\partial^2 g_i}{\partial s_i^2} \left(-v_i'' \frac{\partial y}{\partial r_i} \frac{\partial y}{\partial r_j} + \frac{\partial y}{\partial r_i} \frac{\partial q_i}{\partial r_i} + \frac{\partial^2 g_i}{\partial r_i \partial r_j} \right) - \frac{\partial^2 g_i}{\partial r_i \partial s_i} \frac{\partial^2 g_i}{\partial s_i \partial r_j}}{\left(\frac{\partial^2 g_i}{\partial r_i \partial s_i}\right)^2 + v_i'' \left(\frac{\partial y}{\partial r_i}\right)^2 \frac{\partial^2 g_i}{\partial s_i^2} - \frac{\partial^2 g_i}{\partial r_i^2} \frac{\partial^2 g_i}{\partial s_i^2}}$$

 Find parameterized functions such that when some parameter gets big,

$$= \sum_{j \neq i} \left(\left| \frac{\partial \rho_j}{\partial r_i} \right| + \left| \frac{\partial \sigma_j}{\partial r_i} \right| \right) < 1 \text{ and } \sum_{j \neq i} \left(\left| \frac{\partial \rho_j}{\partial s_i} \right| + \left| \frac{\partial \sigma_j}{\partial s_i} \right| \right) < 1,$$

- **b** $g_i = 0$ in equilibrium, and
- **c** $\sum_i q_i = \kappa$ in equilibrium.

Give up and hire an RA to do it.

A Contractive Lindahl Mechanism

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$y(r) = \sum_{i} r_{i}$$

$$q_{i}(r_{-i}, s_{-i}) = \frac{\kappa}{n} + \frac{1}{\delta} (r_{i-1} - r_{i+1}) + \delta \frac{n-1}{n^{2}} (s_{i-1} - \frac{1}{n} r_{i+1})$$

$$g_{i}(r, s) = \frac{1}{2} (s_{i} - \frac{1}{n} r_{i+1})^{2} + \frac{\delta}{2} (s_{i-1} - \frac{1}{n} r_{i})^{2}$$

Theorem

This implements Lindahl equilibria. If δ is sufficiently large it becomes contractive.

(In fact, this is a 'stabilized' Walker mechanism.)

A Contractive Walrasian Mechanism

To be announced.

A Contractive *ɛ*-Walrasian Mechanism

$$y_{i}(r) = (r_{i-1} - r_{i+1}) - \frac{\delta}{n} \left(s_{i+1} - \frac{n+1}{n} r_{i} \right)$$
$$q_{i}(s_{-i}) = \frac{1}{n-1} \sum_{j \neq i} s_{j}$$
$$g_{i}(r, s) = (s_{i} - \delta \frac{n+1}{n^{2}} \sum_{j} r_{j})^{2}$$

(日)

Theorem

For large δ this mechanism is contractive and implements allocations arbitrarily close to the Walrasian allocations.

Notes on this Procedure

(日)

- Stability demands large parameter values. Is this useful?
- Can we make an anonymous contractive mechanism?
- Contractive \Rightarrow unique equilibrium.
 - What if SCC isn't single-valued?
 - Note: contractiveness depends on Θ .
- Van Essen et al. experiments on "supermodularity"
- Fact remains: supermodularity \Rightarrow stability in the lab
 - Why??
 - Were those mechs. contractive for the chosen prefs?
 - Is there something else about supermodularity?

Final Thoughts

(日)

Further reading:

- Reichelstein & Reiter 1988: Some of the same ideas.
- Brock 1980 & G-L 1987: Sufficiency
- Mathevet 2008: Supermodular Mechanism Design
- Van Essen 2009 & Van Essen, Lazzati & Walker 2009

- Ultimate goal: practical mechanism design
- Conversation between experiments & theory.

The End