Model Selection Accuracy in Behavioral Game Theory: A Simulation

Paul J. Healy Hyoeun Park

OSU

25 Years of QRE

A Warning:

三日 のへの

A Warning:

I have no clue what I'm talking about.

Healy and Park

< □ > < 凸

= 990

2-person guessing game (Costa-Gomes and Crawford, 2006): Pick $s_i \in S_i = [\underline{s}_i, \overline{s}_i]$ Target: $p_i s_j$ Payoff: $-|s_i - p_i s_j|$

< □ > < 凸

= nar

2-person guessing game (Costa-Gomes and Crawford, 2006): Pick $s_i \in S_i = [\underline{s}_i, \overline{s}_i]$ Target: $p_i s_j$ Payoff: $-|s_i - p_i s_j|$

Level-k Model:
$$\sigma_i^0$$
 is $U[\underline{s}_i, \overline{s}_i]$
 $s_i^1 = BR_i(\sigma_j^0)$, $s_i^k = BR_i(s_i^{k-1})$ $k = 2, 3, ...$ $s_i^N = BR_i(s_j^N)$

< □ > < 凸

= nar

2-person guessing game (Costa-Gomes and Crawford, 2006): Pick $s_i \in S_i = [\underline{s}_i, \overline{s}_i]$ Target: $p_i s_j$ Payoff: $-|s_i - p_i s_j|$

Level-k Model:
$$\sigma_i^0$$
 is $U[\underline{s}_i, \overline{s}_i]$
 $s_i^1 = BR_i(\sigma_j^0), \quad s_i^k = BR_i(s_i^{k-1}) \quad k = 2, 3, \dots \quad s_i^N = BR_i(s_j^N)$
"Spike-Logit" Error: $\sigma_i^k = (1 - \epsilon)\mathbb{1}_{\{s_i^k\}} + \epsilon LR(s_j^{k-1}|\lambda)$

< □ > < 凸

= nar

Healy and Park

4 / 42

- Error structure may drive estimates of levels
 - Tail wagging the dog

- Error structure may drive estimates of levels
 - Tail wagging the dog
- Error structure may drive misclassification

- Error structure may drive estimates of levels
 - Tail wagging the dog
- Error structure may drive misclassification
- In an MLE horserace, can we really trust the winning model?
 - Is the model winning, or is the error structure winning?

- Error structure may drive estimates of levels
 - Tail wagging the dog
- Error structure may drive misclassification
- In an MLE horserace, can we really trust the winning model?
 - Is the model winning, or is the error structure winning?
- Hopefully, cross-validation methods save the day

Let's simulate a model-selection exercise! (Inspiration: Salmon (2001) for learning models) Pick several popular behavioral GT models

- 1 Pick several popular behavioral GT models
- 2 Pick a set of games

- 1 Pick several popular behavioral GT models
- 2 Pick a set of games
- **③** For each model, generate fake game-play data from that model

- Pick several popular behavioral GT models
- 2 Pick a set of games
- 3 For each model, generate fake game-play data from that model
- ④ Fit all models to that fake data

- Pick several popular behavioral GT models
- 2 Pick a set of games
- **③** For each model, generate fake game-play data from that model
- ④ Fit all models to that fake data
- **5** Use various criteria to select a winning model

- Pick several popular behavioral GT models
- 2 Pick a set of games
- **③** For each model, generate fake game-play data from that model
- ④ Fit all models to that fake data
- **5** Use various criteria to select a winning model
- 6 See how frequently the "right" model wins

- Pick several popular behavioral GT models
- 2 Pick a set of games
- **③** For each model, generate fake game-play data from that model
- ④ Fit all models to that fake data
- **5** Use various criteria to select a winning model
- 6 See how frequently the "right" model wins

Always a correct model. "Best-case" scenario.

Model Selection Criteria

MLE in-sample \Rightarrow overfitting.

Penalty-based solutions:

- **1** AIC (Akaike, 1973): Log-Likelihood (# params.)
- **2** BIC (Schwarz, 1978): Log-Likelihood $-\frac{1}{2}\ln(n)$ (# params.)

Model Selection Criteria

MLE in-sample \Rightarrow overfitting.

Penalty-based solutions:

- **1** AIC (Akaike, 1973): Log-Likelihood (# params.)
- **2** BIC (Schwarz, 1978): Log-Likelihood $-\frac{1}{2}\ln(n)$ (# params.)

Cross-validation solutions:

- ① Split the data (the games) into a "training" set and a "testing" set
- 2 Estimate parameters on training data
- 3 Measure likelihood on testing data
- 4 Repeat with different splits, take the average

Cross-Validation Methods

Our "subjects" play n = 12 games: $G = \{g_1, g_2, \dots, g_{12}\}$

k-Fold Cross Validation:

- Randomly partition G into $\{G_1, \ldots, G_k\}$ of equal sizes
 - Split is *iid* across subjects
- In each "fold" $i \in \{1, 2, \dots, k\}$...
 - Training data: $\bigcup_{j\neq i} G_j$
 - Testing data: G_i
 - Calculate log-likelihood LL_i
- Winning model: Maximum $\frac{1}{k}\sum_{i}LL_{i}$

Two-Fold Cross Validation (2FCV): k = 2Leave-One-Out Cross Validation (LOOCV): k = n = 12

Connections

AIC & LOOCV:

• LOOCV \rightarrow AIC as $n \rightarrow \infty$ (Stone, 1977)

▶ ▲ 문 ▶

= 990

Connections

AIC & LOOCV:

• LOOCV \rightarrow AIC as $n \rightarrow \infty$ (Stone, 1977)

BIC & 2FCV:

• 2FCV \rightarrow BIC for linear models, non-equal splits (Shao, 1997)

Connections

AIC & LOOCV:

• LOOCV \rightarrow AIC as $n \rightarrow \infty$ (Stone, 1977)

BIC & 2FCV:

• 2FCV \rightarrow BIC for linear models, non-equal splits (Shao, 1997)

Is there a consensus choice??

Methodology

Twelve different symmetric 3 × 3 games. Games

- 6 games: unique pure NE
- 6 games: unique totally mixed NE
- Based on Stahl and Wilson (1995)
- Seven competing models (e.g., Level-k, QRE)
- For each model, generate a dataset
 - Dataset = 3000 simulated subjects playing the 12 games
 - Play according to the model (model = "DGP")
 - Each subject's parameters are *iid* draws
- Pick winning model for each subject via AIC, BIC, 2FCV, and LOOCV

Q: Does the DGP win for the vast majority of subjects in its dataset?

Level-k (Nagel; Stahl & Wilson)

- Level 0: σ_i^0 is uniform random
- Level 1: $s_i^1 = BR_i(\sigma_i^0)$
- Level k: $s_i^k = BR_i(s_j^{k-1})$. Here: $k \in \{1, 2, 3, \mathbb{N}\}$
- Base model is deterministic

• w/ spike-logit:
$$\sigma_i^k = (1 - \epsilon) \mathbb{1}_{\{s_i^k\}} + \epsilon LR(s_j^{k-1}|\lambda)$$

Double-Counting Error (LKD)

Single-Counting Error (LKS)

 $\begin{aligned} \epsilon LR_2 \\ \mathbf{(1-\epsilon)} + \frac{\epsilon LR_1}{\epsilon LR_3} \end{aligned}$

$$\begin{array}{c} \epsilon LR'_2 \\ (1-\epsilon) \\ \epsilon LR'_3 \end{array} \begin{array}{c} \text{2nd-best response} \\ \text{Best response} \\ 3rd-best response \end{array}$$

Poisson Cognitive Hierarchy (Camerer, Ho & Chong)

- Level 0: σ_i^0 is uniform random
- Level 1: $s_i^1 = BR_i(\sigma_i^0)$
- Level k: $s_i^k = BR$ to Poisson dist'n over $\{\sigma_i^0, s_i^1, \dots, s_i^{k-1}\}$. And $k \leq 3$
- Base model is deterministic

• w/ spike-logit:
$$\sigma_i^k = (1 - \epsilon) \mathbb{1}_{\{s_i^k\}} + \epsilon LR(s_j^{k-1}|\lambda)$$

2nd-best response

Best response 3rd-best response

Double-Counting Error (PCHD)

Single-Counting Error (PCHS)

$$\begin{array}{c} \epsilon LR'_2 \\ (1-\epsilon) \\ \epsilon LR'_3 \end{array} \begin{array}{c} \text{2nd-best response} \\ \text{Best response} \\ \text{3rd-best response} \end{array}$$

 $\begin{array}{c} \epsilon LR_2 \\ (1-\epsilon) + \epsilon LR_1 \\ \epsilon LR_3 \end{array}$

Hierarchical Quantal Response (HQR)

- Level 0: σ_i^0 is uniform random
- Level 1: $\sigma_i^1 = LR_i(\sigma_i^0|\lambda)$
- Level k: $\sigma_i^k = LR_i(\sigma_i^{k-1}|\lambda)$
- Allow $k \leq 3$
- Base model is not deterministic. No spike-logit needed.

Quantal Level-k (QLK; Stahl & Wilson 1994)

- Level 0: σ_i^0 is uniform random
- Level 1: $\sigma_i^1 = LR_i(\sigma_i^0|\lambda^1)$
- Level 2's Belief: $\sigma_i^{1(2)} = LR_i(\sigma_i^0|\lambda^{1(2)})$
- Level 2: $\sigma_i^2 = LR_i(\sigma_i^{1(2)}|\lambda^2)$
- Only allow $k \leq 2$
- Base model is not deterministic. No spike-logit needed.

QRE (McKelvey & Palfrey 1995)

- You know it!
- Logit specification
- Principal branch
- Not deterministic. No spike-logit needed.

RESULTS (finally)

= 990

Result-Across Model Selection Comparison

Result 1 No model-selection criterion guarantees high accuracy

(If models tie they share the win equally)								
DGP (# Param.)	LOOCV	2FCV	BIC	AIC				
LK Double (3)	21.48	22.62	0.72	0.93				
LK Single (3)	50.12	40.81	57.6	59.1				
PCH Double (4)	23.42	28.71	25.02	26.95				
PCH Single (4)	20.95	16.45	35.57	40.17				
QLK (4)	15.56	13.49	4.85	5.13				
HQR (2)	21.88	22.45	92.5	92.87				
QRE (1)	19.13	44.51	94.33	92.13				

Fraction of 3,000 subjects for which the DGP wins.

The Problem: Ties.

DGP \EST		LK Double	LK Single	PCH Double	PCH Single	QLK	HQR	QRE
	solo	0.83	0.73	0.40	0.37	0.63	0.47	2.6
LK-Double	w/DGP	-	92.83	62.13	62.10	62.10	92.93	
	w/Other	92.97	0.07	0.77		0.17	0.17	

<ロト < 団ト < 臣ト < 臣ト

三日 のへの

The Problem: Ties.

DGP \EST		LK Double	LK Single	PCH Double	PCH Single	QLK	HQR	QRE
	solo	3.43	44.93	2.63	4.23	2.2	3.97	10.23
LK-Single	w/DGP	21.87	-	16.63	17.9	16.63	21.83	1.57
	w/Other	2.87	23.13	1.83	0.2	2.73	2.93	

<ロト < 団ト < 臣ト < 臣ト

三日 のへで

The Problem: Ties.

DGP \EST		LK Double	LK Single	PCH Double	PCH Single	QLK	HQR	QRE
	solo	3.1	1.57	3.7	1.7	7.4	4.47	4.6
PCH-Double	w/DGP	47.07	47.03	-	71.13	48.13	47.1	1.33
	w/Other	1.53	0.07	71.23	0.07	0.7	2.1	

<ロト < 団ト < 臣ト < 臣ト

三日 のへの

The Problem: Ties.

DGP \EST		LK Double	LK Single	PCH Double	PCH Single	QLK	HQR	QRE
	solo	5.4	19.87	4.6	15.13	6.3	8	14.17
PCH-Single	w/DGP	11.93	13.17	19.47	-	12.53	11.93	0.6
	w/Other	3.73	0.1	1.97	20.7	2.67	3.5	

三日 のへの
Result (LOOCV)

The Problem: Ties.

DGP \EST		LK Double	LK Single	PCH Double	PCH Single	QLK	HQR	QRE
	solo	1.23	2.03			1.73	1.07	6.2
QLK	w/DGP	82.6	82.47	84.03	84.03	-	83.23	0.4
	w/Other	1.13	0.43	0.2	0.47	84.93	0.97	

<ロト < 団ト < 臣ト < 臣ト

三日 のへで

Result (LOOCV)

The Problem: Ties.

DGP \EST		LK Double	LK Single	PCH Double	PCH Single	QLK	HQR	QRE
	solo	1.13	0.63	0.87	0.63	1.07	2.43	5.9
HQR	w/DGP	84	83.1	54.9	54.83	55.99	-	0.17
	w/Other	0.17	0.43	1.97	2.23	0.03	84.93	0.00

<ロト < 団ト < 臣ト < 臣ト

三日 のへの

Result (LOOCV)

The Problem: Ties.

DGP \EST		LK Double	LK Single	PCH Double	PCH Single	QLK	HQR	QRE
	solo	42.53	0.9	0.53	0.67	1.6	1.73	19.13
QRE	w/DGP	0.00					0.00	-
	w/Other	31.43	31.47	1.13	1.23	0.83	0.83	0.00

三日 のへの

The Problem: Ties.

Result 2 When selecting among similar models it is important to verify the frequency of model non-identification (ties). BIC table 2FCV table

DGP \EST		LK Double	LK Single	PCH Double	PCH Single	QLK	HQR	QRE
	solo	42.53	0.9	0.53	0.67	1.6	1.73	19.13
QRE	w/DGP	0.00					0.00	-
	w/Other	31.43	31.47	1.13	1.23	0.83	0.83	0.00

= ~ ~ ~

The Cause

Consider DGP = LK-Double with k = 2

- Game payoffs are relatively high (\$0-\$100)
- Even modest $\lambda \Rightarrow$ near-perfect Level-2 play, even when trembling
- Models will estimate $\hat{k} = k = 2$ and $\hat{\epsilon} = 0$
- Also $\hat{\tau}$ and $\hat{\lambda}$ large
- All models get 100% likelihood

Divide payoffs by 100

- Noisier play in DGPs \Rightarrow better identification
- Noisier beliefs in QLK, HQR, and QRE can change base predictions

DGP \EST		LK Double	LK Single	PCH Double	PCH Single	QLK	HQR	QRE
	solo	8.07						
LK-Double	w/DGP	-	53.97				54.4	
	w/Other	56.3						

Table: Payoffs scaled by 1/100.

글 ► ★ 글 ►

DGP \EST		LK Double	LK Single	PCH Double	PCH Single	QLK	HQR	QRE
	solo		27.37					
LK-Single	w/DGP	15.47	-		15.93		15.47	
	w/Other		20.43					

Table: Payoffs scaled by 1/100.

Image: A matrix

▶ < Ξ >

DGP \EST		LK Double	LK Single	PCH Double	PCH Single	QLK	HQR	QRE
PCH-Double	solo w/DGP			4.87	45.23			
	w/Other			47.33				

Table: Payoffs scaled by 1/100.

Image: A matrix

21 / 42

▶ < Ξ >

DGP \EST		LK Double	LK Single	PCH Double	PCH Single	QLK	HQR	QRE
	solo				11.90			15.47
PCH-Single	w/DGP			15.53	-			
	w/Other				19.73			

Table: Payoffs scaled by 1/100.

< □ > < 凸

21 / 42

-∢ ≣ ▶

DGP \EST		LK Double	LK Single	PCH Double	PCH Single	QLK	HQR	QRE
	solo					5.87		17.23
QLK	w/DGP					-	28.10	
	w/Other					28.33		

Table: Payoffs scaled by 1/100.

Image: A matrix

▶ < Ξ >

DGP \EST		LK Double	LK Single	PCH Double	PCH Single	QLK	HQR	QRE
	solo						14.93	15.17
HQR	w/DGP						-	
	w/Other						41.1	

Table: Payoffs scaled by 1/100.

Image: A matrix

< ≣ ▶

DGP \EST		LK Double	LK Single	PCH Double	PCH Single	QLK	HQR	QRE
	solo	24.07						25.63
QRE	w/DGP							-
	w/Other							0

Table: Payoffs scaled by 1/100.

Image: A matrix

21 / 42

< ≣ ▶

Result 3 Structural changes to the games may not be enough to overcome the identification problems that arise when comparing similar models

BIC table 2FCV table

DGP \EST		LK Double	LK Single	PCH Double	PCH Single	QLK	HQR	QRE
	solo	24.07						25.63
QRE	w/DGP							-
	w/Other							0

Table: Payoffs scaled by 1/100.

- 4 ∃ ▶

= nar

Possible Solution 2

- Omit similar models
 - 6 models other than QRE are level-based and tie frequently.
 - For each model, horserace that model against only QRE

22 / 42

Result: Two-horse horserace

DGP\EST	LK double	LK single	PCH double	PCH single	QLK	HQR	QRE
LK Double	95.13						4.87
LK Single		76.35					23.65
PCH Double			77.52				22.48
PCH Single				44.07			55.93
QLK					89.27		10.73
HQR						89.68	10.32
QRE DGP:	24.32	48.92	96.23	96.8	96.03	93.43	

Table: LOCCV winning frequency of each model versus only QRE in 3×3 games.

23 / 42

Result: Two-horse horserace

Result 4 Two-horse horserace fixes the non-identification problem (there are no ties), but model selection is still imperfect BIC table 2FCV table

DGP\EST	LK double	LK single	PCH double	PCH single	QLK	HQR	QRE
LK Double	95.13						4.87
LK Single		76.35					23.65
PCH Double			77.52				22.48
PCH Single				44.07			55.93
QLK					89.27		10.73
HQR						89.68	10.32
QRE DGP:	24.32	48.92	96.23	96.8	96.03	93.43	

Table: LOCCV winning frequency of each model versus only QRE in 3×3 games.

Even without ties there are still three troublesome cases. Why?

DGP\EST	LK double	LK single	PCH double	PCH single	QLK	HQR	QRE
LK Double							
LK Single							
PCH Double							
PCH Single				44.07			
QLK							
HQR							
QRE DGP:	24.32	48.92					

Table: LOCCV winning frequency of each model versus only QRE in 3×3 games.

< □ > < 凸

- 4 ∃ ▶

Mystery #1: PCHS vs. QRE

PCHS: Varying τ varies pure BR's

• k = 2: six different (s_1^*, \dots, s_{12}^*) BR vectors as τ varies Case 1:

- Subject plays a perfect BR in 11 training games: $\hat{\epsilon} = 0$
- Subject does not play the BR in testing game: $LL_i = -\infty$
- $(1/12)\sum_i LL_i = -\infty$

Case 2:

- Subject always plays non-BR in 11 training games: $\hat{c} = 1$
- Subject plays BR in testing game: $LL_i = \infty$
- $(1/12)\sum_i LL_i = \infty$

시코에 시코에 크

Mystery #1: PCHS vs. QRE

Case 3:

- Subject plays "2nd-best" strategy in n_1 games and BR in $11-n_1$
- $\hat{\epsilon} = \frac{n_1}{11}$ and $\hat{\lambda} = \infty$ since all trembles are on 2nd best
- Subject plays "3rd-best" in training game: $LL_i = -\infty$
- $(1/12)\sum_i LL_i = -\infty$

How often are there $-\infty$ problems? Total PCHS subjects: 3,000 PCHS loses to QRE: 1,655 (55%) PCHS gets $LL_i = -\infty$: 1,488 (90%)

Other models: failure rate low, but still high *fraction* of $-\infty$ problems

Mystery #2: QRE vs LK Models

- High payoffs \Rightarrow QRE subjects often play Nash
- LK estimated to be Nash type (95%), often noiseless (80%)
- QRE won't imitate this with $\hat{\lambda} = \infty$. Why?
 - Suppose mixed NE and $\sigma_i^*(s_i) < 1/3$
 - Subject plays s_i : better estimated as noise
 - Thus, $\hat{\lambda} < \infty$
- \Rightarrow LKS & LKD beat QRE

27 / 42

Mystery #3: QRE vs LK Double

- Suppose QRE subject with frequent Nash play
- QRE has fairly high (but finite) $\hat{\lambda}$
- LKD Nash type can have $\hat{c} > 0$
 - If $\sigma_i^*(s_i) < 1/3$ then s_i better fits as a tremble
- Suppose testing game has $\sigma_i^*(s_i) < 1/3$
- QRE likelihood $\approx \sigma_i^*(s_i) < 1/3$
- LKD likelihood $\approx (1-\hat{\epsilon})\sigma_i^*(s_i) + (\hat{\epsilon})\frac{1}{3}$
- LKD beats QRE

28 / 42

Summary

Two main problems for cross-validation:

- $\textbf{0} \ -\infty \ \text{likelihoods}$
- **2** $\sigma_i^*(s_i) < 1/3$ scenarios

BIC and AIC shouldn't have these problems...

BIC Winning Frequencies

DGP\EST	LK Double	LK Single	PCH Double	PCH Single	QLK	HQR	QRE
LK Double	97.53						2.47
LK Single		93.07					6.93
PCH Double			92.17				7.83
PCH Single				76.7			23.3
QLK					93.5		6.5
HQR						93.97	6.03
QRE QRE wins:	98.57	97.7	98.37	97.6	98.87	97.1	
Model wins:	1.43	2.3	1.63	2.4	1.13	2.9	

Table: BIC winning frequency of each model versus only QRE in the 3 ×3 games with the original payoffs

- 4 ∃ ▶

Robustness

Would a larger strategy space improve model identification?

• 2-Person Guessing Games (CGC 2006):

- Fine strategy space: {100, 101, 102, ..., 300}
- Coarse strategy space: {100, 110, 120, ..., 300}

Robustness: Size of Strategy Space

LOOCV. Fine strategy set is Red and Coarse strategy set is Blue

DGP\EST	LK double	LK single	PCH double	PCH single	QLK	HQR
LK Double	86.67					
	83.4					
LK Single		89.2				
		83.97				
PCH Double			82.07			
			82.2			
PCH Single				81.8		
				77.1		
QLK					76	
					75.77	
HQR						72.5
						71.93
QRE	77.57	84.97	94.27	94.43	94.7	93.6
	70.97	77.17	95.17	94.3	94.87	94.3

Table: LOCCV winning frequency of each model versus only QRE in guessing games.

< □ > < 凸

- 4 ∃ ▶

= nar

Robustness: Size of Strategy Space

BIC. Fine strategy set is Red and Coarse strategy set is Blue

DGP\EST	LK double	LK single	PCH double	PCH single	QLK	HQR
LK Double	98.3					
	96.9					
LK Single		98.2				
		96.4				
PCH Double			87.4			
			92.5			
PCH Single			1	87.1		
				91.7		
QLK					65.8	
					65.8	
HQR						69.3
						69.4
QRE	98.0	96.4	99.7	99.7	99.6	98.7
	97.0	95.7	99.1	99.0	99.5	98.1

Table: BIC winning frequency of each model versus only QRE in guessing games.

< □ > < 凸

Robustness: Size of Strategy Space

- LOOCV:
 - Fine is significantly better: 5 comparisons
 - Fine is significantly worse: 0 comparisons
- BIC:
 - Fine is significantly better: 5 comparisons
 - Fine is significantly worse: 2 comparisons

What's the value of adding another game?

- Back to 3×3 games
- Original simulation: 12 games
- New simulations: random subsets of r games, $r \in \{4, 6, 8, 10, 12\}$

LOOCV: Number of Games

Levels models are DGPs:

_≡|= 36 / 42

LOOCV: Number of Games

QRE is DGP:

Healy and Park

Model Selection Accuracy

_≡|= 37 / 42

590

LOOCV: Number of Games

- · Generally, more games helps
- When QRE is the DGP:
 - Lots of NE play
 - Small # games: LK has $-\infty$ problems
 - Large # games: LK's $\sigma_i^*(s_i) < 1/3$ advantage dominates

BIC: Number of Games

Levels models are DGPs:

Healy and Park

·≣|= 39 / 42

590

BIC: Number of Games

QRE is DGP:

-≣|= 40 / 42

Conclusion

Lessons:

- 1 Don't include a bunch of similar models
- Scaling payoffs/structural changes may not help much
- 3 Cross-validation can have problems!
 - Especially when models can become deterministic
- ④ Failures seem specific; few general lessons
- **5** BIC is less sensitive to such problems?
- 6 Finer strategy space: *mostly* better
- More games: generally better, esp. for BIC

Want to run a model horserace? Simulate it first

41 / 42

Fin

シック 正則 スポッスポッス モッ
Appendix - Tie BIC

DGP \EST		LK Double	LK Single	PCH Double	PCH Single	QLK	QR	QRE
	solo	0.7	2.1	0	0.47	0.4	95.07	1.17
LK-Double	w/DGP	NaN	0	0	0	0.03	0	0
	w/Other	0.03	0	0.07	0.07	0	0	0
	solo	1.1	57.6	0.37	4.87	0.73	31.1	3.97
LK-Single	w/DGP	0	NaN	0	0	0	0	0
	w/Other	0.17	0	0.1	0.1	0.17	0	0
	solo	0.4	1.9	12.13	4.5	1.83	49.57	3.9
PCH-Double	w/DGP	0	0	NaN	25.77	0	0	0
	w/Other	0	0	25.77	0	0	0	0
	solo	0.97	21.83	3.17	31.33	1.57	21.07	11.5
PCH-Single	w/DGP	0	0	8.47	NaN	0	0	0
	w/Other	0.1	0	0	8.47	0.1	0	0
	solo	0.17	1.33	0.1	0.73	4.8	89.03	3.7
QLK	w/DGP	0.1	0	0	0	NaN	0	0
	w/Other	0	0	0.03	0.03	0.1	0	0
	solo	0.1	0.93	0	0.97	0.3	92.5	5.17
QR	w/DGP	0	0	0	0	0	NaN	0
	w/Other	0.03	0	0	0	0.03	0	0
	solo	0.27	1.43	0.17	0.73	0.37	1.9	94.33
QRE	w/DGP	0	0	0	0	0	0	NaN
	w/Other	0	0	0.8	0.8	0	0	0

Return

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Appendix - Tie 2FCV

DGP \EST		LK Double	LK Single	PCH Double	PCH Single	QLK	QR	QRE
	solo	0.4	0.7	0.4	0.17	0.77	0.5	1.2
LK-Double	w/DGP	NaN	93.83	63.3	63.07	63.07	93.87	0.03
	w/Other	94.1	0.17	1.3	1.47	0.3	0.3	0
	solo	4.23	40.7	2.83	4.43	3.9	3.97	10.33
LK-Single	w/DGP	19.5	NaN	14.8	18	14.8	19.5	0
	w/Other	4	22.7	3.9	0.33	3.63	3.27	0
	solo	0.87	0.63	1.97	0.9	2.27	0.7	3.93
PCH-Double	w/DGP	41.57	41.27	NaN	87.8	41.3	41.4	0.03
	w/Other	0.13	0.03	88.1	0.03	0.5	0.6	0
	solo	4.27	11.33	4.27	23.1	5.13	4.3	16.27
PCH-Single	w/DGP	10.93	13.73	20.4	NaN	10.93	10.97	0
	w/Other	4.07	0	3.8	23.2	4.43	4.4	0
	solo	1.47	1	0.63	0.73	3.07	0.9	3.5
QLK	w/DGP	86.4	86.13	86.3	86.13	NaN	87.57	0.03
	w/Other	0.7	0.17	0.83	0.3	87.7	0	0
	solo	1.33	0.73	0.53	1.13	0.3	1.33	3.87
QR	w/DGP	86.27	86.13	57.2	57.1	58.7	NaN	0.03
	w/Other	0.93	0.2	2.73	2.07	0.07	87.77	0
	solo	7.33	1.5	3.6	3.83	2.63	4.47	72.77
QRE	w/DGP	0	0	0	0	0	0	NaN
	w/Other	0.63	0.83	1.4	1.63	2.53	2.53	0

Return

Healy and Park

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Appendix - Tie BIC 1/100 Scale

DGP \EST		LK Double	LK Single	PCH Double	PCH Single	QLK	QR	QRE
	solo	7.37	15.5	0.9	3.8	1.83	57.23	12.7
LK-Double	w/DGP	NaN	0	0	0	0.33	0	0
	w/Other	0.33	0	0.33	0.33	0	0	0
	solo	4.73	36.77	0.43	7.87	1.23	30.13	18.4
LK-Single	w/DGP	0	NaN	0	0	0	0	0
	w/Other	0.23	0	0.2	0.2	0.23	0	0
	solo	2.43	8.4	8.27	9.47	2.83	33.67	19.13
PCH-Double	w/DGP	0	0	NaN	15.43	0	0	0
	w/Other	0.37	0	15.43	0	0.37	0	0
	solo	2.13	16.7	3	23.4	2.03	21.4	22.87
PCH-Single	w/DGP	0	0	8.27	NaN	0	0	0
	w/Other	0.2	0	0	8.27	0.2	0	0
	solo	0.97	6.73	0.9	5.8	17.23	29	39.07
QLK	w/DGP	0.2	0	0	0	NaN	0	0
	w/Other	0	0	0.1	0.1	0.2	0	0
	solo	0.87	7.1	0.43	5.6	1	40.03	44.83
QR	w/DGP	0	0	0	0	0	NaN	0
	w/Other	0.07	0	0.07	0.07	0.07	0	0
	solo	0.83	5.27	0.6	3.47	1.9	5.03	82.57
QRE	w/DGP	0	0	0	0	0	0	NaN
	w/Other	0.07	0	0.27	0.27	0.07	0	0

Return

Healy and Park

<ロト < 団ト < 臣ト < 臣ト

三日 のへで

Appendix - Tie 2FCV 1/100 Scale

DGP \EST		LK Double	LK Single	PCH Double	PCH Single	QLK	QR	QRE
	solo	11.23	10.5	8.13	5.03	6.73	4.3	13.3
LK-Double	w/DGP	NaN	33.3	25.07	23.73	24.13	33.5	0.23
	w/Other	35	2.27	0.47	2.53	3.23	3.23	0
	solo	9.87	18.27	6.27	8.13	5.03	5.03	18.27
LK-Single	w/DGP	19.63	NaN	14.93	17.63	14.97	19.67	0.13
	w/Other	3.03	22.37	2.8	0.17	4.57	4.17	0
	solo	6.97	8.17	6.57	8.63	6.57	5.33	17.47
PCH-Double	w/DGP	22.33	20.27	NaN	32.17	21.4	20.57	0.07
	w/Other	0.57	1.67	34.33	1.67	4.17	4.07	0
	solo	7.83	10.8	6.93	11.9	6.5	5.8	20.47
PCH-Single	w/DGP	12.43	14.77	20.23	NaN	12.97	12.43	0.17
	w/Other	3.13	0.03	2.97	22.57	4.93	4.83	0
	solo	9	10.63	9.87	10.43	10.53	8.93	28.13
QLK	w/DGP	2.43	0.13	1.4	0.1	NaN	8.03	0.07
	w/Other	2.57	1	1.93	1.03	8.93	0.7	0
	solo	9.93	8.83	8.77	8.73	9.03	14.8	26.5
QR	w/DGP	4.03	2.93	2.77	1.93	8.03	NaN	0
	w/Other	3	2.03	1.63	1.13	0.6	9.27	0
	solo	7.73	6.3	8.23	8.07	8.73	8.9	46.93
QRE	w/DGP	0	0	0	0	0	0	NaN
	w/Other	1.33	1.17	1.23	1.37	3.27	3.17	0

Return

Healy and Park

<ロト < 団ト < 臣ト < 臣ト

三日 のへで

Appendix - Two-horserace BIC

DGP\EST	LK double QR	LK single QR	PCH double QR	PCH single QR	QLK	QR	QRE
LK Double	88.33						11.67
LK Single		97.2					2.8
PCH Double			92.17				7.83
PCH Single				76.7			23.3
QLK					93.5		6.5
QR						93.97	6.03
QRE	1.43	2.3	1.63	2.4	1.13	2.9	
	98.57	97.7	98.37	97.6	98.87	97.1	

Table: BIC winning frequency of each model versus only QRE in 3×3 games.

Return

< □ > < 凸 > .

프 에 제 프 에

三日 のへの

Appendix - Two-horserace 2FCV

DGP\EST	LK double QR	LK single QR	PCH double QR	PCH single QR	QLK	QR	QRE
LK Double	77.57						22.43
LK Single		97.33					2.67
PCH Double			91.57				8.43
PCH Single				55.72			44.28
QLK					95.05		4.95
QR						94.57	5.43
QRE	12.38	4	8.7	8.02	9	10.97	
	87.62	96	91.3	91.98	91	89.03	

Table: 2FCV winning frequency of each model versus only QRE in 3×3 games.

Return

∃ ► < ∃ ►</p>

三日 のへの

Appendix - Tie LOOCV Guessing Games with Finer Strategy Sets

DGP \EST		LK Double	LK Single	PCH Double	PCH Single	QLK	QR	QRE
	solo	22.63	30.1	7.83	5.17	1.93	2.63	3.4
LK-Double	w/DGP	-	17.73	16.93	13.47	0	0.03	0
	w/Other	21.23	2.43	0.03	2.47	2.63	2.63	0
	solo	20.67	33.83	7.13	5.4	1.73	2.63	3.4
LK-Single	w/DGP	16.63	-	13.2	15.93	0	0	0
	w/Other	3.27	19.37	3.27	0	2.57	2.57	0
	solo	17.63	11.93	15.23	14.9	1.73	2.87	7.47
PCH-Double	w/DGP	16.67	12.1	-	17.5	0.8	0.83	0
	w/Other	0.03	3.27	21.97	3.27	3	3	0
	solo	17.17	12.8	14.23	15.7	1.7	2.8	7.33
PCH-Single	w/DGP	12.13	15.47	17.33	-	0.43	0.43	0
	w/Other	4.3	0	4.43	20.87	3.47	3.53	0
	solo	0.9	3.63	2.23	20.2	27.03	23.87	15.8
QLK	w/DGP	0.17	0	1.63	0.37	-	4.83	0
	w/Other	0.27	0.6	0.7	0.6	4.83	0.87	0
	solo	1.27	12.63	1	5	9.2	45.23	17.33
QR	w/DGP	1.5	0.17	1.8	0.5	2.7	-	0
	w/Other	0.17	4.67	0.17	4.67	0	3.5	0
	solo	12.43	10.83	0.17	1.9	1	2.67	69.57
QRE	w/DGP	0	0	0	0	0	0	-
	w/Other	0.43	0.47	0.93	0.67	0.87	1.1	0

Return

Model Selection Accuracy

Image: A matrix

(B)

三日 のへで

Appendix - Two-horserace BIC Guessing Games with Finer Strategy Sets

DGP\EST	LK double QR	LK single QR	PCH double QR	PCH single QR	QLK	QR	QRE
LK Double	98.2						1.8
LK Single		98.23					1.77
PCH Double			87.37				12.63
PCH Single				87.07			12.93
QLK					65.77		34.23
QR						69.27	30.73
QRE	2.03	3.57	0.33	0.33	0.4	1.33	
	97.97	96.43	99.67	99.67	99.6	98.67	

Table: 2FCV winning frequency of each model versus only QRE in 3×3 games.

Return

= ~ ~ ~

Appendix - Two-horserace 2FCV Guessing Games with Finer Strategy Sets

DGP\EST	LK double QR	LK single QR	PCH double QR	PCH single QR	QLK	QR	QRE
LK Double	46.87						53.13
LK Single		91.4					8.6
PCH Double			75.6				24.4
PCH Single				81.02			18.98
QLK					72.03		27.97
QR						72.9	27.1
QRE	31.53	0.9	8.83	9.83	9.93	9.33	
	68.47	99.1	91.17	90.17	90.07	90.67	

Table: 2FCV winning frequency of each model versus only QRE in 3×3 games.

Return

- ∢ ∃ ▶

= ~ ~ ~

Appendix - Tie LOOCV Guessing Games with Coarser Strategy Sets

DGP \EST		LK Double	LK Single	PCH Double	PCH Single	QLK	QR	QRE
	solo	18.37	29.3	6.47	4.97	2.17	4.37	3.03
LK-Double	w/DGP	-	22.83	12.53	8.83	0	0.03	0
	w/Other	26.43	2.03	0	2.03	2.87	2.87	0
	solo	15.9	40.63	5.2	5.27	2	2.5	3.4
LK-Single	w/DGP	16.93	-	8.4	10.77	0	0	0
	w/Other	3.33	19.4	3.33	0	2.37	2.4	0
	solo	8.27	20.53	18.07	12.13	2.8	3.57	5.17
PCH-Double	w/DGP	16.63	11.5	-	15.9	0.27	0.33	0
	w/Other	0.6	2.73	22.63	2.67	3.63	4.1	0
	solo	7.43	21.23	15.77	16.1	2.7	3.77	5.2
PCH-Single	w/DGP	9.37	13.43	14.77	-	0	0	0
	w/Other	6.13	1.63	5.87	18.83	2.97	3.2	0
	solo	4.5	11.33	4.1	6.23	23.93	17.67	12.5
QLK	w/DGP	4.5	0	3.3	0	-	7.4	0
	w/Other	8.3	4	2.9	4	7.4	7.2	0
	solo	3.77	11.3	2.57	7.1	8.53	39.57	14.83
QR	w/DGP	3.3	0	1.57	0	3.5	-	0
	w/Other	3.67	6.5	0.8	3.37	0	5.3	0
	solo	12.1	8.6	0.83	2.6	0.97	1.73	60.7
QRE	w/DGP	0	0	0	0	0	0	-
	w/Other	11.9	11.9	0.1	0.1	0.47	0.47	0

Return

Model Selection Accuracy

三日 のへの

Appendix - Two-horserace BIC Guessing Games with Coarser Strategy Sets

DGP\EST	LK double QR	LK single QR	PCH double QR	PCH single QR	QLK	QR	QRE
LK Double	96.43						3.57
LK Single		97					3
PCH Double			92.53				7.47
PCH Single				91.73			8.27
QLK					65.77		34.23
QR						69.4	30.6
QRE	1.63	2.73	0.33	0.53	0.4	1.17	
	98.37	97.27	99.67	99.47	99.6	98.83	

Table: 2FCV winning frequency of each model versus only QRE in 3×3 games.

Return

Image: Image:

= ~ ~ ~

→ < ∃ →</p>

Appendix - Two-horserace 2FCV Guessing Games with Coarser Strategy Sets

DGP\EST	LK double QR	LK single QR	PCH double QR	PCH single QR	QLK	QR	QRE
LK Double	83.9						16.1
LK Single		97.48					2.52
PCH Double			75.85				24.15
PCH Single				83.15			16.85
QLK					71.23		28.77
QR						72.17	27.83
QRE	36.1	30.9	8.37	9.77	11.4	10.63	
	63.9	69.1	91.63	90.23	88.6	89.37	

Table: 2FCV winning frequency of each model versus only QRE in 3×3 games.

Return

= nar

► < ∃ ►</p>

Games

Return

Game1	Т	М	В	Game 2	Т	Μ	В	Game3	т	М	В	
Т	25	30	100	Т	30	50	100	Т	10	100	40	
M	40	45	65	Μ	40	45	10	М	0	70	50	
В	31	0	40	В	35	60	0	В	20	50	60	
Game 4	T	Μ	В	Game5	T	М	В	Game 6	Т	М	В	
Т	30	100	50	Т	30	100	22	Т	40	15	70	
М	40	0	90	М	35	0	45	М	22	80	0	
В	50	75	29	В	51	50	20	В	30	100	55	
Game7	Т	Μ	В	Game 8	Т	М	В	Game9	Т	М	В	
Т	25	30	100	Т	10	100	40	Т	39	15	70	
M	40	0	65	Μ	0	70	60	М	40	80	0	
В	31	45	40	В	20	50	50	В	30	100	55	
Game10	Т	М	В	Game11	Т	М	В	Game12	Т	М	В	
Т	30	50	100	Т	30	100	22	Т	40	80	60	
М	40	60	10	M	35	0	20	• • • • • M =	23	25	= 0	
Healy and Park		Model Selection Accuracy								13 / 13		

- Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle, in: 2nd International Symposium on Information Theory, Akadémiai Kiadó, Budapest, Hungary. pp. 267–281.
- Costa-Gomes, M., Crawford, V.P., 2006. Cognition and Behavior in Two-Person Guessing Games: An Experimental Study. American Economic Review 96, 1737–1768.
- Salmon, T.C., 2001. An evaluation of econometric models of adaptive learning. Econometrica 69, 1597–1628.
- Schwarz, G., 1978. Estimating the Dimension of a Model. The Annals of Statistics 6, 461–464. doi:10.1214/aos/1176344136.
- Shao, J., 1997. An asymptotic theory for linear model selection. Statistica sinica , 221–242.
- Stahl, D.O., Wilson, P.W., 1995. On Players' Models of Other Players: Theory and Experimental Evidence. Games and Economic Behavior 10, 218–254.
- Stone, M., 1977. An Asymptotic Equivalence of Choice of Model by Cross-Validation and Akaike's Criterion. Journal of the Royal Statistical

Healy and Park

Society: Series B (Methodological) 39, 44–47. doi:10.1111/j.2517-6161.1977.tb01603.x.

三日 のへの